Project

Project Goal

Data

options(warn=-1)
library(ggplot2)
library(TSA)
library(readxl)
library(stringi)
library(zoo)

path = '/Users/mareksalamon/Desktop/School/Hunter/Spring Semester 2019/Time Series Analysis (715)/Final Project'
setwd(path)
data.nyc <- read_xlsx('Data/total_tech_invs_nyc.xlsx', col_names = TRUE, range = 'A2:C98',
                      col_types = c('text','numeric','numeric'), na = '0', trim_ws = TRUE)
data.nyc$Quarter <- as.Date(as.yearqtr(data.nyc$Quarter, format = "Q%q %Y"))
data <- read.csv('Data/all_tech_invs_nyc.csv')
head(data)
##      Quarter Number.of.deals Amounts      Sector
## 1 1995-01-01               0       0 agriculture
## 2 1995-04-01               0       0 agriculture
## 3 1995-07-01               0       0 agriculture
## 4 1995-10-01               0       0 agriculture
## 5 1996-01-01               0       0 agriculture
## 6 1996-04-01               0       0 agriculture

For simplicity, we will look at the total amount of quarterly investment across all 20 sectors.

head(data.nyc)
## # A tibble: 6 x 3
##   Quarter    `Number of deals`   Amounts
##   <date>                 <dbl>     <dbl>
## 1 1995-01-01                33 128280000
## 2 1995-04-01                22 108300000
## 3 1995-07-01                20  74240000
## 4 1995-10-01                22  74260000
## 5 1996-01-01                27 163330000
## 6 1996-04-01                25 166550000

Data Plot: Total Investment in NYC Tech Industry (1995-2018)

Let’s take a look at the top 5 largest investments and smallest investments between 1995 and 2018.

# Top 5 largest investments
data.nyc[with(data.nyc,order(-Amounts)),][1:5,]
## # A tibble: 5 x 3
##   Quarter    `Number of deals`    Amounts
##   <date>                 <dbl>      <dbl>
## 1 2018-07-01               163 5806640000
## 2 2017-07-01               220 4526000000
## 3 2000-01-01               239 3983720000
## 4 2000-07-01               205 3379210000
## 5 2017-10-01               217 2978320000
# Top 5 smallest investments
data.nyc[with(data.nyc,order(Amounts)),][1:5,]
## # A tibble: 5 x 3
##   Quarter    `Number of deals`   Amounts
##   <date>                 <dbl>     <dbl>
## 1 1995-07-01                20  74240000
## 2 1995-10-01                22  74260000
## 3 1995-04-01                22 108300000
## 4 1995-01-01                33 128280000
## 5 1996-07-01                33 129000000

Data Plot: First Order Lag Plot of Quarterly Investments

Data Plot: Autocorrelation of Quarterly Investment Amounts

# Autocorrelation function of the data
acf(ts(data.nyc$Amounts),main = "Correlogram")