below is the distribution of Y. This looks to be rightly skewed.
k = 50
n = 50
#taking 1000 times samples - minmum from 50 samples.
Y <- replicate(100, min(floor(runif(n, min = 1, max = k))))
hist(Y)
\[ E(x) = (1-p)p \] \[ E(x) = 10y, (1-p)p = 10\] \[ p = 1/11 \] \[ P(machine_in_k_year) = (1-p)^k-1 * p \] According to the geometric discribution, we can find using pgeom function by ignoring the lower tail.
p_after8_years = pgeom(8, prob = 1/11, lower.tail = FALSE)
p_after8_years
## [1] 0.4240976
\[ V(x) = (1-p)/p^2 \] \[ SD(X) = sqrt(V(X)) \]
var <- (1-1/11)/(1/11)^2
var
## [1] 110
sd = sqrt(var)
sd
## [1] 10.48809
\[ E(X)=1/λ= 10\]
\[ λ = 1/10 \] \[ V(x) = 1/λ^2 = 1/100 \] \[ SD = sqrt(V(x))= 1/10 \]
\[ P(fail_after_8_years) = 1- p(fail_with_in_8years)\] \[ p(fail_with_in_8years) = 1-e^λx = 1-e^(-1* 0.1*8) \]
p <- 1- (1- 2.71828^(-1*0.8))
p
## [1] 0.4493292
\[ E(X=failed) = np = 1 , p = 1/10 \] \[ V(x) = np(1-p) \]
var <- 10*(1/10)*(9/10)
var
## [1] 0.9
sd <- sqrt(var)
sd
## [1] 0.9486833
p_fail_with_in_8_years <- pbinom(0, size = 8, prob = 1/10)
p_fail_after_8_years <- 1- p_fail_with_in_8_years
p_fail_after_8_years
## [1] 0.5695328
\[ E(x) = λ \] \[ V(x) = λ \]
sd <- sqrt(10)
sd
## [1] 3.162278
\[ P(x) = (λ^x* e^-λ)/x! \]
p<-(10^(8) * exp(-10))/factorial(8)
p
## [1] 0.112599