VoterData <- read_csv("VoterData2017(1).csv")
## Parsed with column specification:
## cols(
## .default = col_double(),
## redovote2016_t_2017 = col_character(),
## job_title_t_2017 = col_character(),
## izip_2016 = col_character(),
## presvote16post_t_2016 = col_character(),
## second_chance_t_2016 = col_character(),
## race_other_2016 = col_character(),
## healthcov_t_2016 = col_character(),
## employ_t_2016 = col_character(),
## pid3_t_2016 = col_character(),
## religpew_t_2016 = col_character(),
## votemeth16_rnd_2016 = col_character(),
## presvote16post_rnd_2016 = col_character(),
## vote2016_cand2_rnd_2016 = col_character(),
## Clinton_Rubio_rnd_2016 = col_character(),
## Clinton_Cruz_rnd_2016 = col_character(),
## Sanders_Trump_rnd_2016 = col_character(),
## Sanders_Rubio_rnd_2016 = col_character(),
## second_chance_rnd_2016 = col_character(),
## obamaapp_rnd_2016 = col_character(),
## fav_grid_row_rnd_2016 = col_character()
## # ... with 121 more columns
## )
## See spec(...) for full column specifications.
## Warning: 13 parsing failures.
## row col expected actual file
## 1418 religpew_muslim_baseline 1/0/T/F/TRUE/FALSE 90 'VoterData2017(1).csv'
## 1531 child_age7_1_baseline 1/0/T/F/TRUE/FALSE 6 'VoterData2017(1).csv'
## 1531 child_age8_1_baseline 1/0/T/F/TRUE/FALSE 4 'VoterData2017(1).csv'
## 1531 child_age9_1_baseline 1/0/T/F/TRUE/FALSE 2 'VoterData2017(1).csv'
## 2947 religpew_muslim_baseline 1/0/T/F/TRUE/FALSE 2 'VoterData2017(1).csv'
## .... ........................ .................. ...... ......................
## See problems(...) for more details.
NewVoterData<- VoterData%>%
select(ft_muslim_2017, ft_black_2017, ft_hisp_2017, ideo5_2017)
head(NewVoterData)
## # A tibble: 6 x 4
## ft_muslim_2017 ft_black_2017 ft_hisp_2017 ideo5_2017
## <dbl> <dbl> <dbl> <dbl>
## 1 50 51 79 3
## 2 61 98 95 4
## 3 49 87 91 3
## 4 NA NA NA NA
## 5 80 90 90 4
## 6 100 100 100 1
Variables Selected and Renamed
NewVoterData <-NewVoterData%>%
rename("Ideology" = ideo5_2017,"FeelingsTowardsMuslims" = ft_muslim_2017, "FeelingsTowardsBlacks" = ft_black_2017, "FeelingsTowardsHispanics" = ft_hisp_2017, "FeelingsTowardsMuslims" = ft_muslim_2017)
head(NewVoterData)
## # A tibble: 6 x 4
## FeelingsTowardsMusli… FeelingsTowardsBlac… FeelingsTowardsHispa… Ideology
## <dbl> <dbl> <dbl> <dbl>
## 1 50 51 79 3
## 2 61 98 95 4
## 3 49 87 91 3
## 4 NA NA NA NA
## 5 80 90 90 4
## 6 100 100 100 1
NewVoterData <- NewVoterData%>%
mutate(Ideology= ifelse(Ideology==1, "Liberal",
ifelse(Ideology==2, "Liberal",
ifelse(Ideology==3, "Moderate",
ifelse(Ideology==4, "Conservative",
ifelse(Ideology==5, "Conservative",
ifelse(Ideology==6, "Not Sure", NA)))))),
FeelingsTowardsMuslims= ifelse(FeelingsTowardsMuslims>100, NA, FeelingsTowardsMuslims),
FeelingsTowardsBlacks= ifelse(FeelingsTowardsBlacks>100, NA, FeelingsTowardsBlacks), FeelingsTowardsHispanics= ifelse(FeelingsTowardsHispanics>100, NA, FeelingsTowardsHispanics))
NewVoterData <- NewVoterData%>%
filter(!is.na(Ideology))%>%
group_by(Ideology )%>%
summarize(AvgFeelingsTowardsMuslims = mean(FeelingsTowardsMuslims, na.rm = TRUE),
SDFeelingsTowardsMuslims= sd(FeelingsTowardsMuslims, na.rm= TRUE),
AvgFeelingsTowardsBlacks = mean(FeelingsTowardsBlacks, na.rm = TRUE),
SDFeelingsTowardsBlacks= sd(FeelingsTowardsBlacks, na.rm = TRUE),
AvgFeelingsTowardsHispanics = mean(FeelingsTowardsHispanics, na.rm = TRUE),
SDFeellingsTowardsHispanics= sd(FeelingsTowardsHispanics, na.rm=TRUE))
head(NewVoterData)
## # A tibble: 4 x 7
## Ideology AvgFeelingsTowa… SDFeelingsTowar… AvgFeelingsTowa…
## <chr> <dbl> <dbl> <dbl>
## 1 Conserv… 32.9 28.0 65.6
## 2 Liberal 69.2 24.5 80.1
## 3 Moderate 53.2 28.4 71.2
## 4 Not Sure 45.2 30.0 65.8
## # … with 3 more variables: SDFeelingsTowardsBlacks <dbl>,
## # AvgFeelingsTowardsHispanics <dbl>, SDFeellingsTowardsHispanics <dbl>
Most striking results are the vast difference between the Avg Conservative and Liberal FeelingsTowardsMuslims with SD taken into consideration.
ggplot(NewVoterData)+
geom_bar(aes(x=Ideology, y=AvgFeelingsTowardsMuslims, fill=Ideology), stat="Identity")+
coord_flip()

Those who identified their Ideology as Liberal are shown to have the highest rating for their average FeelingsTowardsMuslims.
ggplot(NewVoterData)+
geom_histogram(aes(x=AvgFeelingsTowardsMuslims, fill=Ideology), binwidth=10)

On this graph, those who identified their Ideology as Moderate and/or Not Sure are shown to have similar average FeelingsTowardsMuslims.