Age/BMI/IPV Interaction (BMI is continuous)
library(lme4)
## Loading required package: Matrix
library(lmerTest)
## KernSmooth 2.23 loaded
## Copyright M. P. Wand 1997-2009
##
## Attaching package: 'lmerTest'
##
## The following object is masked from 'package:lme4':
##
## lmer
##
## The following object is masked from 'package:stats':
##
## step
library(zUtil)
library(zStat)
load("~/Desktop/IPV and Hypertension/Data Analysis/LifeIPVbp.rda")
pAge = seq(30,70)
pBMI = seq(15,60)
(mm1 = lmer(adjSBP ~Age + LifeIPV + Sex + PovStat + BMI + Age:LifeIPV + Age:Sex + Age:PovStat + Age:BMI + LifeIPV:BMI + Sex:PovStat + Age:LifeIPV:BMI + Age:Sex:PovStat + (Age|HNDid) + (1|subclass),data = LifeIPVbp))
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: adjSBP ~ Age + LifeIPV + Sex + PovStat + BMI + Age:LifeIPV + Age:Sex + Age:PovStat + Age:BMI + LifeIPV:BMI + Sex:PovStat + Age:LifeIPV:BMI + Age:Sex:PovStat + (Age | HNDid) + (1 | subclass)
## Data: LifeIPVbp
## REML criterion at convergence: 5492
## Random effects:
## Groups Name Std.Dev. Corr
## HNDid (Intercept) 1.18e+01
## Age 3.33e-01 1.00
## subclass (Intercept) 2.61e-04
## Residual 1.14e+01
## Number of obs: 666, groups: HNDid, 334; subclass, 222
## Fixed Effects:
## (Intercept) Age LifeIPV1
## 90.2417 0.4940 10.8264
## SexMen PovStatBelow BMI
## -0.5942 0.3619 1.0221
## Age:LifeIPV1 Age:SexMen Age:PovStatBelow
## 2.2796 -0.5595 -0.3295
## Age:BMI LifeIPV1:BMI SexMen:PovStatBelow
## 0.0136 -0.3254 8.7477
## Age:LifeIPV1:BMI Age:SexMen:PovStatBelow
## -0.0778 1.1013
hatIPVhyp1 = zMixHat(LifeIPVbp, mm1, vary = "Age=pAge, BMI = pBMI,LifeIPV=zQ(0,1)",fixedCov=c("Sex","PovStat"))
fit.A<-hatIPVhyp1[hatIPVhyp1$LifeIPV==0,]
fit.B<-hatIPVhyp1[hatIPVhyp1$LifeIPV==1,]
par(mfrow=c(1,2),mai=c(0,0.03,0.5,0) + 0.01)
persp(x=seq(30,70,1), y=seq(15,60,1), z=matrix(fit.A$hat, nrow=41, ncol=46, byrow=F), xlab="Age",
ylab="BMI",cex.lab = 1.5,col="light blue", zlab="fit", main="No IPV",cex.main = 1.5)
persp(x=seq(30,70,1), y=seq(15,60,1), z=matrix(fit.B$hat, nrow=41, ncol=46, byrow=F), xlab="Age",
ylab="BMI",cex.lab = 1.5,col="light green", zlab="fit", main="IPV",cex.main = 1.5)