library(rtweet)

sens <- c("SenGillibrand", "IlhanMN", "AOC")
senTimelines <- get_timeline(sens, n = 3200)

ts_data(senTimelines, "weeks")
## # A tibble: 98 x 2
##    time                    n
##    <dttm>              <int>
##  1 2017-05-04 00:00:00    33
##  2 2017-05-11 00:00:00    24
##  3 2017-05-18 00:00:00    18
##  4 2017-05-25 00:00:00    18
##  5 2017-06-01 00:00:00    24
##  6 2017-06-08 00:00:00    24
##  7 2017-06-15 00:00:00    34
##  8 2017-06-22 00:00:00    25
##  9 2017-06-29 00:00:00    24
## 10 2017-07-06 00:00:00    30
## # … with 88 more rows
library(tidyverse)
## ── Attaching packages ────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
## ✔ ggplot2 3.1.0       ✔ purrr   0.2.5  
## ✔ tibble  2.0.1       ✔ dplyr   0.8.0.1
## ✔ tidyr   0.8.3       ✔ stringr 1.4.0  
## ✔ readr   1.3.1       ✔ forcats 0.3.0
## ── Conflicts ───────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter()  masks stats::filter()
## ✖ purrr::flatten() masks rtweet::flatten()
## ✖ dplyr::lag()     masks stats::lag()
senTimelines %>% 
  dplyr::group_by(screen_name) %>% 
  ts_plot("weeks")

Including Plots

You can also embed plots, for example:

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.