library(rtweet)
sens <- c("SenGillibrand", "IlhanMN", "AOC")
senTimelines <- get_timeline(sens, n = 3200)
ts_data(senTimelines, "weeks")
## # A tibble: 98 x 2
## time n
## <dttm> <int>
## 1 2017-05-04 00:00:00 33
## 2 2017-05-11 00:00:00 24
## 3 2017-05-18 00:00:00 18
## 4 2017-05-25 00:00:00 18
## 5 2017-06-01 00:00:00 24
## 6 2017-06-08 00:00:00 24
## 7 2017-06-15 00:00:00 34
## 8 2017-06-22 00:00:00 25
## 9 2017-06-29 00:00:00 24
## 10 2017-07-06 00:00:00 30
## # … with 88 more rows
library(tidyverse)
## ── Attaching packages ────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
## ✔ ggplot2 3.1.0 ✔ purrr 0.2.5
## ✔ tibble 2.0.1 ✔ dplyr 0.8.0.1
## ✔ tidyr 0.8.3 ✔ stringr 1.4.0
## ✔ readr 1.3.1 ✔ forcats 0.3.0
## ── Conflicts ───────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ purrr::flatten() masks rtweet::flatten()
## ✖ dplyr::lag() masks stats::lag()
senTimelines %>%
dplyr::group_by(screen_name) %>%
ts_plot("weeks")
Here is a link to my website.
MPG vs. Weight
This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
You can also embed plots, for example:
Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.