The below fit generates convergence warnings. However, wrapping the model assigment in a summary function makes the warnings show in the top-level function, in this case the knitting routine. Hence, the convergence warnings are missing from the knit document and do not reproduce the output one would see in interactive usage faithfully.

library("lme4")
packageVersion("lme4")
## [1] '1.1.7'
 df <- structure(list(SUR.ID = structure(c(1L, 1L, 2L, 2L, 3L, 3L, 1L, 
1L, 2L, 2L, 3L, 3L, 1L, 1L, 2L, 2L, 3L, 3L, 1L, 1L, 2L, 2L, 3L, 
3L, 1L, 1L, 2L, 2L, 3L, 3L, 1L, 1L, 2L, 2L, 3L, 3L, 1L, 1L, 2L, 
2L, 3L, 3L, 1L, 1L, 2L, 2L, 3L, 3L, 1L, 1L, 2L, 2L, 3L, 3L, 1L, 
1L, 2L, 2L, 3L, 3L, 1L, 1L, 2L, 2L, 3L, 3L, 1L, 1L, 2L, 2L, 3L, 
3L, 1L, 1L, 2L, 2L, 3L, 3L, 1L, 1L, 2L, 2L, 3L, 3L, 1L, 1L, 2L, 
2L, 3L, 3L, 1L, 1L, 2L, 2L, 3L, 3L, 1L, 1L, 2L, 2L, 3L, 3L, 1L, 
1L, 2L, 2L, 3L, 3L, 1L, 1L, 2L, 2L, 3L, 3L, 1L, 1L, 2L, 2L, 3L, 
3L, 1L, 1L, 2L, 2L, 3L, 3L, 1L, 1L, 2L, 2L, 3L, 3L, 1L, 1L, 2L, 
2L, 3L, 3L, 1L, 1L, 2L, 2L, 3L, 3L, 1L, 1L, 2L, 2L, 3L, 3L, 1L, 
1L, 2L, 2L, 3L, 3L, 1L, 1L, 2L, 2L, 3L, 3L, 1L, 1L, 2L, 2L, 3L, 
3L, 1L, 1L, 2L, 2L, 3L, 3L, 1L, 1L, 2L, 2L, 3L, 3L, 1L, 1L, 2L, 
2L, 3L, 3L, 1L, 1L, 2L, 2L, 3L, 3L, 1L, 1L, 2L, 2L, 3L, 3L, 1L, 
1L, 2L, 2L, 3L, 3L, 1L, 1L, 2L, 2L, 3L, 3L, 1L, 1L, 2L, 2L, 3L, 
3L, 1L, 1L, 2L, 2L), .Label = c("10185", "10186", "10250"), class = "factor"), 
    tm = structure(c(1L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 
    1L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 
    2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 
    1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 
    2L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 
    2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 
    1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 
    2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 
    1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 
    2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 
    1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 
    2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 
    1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 
    2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 
    2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L
    ), .Label = c("CT", "PT-04"), class = "factor"), ValidDetections = c(0L, 
    0L, 6L, 5L, 1L, 7L, 0L, 0L, 5L, 8L, 7L, 3L, 0L, 0L, 1L, 4L, 
    1L, 0L, 0L, 0L, 0L, 1L, 2L, 1L, 0L, 0L, 0L, 0L, 2L, 0L, 0L, 
    0L, 3L, 5L, 5L, 4L, 0L, 0L, 6L, 7L, 6L, 5L, 0L, 0L, 0L, 1L, 
    2L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 23L, 
    21L, 15L, 28L, 11L, 27L, 22L, 31L, 29L, 30L, 32L, 45L, 18L, 
    19L, 29L, 26L, 32L, 43L, 7L, 5L, 7L, 4L, 6L, 10L, 0L, 0L, 
    0L, 0L, 0L, 0L, 24L, 22L, 19L, 23L, 21L, 34L, 9L, 13L, 30L, 
    25L, 33L, 21L, 4L, 18L, 22L, 29L, 11L, 38L, 2L, 7L, 5L, 7L, 
    6L, 9L, 0L, 0L, 0L, 0L, 0L, 0L, 23L, 20L, 24L, 26L, 29L, 
    34L, 6L, 7L, 5L, 4L, 6L, 10L, 0L, 0L, 3L, 0L, 1L, 6L, 0L, 
    0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 2L, 0L, 5L, 0L, 0L, 0L, 0L, 
    0L, 1L, 0L, 0L, 0L, 3L, 1L, 11L, 0L, 0L, 2L, 5L, 1L, 2L, 
    0L, 0L, 0L, 3L, 0L, 4L, 0L, 0L, 0L, 2L, 0L, 2L, 0L, 0L, 0L, 
    0L, 0L, 0L, 0L, 0L, 4L, 2L, 5L, 6L, 6L, 2L, 3L, 0L, 0L, 1L, 
    3L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 21L, 12L, 
    15L, 8L, 23L, 7L, 2L, 2L, 1L, 1L), CountDetections = c(0L, 
    0L, 7L, 5L, 3L, 7L, 0L, 0L, 5L, 8L, 8L, 4L, 0L, 0L, 1L, 4L, 
    1L, 1L, 0L, 0L, 0L, 1L, 3L, 3L, 0L, 0L, 1L, 0L, 2L, 4L, 0L, 
    0L, 4L, 5L, 5L, 5L, 0L, 0L, 6L, 7L, 7L, 5L, 0L, 0L, 0L, 1L, 
    2L, 2L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 2L, 23L, 
    21L, 18L, 28L, 11L, 27L, 23L, 31L, 29L, 30L, 34L, 45L, 19L, 
    19L, 29L, 26L, 32L, 43L, 7L, 5L, 7L, 4L, 6L, 10L, 0L, 0L, 
    0L, 0L, 0L, 0L, 24L, 22L, 19L, 23L, 21L, 34L, 10L, 15L, 30L, 
    25L, 34L, 24L, 4L, 19L, 23L, 29L, 13L, 38L, 2L, 7L, 5L, 7L, 
    7L, 9L, 0L, 0L, 0L, 0L, 0L, 0L, 23L, 20L, 24L, 26L, 29L, 
    34L, 6L, 7L, 5L, 4L, 6L, 10L, 0L, 0L, 4L, 1L, 1L, 7L, 0L, 
    0L, 0L, 3L, 2L, 1L, 0L, 0L, 0L, 3L, 0L, 5L, 0L, 0L, 2L, 2L, 
    0L, 1L, 0L, 0L, 0L, 5L, 1L, 11L, 0L, 0L, 3L, 5L, 1L, 2L, 
    0L, 0L, 2L, 3L, 0L, 6L, 0L, 0L, 0L, 3L, 0L, 3L, 0L, 0L, 1L, 
    0L, 0L, 1L, 0L, 0L, 6L, 2L, 5L, 6L, 7L, 4L, 5L, 1L, 0L, 3L, 
    3L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 23L, 12L, 
    16L, 10L, 23L, 10L, 2L, 2L, 1L, 1L), FalseDetections = c(0L, 
    0L, 1L, 0L, 2L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 
    0L, 1L, 0L, 0L, 0L, 0L, 1L, 2L, 0L, 0L, 1L, 0L, 0L, 4L, 0L, 
    0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 
    0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 2L, 0L, 
    0L, 3L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 2L, 0L, 1L, 0L, 0L, 0L, 
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
    0L, 0L, 0L, 0L, 0L, 1L, 2L, 0L, 0L, 1L, 3L, 0L, 1L, 1L, 0L, 
    2L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 
    0L, 1L, 0L, 0L, 0L, 2L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 
    0L, 2L, 2L, 0L, 0L, 0L, 0L, 0L, 2L, 0L, 0L, 0L, 0L, 1L, 0L, 
    0L, 0L, 0L, 0L, 2L, 0L, 0L, 2L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 
    0L, 1L, 0L, 0L, 1L, 0L, 0L, 2L, 0L, 0L, 0L, 1L, 2L, 2L, 1L, 
    0L, 2L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 2L, 
    0L, 1L, 2L, 0L, 3L, 0L, 0L, 0L, 0L), replicate = structure(c(1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("1", "2"), class = "factor"), 
    Area = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L
    ), .Label = c("Drug Channel", "Finger"), class = "factor"), 
    Day = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
    4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
    4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
    4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
    4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
    5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L
    ), .Label = c("03/06/13", "2/22/13", "2/26/13", "2/27/13", 
    "3/14/13"), class = "factor"), R.det = c(0, 0, 0.857142857, 
    1, 0.333333333, 1, 0, 0, 1, 1, 0.875, 0.75, 0, 0, 1, 1, 1, 
    0, 0, 0, 0, 1, 0.666666667, 0.333333333, 0, 0, 0, 0, 1, 0, 
    0, 0, 0.75, 1, 1, 0.8, 0, 0, 1, 1, 0.857142857, 1, 0, 0, 
    0, 1, 1, 0.5, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0.833333333, 
    1, 1, 1, 0.956521739, 1, 1, 1, 0.941176471, 1, 0.947368421, 
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 
    1, 1, 1, 1, 0.9, 0.866666667, 1, 1, 0.970588235, 0.875, 1, 
    0.947368421, 0.956521739, 1, 0.846153846, 1, 1, 1, 1, 1, 
    0.857142857, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 
    1, 1, 1, 1, 0, 0, 0.75, 0, 1, 0.857142857, 0, 0, 0, 0.333333333, 
    0.5, 1, 0, 0, 0, 0.666666667, 0, 1, 0, 0, 0, 0, 0, 1, 0, 
    0, 0, 0.6, 1, 1, 0, 0, 0.666666667, 1, 1, 1, 0, 0, 0, 1, 
    0, 0.666666667, 0, 0, 0, 0.666666667, 0, 0.666666667, 0, 
    0, 0, 0, 0, 0, 0, 0, 0.666666667, 1, 1, 1, 0.857142857, 0.5, 
    0.6, 0, 0, 0.333333333, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0.913043478, 1, 0.9375, 0.8, 1, 0.7, 1, 1, 1, 1), c.receiver.depth = c(-0.2, 
    -0.2, -0.2, -0.2, -0.2, -0.2, -0.22, -0.22, -0.22, -0.22, 
    -0.22, -0.22, -0.22, -0.22, -0.22, -0.22, -0.22, -0.22, -0.225, 
    -0.225, -0.225, -0.225, -0.225, -0.225, -0.225, -0.225, -0.225, 
    -0.225, -0.225, -0.225, -0.205, -0.205, -0.205, -0.205, -0.205, 
    -0.205, -0.185, -0.185, -0.185, -0.185, -0.185, -0.185, -0.18, 
    -0.18, -0.18, -0.18, -0.18, -0.18, -0.165, -0.165, -0.165, 
    -0.165, -0.165, -0.165, -0.14, -0.14, -0.14, -0.14, -0.14, 
    -0.14, -0.34, -0.34, -0.34, -0.34, -0.34, -0.34, -0.365, 
    -0.365, -0.365, -0.365, -0.365, -0.365, -0.365, -0.365, -0.365, 
    -0.365, -0.365, -0.365, -0.38, -0.38, -0.38, -0.38, -0.38, 
    -0.38, -0.385, -0.385, -0.385, -0.385, -0.385, -0.385, -0.395, 
    -0.395, -0.395, -0.395, -0.395, -0.395, -0.4, -0.4, -0.4, 
    -0.4, -0.4, -0.4, -0.395, -0.395, -0.395, -0.395, -0.395, 
    -0.395, -0.38, -0.38, -0.38, -0.38, -0.38, -0.38, -0.37, 
    -0.37, -0.37, -0.37, -0.37, -0.37, -0.285, -0.285, -0.285, 
    -0.285, -0.285, -0.285, -0.31, -0.31, -0.31, -0.31, -0.31, 
    -0.31, 0.22, 0.22, 0.22, 0.22, 0.22, 0.22, 0.225, 0.225, 
    0.225, 0.225, 0.225, 0.225, 0.225, 0.225, 0.225, 0.225, 0.225, 
    0.225, 0.21, 0.21, 0.21, 0.21, 0.21, 0.21, 0.185, 0.185, 
    0.185, 0.185, 0.185, 0.185, 0.175, 0.175, 0.175, 0.175, 0.175, 
    0.175, 0.14, 0.14, 0.14, 0.14, 0.14, 0.14, 0.13, 0.13, 0.13, 
    0.13, 0.13, 0.13, 0.105, 0.105, 0.105, 0.105, 0.105, 0.105, 
    0.215, 0.215, 0.215, 0.215, 0.215, 0.215, 0.54, 0.54, 0.54, 
    0.54, 0.54, 0.54, 0.525, 0.525, 0.525, 0.525, 0.525, 0.525, 
    0.515, 0.515, 0.515, 0.515, 0.515, 0.515, 0.545, 0.545, 0.545, 
    0.545, 0.545, 0.545, 0.525, 0.525, 0.525, 0.525), c.tm.depth = c(0.042807692, 
    0.042807692, 0.042807692, 0.042807692, 0.042807692, 0.042807692, 
    -0.282192308, -0.282192308, -0.282192308, -0.282192308, -0.282192308, 
    -0.282192308, -0.427192308, -0.427192308, -0.427192308, -0.427192308, 
    -0.427192308, -0.427192308, -0.027192308, -0.027192308, -0.027192308, 
    -0.027192308, -0.027192308, -0.027192308, 0.022807692, 0.022807692, 
    0.022807692, 0.022807692, 0.022807692, 0.022807692, 0.042807692, 
    0.042807692, 0.042807692, 0.042807692, 0.042807692, 0.042807692, 
    -0.267192308, -0.267192308, -0.267192308, -0.267192308, -0.267192308, 
    -0.267192308, -0.312192308, -0.312192308, -0.312192308, -0.312192308, 
    -0.312192308, -0.312192308, 0.062807692, 0.062807692, 0.062807692, 
    0.062807692, 0.062807692, 0.062807692, 0.127807692, 0.127807692, 
    0.127807692, 0.127807692, 0.127807692, 0.127807692, -0.592192308, 
    -0.592192308, -0.592192308, -0.592192308, -0.592192308, -0.592192308, 
    -0.612192308, -0.612192308, -0.612192308, -0.612192308, -0.612192308, 
    -0.612192308, -0.597192308, -0.597192308, -0.597192308, -0.597192308, 
    -0.597192308, -0.597192308, -0.607192308, -0.607192308, -0.607192308, 
    -0.607192308, -0.607192308, -0.607192308, -0.327192308, -0.327192308, 
    -0.327192308, -0.327192308, -0.327192308, -0.327192308, -0.572192308, 
    -0.572192308, -0.572192308, -0.572192308, -0.572192308, -0.572192308, 
    -0.622192308, -0.622192308, -0.622192308, -0.622192308, -0.622192308, 
    -0.622192308, -0.572192308, -0.572192308, -0.572192308, -0.572192308, 
    -0.572192308, -0.572192308, -0.577192308, -0.577192308, -0.577192308, 
    -0.577192308, -0.577192308, -0.577192308, -0.272192308, -0.272192308, 
    -0.272192308, -0.272192308, -0.272192308, -0.272192308, -0.547192308, 
    -0.547192308, -0.547192308, -0.547192308, -0.547192308, -0.547192308, 
    -0.607192308, -0.607192308, -0.607192308, -0.607192308, -0.607192308, 
    -0.607192308, 0.552807692, 0.552807692, 0.552807692, 0.552807692, 
    0.552807692, 0.552807692, 0.402807692, 0.402807692, 0.402807692, 
    0.402807692, 0.402807692, 0.402807692, 0.777807692, 0.777807692, 
    0.777807692, 0.777807692, 0.777807692, 0.777807692, 0.752807692, 
    0.752807692, 0.752807692, 0.752807692, 0.752807692, 0.752807692, 
    0.752807692, 0.752807692, 0.752807692, 0.752807692, 0.752807692, 
    0.752807692, 0.402807692, 0.402807692, 0.402807692, 0.402807692, 
    0.402807692, 0.402807692, 0.292807692, 0.292807692, 0.292807692, 
    0.292807692, 0.292807692, 0.292807692, 0.667807692, 0.667807692, 
    0.667807692, 0.667807692, 0.667807692, 0.667807692, 0.677807692, 
    0.677807692, 0.677807692, 0.677807692, 0.677807692, 0.677807692, 
    0.777807692, 0.777807692, 0.777807692, 0.777807692, 0.777807692, 
    0.777807692, 0.252807692, 0.252807692, 0.252807692, 0.252807692, 
    0.252807692, 0.252807692, 0.352807692, 0.352807692, 0.352807692, 
    0.352807692, 0.352807692, 0.352807692, 0.502807692, 0.502807692, 
    0.502807692, 0.502807692, 0.502807692, 0.502807692, 0.027807692, 
    0.027807692, 0.027807692, 0.027807692, 0.027807692, 0.027807692, 
    0.077807692, 0.077807692, 0.077807692, 0.077807692), c.temp = c(-4.095807692, 
    -4.095807692, -4.095807692, -4.095807692, -4.095807692, -4.095807692, 
    -4.220807692, -4.220807692, -4.220807692, -4.220807692, -4.220807692, 
    -4.220807692, -4.210807692, -4.210807692, -4.210807692, -4.210807692, 
    -4.210807692, -4.210807692, -4.175807692, -4.175807692, -4.175807692, 
    -4.175807692, -4.175807692, -4.175807692, -4.035807692, -4.035807692, 
    -4.035807692, -4.035807692, -4.035807692, -4.035807692, -3.920807692, 
    -3.920807692, -3.920807692, -3.920807692, -3.920807692, -3.920807692, 
    -3.820807692, -3.820807692, -3.820807692, -3.820807692, -3.820807692, 
    -3.820807692, -3.640807692, -3.640807692, -3.640807692, -3.640807692, 
    -3.640807692, -3.640807692, -3.660807692, -3.660807692, -3.660807692, 
    -3.660807692, -3.660807692, -3.660807692, -3.620807692, -3.620807692, 
    -3.620807692, -3.620807692, -3.620807692, -3.620807692, 0.074192308, 
    0.074192308, 0.074192308, 0.074192308, 0.074192308, 0.074192308, 
    -0.015807692, -0.015807692, -0.015807692, -0.015807692, -0.015807692, 
    -0.015807692, 0.324192308, 0.324192308, 0.324192308, 0.324192308, 
    0.324192308, 0.324192308, 0.544192308, 0.544192308, 0.544192308, 
    0.544192308, 0.544192308, 0.544192308, 0.759192308, 0.759192308, 
    0.759192308, 0.759192308, 0.759192308, 0.759192308, 1.324192308, 
    1.324192308, 1.324192308, 1.324192308, 1.324192308, 1.324192308, 
    1.549192308, 1.549192308, 1.549192308, 1.549192308, 1.549192308, 
    1.549192308, 1.709192308, 1.709192308, 1.709192308, 1.709192308, 
    1.709192308, 1.709192308, 1.639192308, 1.639192308, 1.639192308, 
    1.639192308, 1.639192308, 1.639192308, 1.579192308, 1.579192308, 
    1.579192308, 1.579192308, 1.579192308, 1.579192308, 2.724192308, 
    2.724192308, 2.724192308, 2.724192308, 2.724192308, 2.724192308, 
    2.839192308, 2.839192308, 2.839192308, 2.839192308, 2.839192308, 
    2.839192308, 1.064192308, 1.064192308, 1.064192308, 1.064192308, 
    1.064192308, 1.064192308, 1.184192308, 1.184192308, 1.184192308, 
    1.184192308, 1.184192308, 1.184192308, 1.254192308, 1.254192308, 
    1.254192308, 1.254192308, 1.254192308, 1.254192308, 1.379192308, 
    1.379192308, 1.379192308, 1.379192308, 1.379192308, 1.379192308, 
    1.529192308, 1.529192308, 1.529192308, 1.529192308, 1.529192308, 
    1.529192308, 1.599192308, 1.599192308, 1.599192308, 1.599192308, 
    1.599192308, 1.599192308, 1.669192308, 1.669192308, 1.669192308, 
    1.669192308, 1.669192308, 1.669192308, 1.664192308, 1.664192308, 
    1.664192308, 1.664192308, 1.664192308, 1.664192308, 1.714192308, 
    1.714192308, 1.714192308, 1.714192308, 1.714192308, 1.714192308, 
    0.984192308, 0.984192308, 0.984192308, 0.984192308, 0.984192308, 
    0.984192308, -1.545807692, -1.545807692, -1.545807692, -1.545807692, 
    -1.545807692, -1.545807692, -1.475807692, -1.475807692, -1.475807692, 
    -1.475807692, -1.475807692, -1.475807692, -1.460807692, -1.460807692, 
    -1.460807692, -1.460807692, -1.460807692, -1.460807692, -1.340807692, 
    -1.340807692, -1.340807692, -1.340807692, -1.340807692, -1.340807692, 
    -1.265807692, -1.265807692, -1.265807692, -1.265807692), 
    c.wind = c(1.27535159, 1.27535159, 1.27535159, 1.27535159, 
    1.27535159, 1.27535159, 1.27535159, 1.27535159, 1.27535159, 
    1.27535159, 1.27535159, 1.27535159, 1.27535159, 1.27535159, 
    1.27535159, 1.27535159, 1.27535159, 1.27535159, 1.27535159, 
    1.27535159, 1.27535159, 1.27535159, 1.27535159, 1.27535159, 
    1.27535159, 1.27535159, 1.27535159, 1.27535159, 1.27535159, 
    1.27535159, 1.27535159, 1.27535159, 1.27535159, 1.27535159, 
    1.27535159, 1.27535159, 1.27535159, 1.27535159, 1.27535159, 
    1.27535159, 1.27535159, 1.27535159, 1.27535159, 1.27535159, 
    1.27535159, 1.27535159, 1.27535159, 1.27535159, 1.27535159, 
    1.27535159, 1.27535159, 1.27535159, 1.27535159, 1.27535159, 
    1.27535159, 1.27535159, 1.27535159, 1.27535159, 1.27535159, 
    1.27535159, -2.96855001, -2.96855001, -2.96855001, -2.96855001, 
    -2.96855001, -2.96855001, -2.96855001, -2.96855001, -2.96855001, 
    -2.96855001, -2.96855001, -2.96855001, -2.96855001, -2.96855001, 
    -2.96855001, -2.96855001, -2.96855001, -2.96855001, -2.96855001, 
    -2.96855001, -2.96855001, -2.96855001, -2.96855001, -2.96855001, 
    -2.96855001, -2.96855001, -2.96855001, -2.96855001, -2.96855001, 
    -2.96855001, -2.96855001, -2.96855001, -2.96855001, -2.96855001, 
    -2.96855001, -2.96855001, -2.96855001, -2.96855001, -2.96855001, 
    -2.96855001, -2.96855001, -2.96855001, -2.96855001, -2.96855001, 
    -2.96855001, -2.96855001, -2.96855001, -2.96855001, -2.96855001, 
    -2.96855001, -2.96855001, -2.96855001, -2.96855001, -2.96855001, 
    -2.96855001, -2.96855001, -2.96855001, -2.96855001, -2.96855001, 
    -2.96855001, 4.71144999, 4.71144999, 4.71144999, 4.71144999, 
    4.71144999, 4.71144999, 4.71144999, 4.71144999, 4.71144999, 
    4.71144999, 4.71144999, 4.71144999, -2.939182972, -2.939182972, 
    -2.939182972, -2.939182972, -2.939182972, -2.939182972, -2.939182972, 
    -2.939182972, -2.939182972, -2.939182972, -2.939182972, -2.939182972, 
    -2.939182972, -2.939182972, -2.939182972, -2.939182972, -2.939182972, 
    -2.939182972, -2.939182972, -2.939182972, -2.939182972, -2.939182972, 
    -2.939182972, -2.939182972, -2.939182972, -2.939182972, -2.939182972, 
    -2.939182972, -2.939182972, -2.939182972, -2.939182972, -2.939182972, 
    -2.939182972, -2.939182972, -2.939182972, -2.939182972, -2.939182972, 
    -2.939182972, -2.939182972, -2.939182972, -2.939182972, -2.939182972, 
    -2.939182972, -2.939182972, -2.939182972, -2.939182972, -2.939182972, 
    -2.939182972, -2.939182972, -2.939182972, -2.939182972, -2.939182972, 
    -2.939182972, -2.939182972, -2.939182972, -2.939182972, -2.939182972, 
    -2.939182972, -2.939182972, -2.939182972, 5.88092439, 5.88092439, 
    5.88092439, 5.88092439, 5.88092439, 5.88092439, 5.88092439, 
    5.88092439, 5.88092439, 5.88092439, 5.88092439, 5.88092439, 
    5.88092439, 5.88092439, 5.88092439, 5.88092439, 5.88092439, 
    5.88092439, 5.88092439, 5.88092439, 5.88092439, 5.88092439, 
    5.88092439, 5.88092439, 5.88092439, 5.88092439, 5.88092439, 
    5.88092439), c.distance = c(-160L, -160L, -160L, -160L, -160L, 
    -160L, -110L, -110L, -110L, -110L, -110L, -110L, -10L, -10L, 
    -10L, -10L, -10L, -10L, 90L, 90L, 90L, 90L, 90L, 90L, 190L, 
    190L, 190L, 190L, 190L, 190L, -160L, -160L, -160L, -160L, 
    -160L, -160L, -110L, -110L, -110L, -110L, -110L, -110L, -10L, 
    -10L, -10L, -10L, -10L, -10L, 90L, 90L, 90L, 90L, 90L, 90L, 
    190L, 190L, 190L, 190L, 190L, 190L, -160L, -160L, -160L, 
    -160L, -160L, -160L, -110L, -110L, -110L, -110L, -110L, -110L, 
    -10L, -10L, -10L, -10L, -10L, -10L, 90L, 90L, 90L, 90L, 90L, 
    90L, 190L, 190L, 190L, 190L, 190L, 190L, -160L, -160L, -160L, 
    -160L, -160L, -160L, -110L, -110L, -110L, -110L, -110L, -110L, 
    -10L, -10L, -10L, -10L, -10L, -10L, 90L, 90L, 90L, 90L, 90L, 
    90L, 190L, 190L, 190L, 190L, 190L, 190L, -160L, -160L, -160L, 
    -160L, -160L, -160L, -110L, -110L, -110L, -110L, -110L, -110L, 
    -110L, -110L, -110L, -110L, -110L, -110L, -10L, -10L, -10L, 
    -10L, -10L, -10L, 90L, 90L, 90L, 90L, 90L, 90L, 190L, 190L, 
    190L, 190L, 190L, 190L, -160L, -160L, -160L, -160L, -160L, 
    -160L, -110L, -110L, -110L, -110L, -110L, -110L, -10L, -10L, 
    -10L, -10L, -10L, -10L, 90L, 90L, 90L, 90L, 90L, 90L, 190L, 
    190L, 190L, 190L, 190L, 190L, -160L, -160L, -160L, -160L, 
    -160L, -160L, -10L, -10L, -10L, -10L, -10L, -10L, 90L, 90L, 
    90L, 90L, 90L, 90L, 190L, 190L, 190L, 190L, 190L, 190L, -160L, 
    -160L, -160L, -160L, -160L, -160L, -110L, -110L, -110L, -110L
    )), .Names = c("SUR.ID", "tm", "ValidDetections", "CountDetections", 
"FalseDetections", "replicate", "Area", "Day", "R.det", "c.receiver.depth", 
"c.tm.depth", "c.temp", "c.wind", "c.distance"), row.names = c(NA, 
-220L), class = "data.frame")
df$SUR.ID <- factor(df$SUR.ID)
df$replicate <- factor(df$replicate)
Rdet <- cbind(df$ValidDetections,df$FalseDetections)
Unit <- factor(1:length(df$ValidDetections))
summary(m1 <- glmer(Rdet ~ tm:Area + tm:c.distance +
            c.distance:Area + c.tm.depth:Area +
            c.receiver.depth:Area + c.temp:Area +
            c.wind:Area +
            c.tm.depth + c.receiver.depth +
            c.temp +c.wind + tm + c.distance + Area +
            replicate +
            (1|SUR.ID) + (1|Day) + (1|Unit) ,
            data = df, family = binomial(link=logit)))
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## Rdet ~ tm:Area + tm:c.distance + c.distance:Area + c.tm.depth:Area +  
##     c.receiver.depth:Area + c.temp:Area + c.wind:Area + c.tm.depth +  
##     c.receiver.depth + c.temp + c.wind + tm + c.distance + Area +  
##     replicate + (1 | SUR.ID) + (1 | Day) + (1 | Unit)
##    Data: df
## 
##      AIC      BIC   logLik deviance df.resid 
##      252      317     -107      214      201 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.119  0.000  0.000  0.348  1.294 
## 
## Random effects:
##  Groups Name        Variance  Std.Dev.
##  Unit   (Intercept) 0.4639711 0.68115 
##  Day    (Intercept) 0.0000807 0.00898 
##  SUR.ID (Intercept) 0.0000521 0.00722 
## Number of obs: 220, groups:  Unit, 220; Day, 5; SUR.ID, 3
## 
## Fixed effects:
##                              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                 -11.39192    7.15028   -1.59  0.11111    
## c.tm.depth                   -1.02068    1.38940   -0.73  0.46257    
## c.receiver.depth              6.81129    8.97835    0.76  0.44807    
## c.temp                       -5.48720    2.79632   -1.96  0.04973 *  
## c.wind                       -6.27121    3.71607   -1.69  0.09149 .  
## tmPT-04                      -2.14740    0.56683   -3.79  0.00015 ***
## c.distance                   -0.00428    0.00301   -1.42  0.15436    
## AreaFinger                   11.58507    7.26403    1.59  0.11074    
## replicate2                    2.69548    1.26037    2.14  0.03247 *  
## tmPT-04:AreaFinger            0.45638    0.68964    0.66  0.50812    
## tmPT-04:c.distance           -0.00586    0.00367   -1.60  0.11021    
## AreaFinger:c.distance         0.01307    0.00445    2.93  0.00334 ** 
## AreaFinger:c.tm.depth        -3.04923    4.99494   -0.61  0.54155    
## AreaFinger:c.receiver.depth -34.88318   17.00082   -2.05  0.04018 *  
## AreaFinger:c.temp             2.19563    1.87003    1.17  0.24035    
## AreaFinger:c.wind             8.35328    4.16364    2.01  0.04483 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) c.tm.d c.rcv. c.temp c.wind tmPT-04 c.dstn ArFngr
## c.tm.depth  -0.006                                                  
## c.rcvr.dpth  0.207 -0.262                                           
## c.temp       0.992  0.049  0.096                                    
## c.wind       0.990  0.050  0.304  0.975                             
## tmPT-04      0.050  0.135 -0.185  0.106  0.059                      
## c.distance  -0.487 -0.154  0.153 -0.517 -0.464 -0.056               
## AreaFinger  -0.982  0.006 -0.204 -0.974 -0.972 -0.049   0.476       
## replicate2  -0.902 -0.001  0.051 -0.914 -0.855 -0.121   0.526  0.886
## tmPT-04:ArF -0.026 -0.032  0.080 -0.060 -0.036 -0.599  -0.177  0.021
## tmPT-04:c.d -0.006  0.148 -0.141  0.015 -0.012  0.423  -0.440  0.008
## ArFngr:c.ds -0.002  0.012  0.001  0.000  0.003 -0.268  -0.217 -0.048
## ArFngr:c.t. -0.494 -0.246  0.074 -0.511 -0.484 -0.013   0.258  0.599
## ArFngr:c.r.  0.340  0.132 -0.547  0.404  0.266  0.136  -0.319 -0.274
## ArFngr:c.tm -0.920 -0.072 -0.175 -0.925 -0.924 -0.084   0.452  0.925
## ArFngr:c.wn -0.958 -0.044 -0.268 -0.946 -0.963 -0.061   0.455  0.907
##             rplct2 tPT-04:A tPT-04:. ArFngr:c.d ArFngr:c.t. ArFngr:c.r.
## c.tm.depth                                                             
## c.rcvr.dpth                                                            
## c.temp                                                                 
## c.wind                                                                 
## tmPT-04                                                                
## c.distance                                                             
## AreaFinger                                                             
## replicate2                                                             
## tmPT-04:ArF  0.044                                                     
## tmPT-04:c.d -0.068  0.159                                              
## ArFngr:c.ds  0.058 -0.025   -0.336                                     
## ArFngr:c.t.  0.534  0.161    0.117   -0.438                            
## ArFngr:c.r. -0.522 -0.082    0.056    0.030     -0.361                 
## ArFngr:c.tm  0.743  0.069    0.012   -0.069      0.455      -0.147     
## ArFngr:c.wn  0.845  0.034    0.009    0.018      0.440      -0.452     
##             ArFngr:c.t
## c.tm.depth            
## c.rcvr.dpth           
## c.temp                
## c.wind                
## tmPT-04               
## c.distance            
## AreaFinger            
## replicate2            
## tmPT-04:ArF           
## tmPT-04:c.d           
## ArFngr:c.ds           
## ArFngr:c.t.           
## ArFngr:c.r.           
## ArFngr:c.tm           
## ArFngr:c.wn  0.838