mes2(57.9, 68.7, 13.33, 21, 21, level=95, cer=0.2, dig=3, verbose=TRUE, id=NULL, data=NULL)
## Mean Differences ES:
##
## d [ 95 %CI] = -0.81 [ -1.459 , -0.161 ]
## var(d) = 0.103
## p-value(d) = 0.016
## U3(d) = 20.891 %
## CLES(d) = 28.336 %
## Cliff's Delta = -0.433
##
## g [ 95 %CI] = -0.795 [ -1.431 , -0.158 ]
## var(g) = 0.099
## p-value(g) = 0.016
## U3(g) = 21.333 %
## CLES(g) = 28.703 %
##
## Correlation ES:
##
## r [ 95 %CI] = -0.375 [ -0.616 , -0.071 ]
## var(r) = 0.016
## p-value(r) = 0.018
##
## z [ 95 %CI] = -0.395 [ -0.718 , -0.071 ]
## var(z) = 0.026
## p-value(z) = 0.018
##
## Odds Ratio ES:
##
## OR [ 95 %CI] = 0.23 [ 0.071 , 0.746 ]
## p-value(OR) = 0.016
##
## Log OR [ 95 %CI] = -1.47 [ -2.646 , -0.293 ]
## var(lOR) = 0.339
## p-value(Log OR) = 0.016
##
## Other:
##
## NNT = -6.635
## Total N = 42
mes2(52.8, 47.4, 8.85, 26, 24, level=95, cer=0.2, dig=3, verbose=TRUE, id=NULL, data=NULL)
## Mean Differences ES:
##
## d [ 95 %CI] = 0.61 [ 0.028 , 1.192 ]
## var(d) = 0.084
## p-value(d) = 0.04
## U3(d) = 72.913 %
## CLES(d) = 66.693 %
## Cliff's Delta = 0.334
##
## g [ 95 %CI] = 0.601 [ 0.028 , 1.174 ]
## var(g) = 0.081
## p-value(g) = 0.04
## U3(g) = 72.594 %
## CLES(g) = 66.446 %
##
## Correlation ES:
##
## r [ 95 %CI] = 0.292 [ 0.007 , 0.532 ]
## var(r) = 0.016
## p-value(r) = 0.045
##
## z [ 95 %CI] = 0.3 [ 0.007 , 0.594 ]
## var(z) = 0.021
## p-value(z) = 0.045
##
## Odds Ratio ES:
##
## OR [ 95 %CI] = 3.024 [ 1.052 , 8.695 ]
## p-value(OR) = 0.04
##
## Log OR [ 95 %CI] = 1.107 [ 0.051 , 2.163 ]
## var(lOR) = 0.276
## p-value(Log OR) = 0.04
##
## Other:
##
## NNT = 4.797
## Total N = 50
mes2(27.0, 23.8, 7.80, 24, 24, level=95, cer=0.2, dig=3, verbose=TRUE, id=NULL, data=NULL)
## Mean Differences ES:
##
## d [ 95 %CI] = 0.41 [ -0.177 , 0.997 ]
## var(d) = 0.085
## p-value(d) = 0.166
## U3(d) = 65.919 %
## CLES(d) = 61.413 %
## Cliff's Delta = 0.228
##
## g [ 95 %CI] = 0.404 [ -0.174 , 0.981 ]
## var(g) = 0.082
## p-value(g) = 0.166
## U3(g) = 65.672 %
## CLES(g) = 61.231 %
##
## Correlation ES:
##
## r [ 95 %CI] = 0.201 [ -0.096 , 0.465 ]
## var(r) = 0.019
## p-value(r) = 0.178
##
## z [ 95 %CI] = 0.204 [ -0.096 , 0.504 ]
## var(z) = 0.022
## p-value(z) = 0.178
##
## Odds Ratio ES:
##
## OR [ 95 %CI] = 2.105 [ 0.726 , 6.105 ]
## p-value(OR) = 0.166
##
## Log OR [ 95 %CI] = 0.744 [ -0.321 , 1.809 ]
## var(lOR) = 0.28
## p-value(Log OR) = 0.166
##
## Other:
##
## NNT = 7.513
## Total N = 48
mes(40.2, 41.7, 7.45, 6.19, 30, 30, level=95, cer=0.2, dig=3, verbose=TRUE, id=NULL, data=NULL)
## Mean Differences ES:
##
## d [ 95 %CI] = -0.219 [ -0.737 , 0.299 ]
## var(d) = 0.067
## p-value(d) = 0.401
## U3(d) = 41.332 %
## CLES(d) = 43.846 %
## Cliff's Delta = -0.123
##
## g [ 95 %CI] = -0.216 [ -0.728 , 0.295 ]
## var(g) = 0.065
## p-value(g) = 0.401
## U3(g) = 41.443 %
## CLES(g) = 43.926 %
##
## Correlation ES:
##
## r [ 95 %CI] = -0.109 [ -0.358 , 0.155 ]
## var(r) = 0.016
## p-value(r) = 0.413
##
## z [ 95 %CI] = -0.109 [ -0.374 , 0.156 ]
## var(z) = 0.018
## p-value(z) = 0.413
##
## Odds Ratio ES:
##
## OR [ 95 %CI] = 0.672 [ 0.263 , 1.721 ]
## p-value(OR) = 0.401
##
## Log OR [ 95 %CI] = -0.397 [ -1.337 , 0.543 ]
## var(lOR) = 0.221
## p-value(Log OR) = 0.401
##
## Other:
##
## NNT = -17.995
## Total N = 60
mes(44.4, 41.7, 6.33, 6.19, 30, 30, level=95, cer=0.2, dig=3, verbose=TRUE, id=NULL, data=NULL)
## Mean Differences ES:
##
## d [ 95 %CI] = 0.431 [ -0.092 , 0.954 ]
## var(d) = 0.068
## p-value(d) = 0.104
## U3(d) = 66.687 %
## CLES(d) = 61.98 %
## Cliff's Delta = 0.24
##
## g [ 95 %CI] = 0.426 [ -0.09 , 0.942 ]
## var(g) = 0.066
## p-value(g) = 0.104
## U3(g) = 66.483 %
## CLES(g) = 61.829 %
##
## Correlation ES:
##
## r [ 95 %CI] = 0.211 [ -0.051 , 0.446 ]
## var(r) = 0.015
## p-value(r) = 0.112
##
## z [ 95 %CI] = 0.214 [ -0.051 , 0.479 ]
## var(z) = 0.018
## p-value(z) = 0.112
##
## Odds Ratio ES:
##
## OR [ 95 %CI] = 2.186 [ 0.847 , 5.644 ]
## p-value(OR) = 0.104
##
## Log OR [ 95 %CI] = 0.782 [ -0.166 , 1.731 ]
## var(lOR) = 0.224
## p-value(Log OR) = 0.104
##
## Other:
##
## NNT = 7.103
## Total N = 60
表にするとこんな感じ
Group | N | M | SD |
---|---|---|---|
Knowledge of results | 24 | 3.54 | 2.53 |
No knowledge of results | 24 | 6.33 | 2.82 |
これでmesを実行
mes(3.54, 6.33, 2.53, 2.82, 24, 24, level=95, cer=0.2, dig=3, verbose=TRUE, id=NULL, data=NULL)
## Mean Differences ES:
##
## d [ 95 %CI] = -1.041 [ -1.661 , -0.422 ]
## var(d) = 0.095
## p-value(d) = 0.001
## U3(d) = 14.883 %
## CLES(d) = 23.074 %
## Cliff's Delta = -0.539
##
## g [ 95 %CI] = -1.024 [ -1.633 , -0.415 ]
## var(g) = 0.092
## p-value(g) = 0.001
## U3(g) = 15.283 %
## CLES(g) = 23.442 %
##
## Correlation ES:
##
## r [ 95 %CI] = -0.462 [ -0.664 , -0.197 ]
## var(r) = 0.012
## p-value(r) = 0.002
##
## z [ 95 %CI] = -0.5 [ -0.8 , -0.2 ]
## var(z) = 0.022
## p-value(z) = 0.002
##
## Odds Ratio ES:
##
## OR [ 95 %CI] = 0.151 [ 0.049 , 0.465 ]
## p-value(OR) = 0.001
##
## Log OR [ 95 %CI] = -1.889 [ -3.012 , -0.766 ]
## var(lOR) = 0.311
## p-value(Log OR) = 0.001
##
## Other:
##
## NNT = -5.877
## Total N = 48
mes(13.55, 9.00, 3.83, 3.20, 20, 20, level=95, cer=0.2, dig=3, verbose=TRUE, id=NULL, data=NULL)
## Mean Differences ES:
##
## d [ 95 %CI] = 1.289 [ 0.586 , 1.993 ]
## var(d) = 0.121
## p-value(d) = 0.001
## U3(d) = 90.135 %
## CLES(d) = 81.903 %
## Cliff's Delta = 0.638
##
## g [ 95 %CI] = 1.264 [ 0.574 , 1.953 ]
## var(g) = 0.116
## p-value(g) = 0.001
## U3(g) = 89.683 %
## CLES(g) = 81.422 %
##
## Correlation ES:
##
## r [ 95 %CI] = 0.542 [ 0.267 , 0.735 ]
## var(r) = 0.011
## p-value(r) = 0.001
##
## z [ 95 %CI] = 0.607 [ 0.274 , 0.94 ]
## var(z) = 0.027
## p-value(z) = 0.001
##
## Odds Ratio ES:
##
## OR [ 95 %CI] = 10.366 [ 2.893 , 37.136 ]
## p-value(OR) = 0.001
##
## Log OR [ 95 %CI] = 2.339 [ 1.062 , 3.615 ]
## var(lOR) = 0.397
## p-value(Log OR) = 0.001
##
## Other:
##
## NNT = 2.115
## Total N = 40
mes(12.95, 10.10, 2.54, 3.77, 20, 20, level=95, cer=0.2, dig=3, verbose=TRUE, id=NULL, data=NULL)
## Mean Differences ES:
##
## d [ 95 %CI] = 0.887 [ 0.216 , 1.558 ]
## var(d) = 0.11
## p-value(d) = 0.011
## U3(d) = 81.236 %
## CLES(d) = 73.465 %
## Cliff's Delta = 0.469
##
## g [ 95 %CI] = 0.869 [ 0.211 , 1.527 ]
## var(g) = 0.106
## p-value(g) = 0.011
## U3(g) = 80.758 %
## CLES(g) = 73.056 %
##
## Correlation ES:
##
## r [ 95 %CI] = 0.405 [ 0.097 , 0.643 ]
## var(r) = 0.016
## p-value(r) = 0.013
##
## z [ 95 %CI] = 0.43 [ 0.097 , 0.763 ]
## var(z) = 0.027
## p-value(z) = 0.013
##
## Odds Ratio ES:
##
## OR [ 95 %CI] = 4.994 [ 1.479 , 16.862 ]
## p-value(OR) = 0.011
##
## Log OR [ 95 %CI] = 1.608 [ 0.391 , 2.825 ]
## var(lOR) = 0.361
## p-value(Log OR) = 0.011
##
## Other:
##
## NNT = 3.145
## Total N = 40
tes(0.72, 14, 14, level=95, cer=0.2, dig=3, verbose=TRUE, id=NULL, data=NULL)
## Mean Differences ES:
##
## d [ 95 %CI] = 0.272 [ -0.508 , 1.053 ]
## var(d) = 0.144
## p-value(d) = 0.48
## U3(d) = 60.724 %
## CLES(d) = 57.63 %
## Cliff's Delta = 0.153
##
## g [ 95 %CI] = 0.264 [ -0.494 , 1.022 ]
## var(g) = 0.136
## p-value(g) = 0.48
## U3(g) = 60.419 %
## CLES(g) = 57.41 %
##
## Correlation ES:
##
## r [ 95 %CI] = 0.14 [ -0.264 , 0.502 ]
## var(r) = 0.036
## p-value(r) = 0.488
##
## z [ 95 %CI] = 0.141 [ -0.27 , 0.552 ]
## var(z) = 0.04
## p-value(z) = 0.488
##
## Odds Ratio ES:
##
## OR [ 95 %CI] = 1.638 [ 0.398 , 6.748 ]
## p-value(OR) = 0.48
##
## Log OR [ 95 %CI] = 0.494 [ -0.922 , 1.909 ]
## var(lOR) = 0.474
## p-value(Log OR) = 0.48
##
## Other:
##
## NNT = 11.833
## Total N = 28
mes(18.07, 16.12, 7.47, 7.49, 42, 45, level=95, cer=0.2, dig=2, verbose=TRUE, id=NULL, data=NULL)
## Mean Differences ES:
##
## d [ 95 %CI] = 0.26 [ -0.17 , 0.69 ]
## var(d) = 0.05
## p-value(d) = 0.23
## U3(d) = 60.28 %
## CLES(d) = 57.31 %
## Cliff's Delta = 0.15
##
## g [ 95 %CI] = 0.26 [ -0.17 , 0.68 ]
## var(g) = 0.05
## p-value(g) = 0.23
## U3(g) = 60.19 %
## CLES(g) = 57.25 %
##
## Correlation ES:
##
## r [ 95 %CI] = 0.13 [ -0.09 , 0.33 ]
## var(r) = 0.01
## p-value(r) = 0.24
##
## z [ 95 %CI] = 0.13 [ -0.09 , 0.35 ]
## var(z) = 0.01
## p-value(z) = 0.24
##
## Odds Ratio ES:
##
## OR [ 95 %CI] = 1.6 [ 0.74 , 3.49 ]
## p-value(OR) = 0.23
##
## Log OR [ 95 %CI] = 0.47 [ -0.3 , 1.25 ]
## var(lOR) = 0.15
## p-value(Log OR) = 0.23
##
## Other:
##
## NNT = 12.4
## Total N = 87
mes(20.33, 21.07, 4.23, 5.75, 33, 27, level=95, cer=0.2, dig=3, verbose=TRUE, id=NULL, data=NULL)
## Mean Differences ES:
##
## d [ 95 %CI] = -0.149 [ -0.669 , 0.371 ]
## var(d) = 0.068
## p-value(d) = 0.569
## U3(d) = 44.081 %
## CLES(d) = 45.807 %
## Cliff's Delta = -0.084
##
## g [ 95 %CI] = -0.147 [ -0.66 , 0.366 ]
## var(g) = 0.066
## p-value(g) = 0.569
## U3(g) = 44.157 %
## CLES(g) = 45.861 %
##
## Correlation ES:
##
## r [ 95 %CI] = -0.074 [ -0.327 , 0.189 ]
## var(r) = 0.016
## p-value(r) = 0.578
##
## z [ 95 %CI] = -0.074 [ -0.339 , 0.191 ]
## var(z) = 0.018
## p-value(z) = 0.578
##
## Odds Ratio ES:
##
## OR [ 95 %CI] = 0.763 [ 0.297 , 1.961 ]
## p-value(OR) = 0.569
##
## Log OR [ 95 %CI] = -0.27 [ -1.214 , 0.673 ]
## var(lOR) = 0.222
## p-value(Log OR) = 0.569
##
## Other:
##
## NNT = -25.612
## Total N = 60
((10.29 + 10.25)/2 - 8.94) / 1.95
## [1] 0.6820513
n1 = 34; n2 = 28; n3 = 35
d.f.m1 = 10.29; d.f.m2 = 10.25; d.f.m3 = 8.94
d.f.s1 = 1.62; d.f.s2 = 1.66; d.f.s3 = 1.95
fb.sg.pl <- sqrt((n1 * d.f.s1^2 + n2 * d.f.s2^2)/(n1 + n2 - 2))
fb.m <- (10.29 + 10.25) /2
mes(fb.m, d.f.m3, fb.sg.pl, d.f.s3, n1+n2, n3, level=95, cer=0.2, dig=3, verbose=TRUE, id=NULL, data=NULL)
## Mean Differences ES:
##
## d [ 95 %CI] = 0.75 [ 0.317 , 1.184 ]
## var(d) = 0.048
## p-value(d) = 0.001
## U3(d) = 77.349 %
## CLES(d) = 70.215 %
## Cliff's Delta = 0.404
##
## g [ 95 %CI] = 0.744 [ 0.315 , 1.174 ]
## var(g) = 0.047
## p-value(g) = 0.001
## U3(g) = 77.17 %
## CLES(g) = 70.069 %
##
## Correlation ES:
##
## r [ 95 %CI] = 0.339 [ 0.147 , 0.506 ]
## var(r) = 0.008
## p-value(r) = 0.001
##
## z [ 95 %CI] = 0.353 [ 0.148 , 0.558 ]
## var(z) = 0.011
## p-value(z) = 0.001
##
## Odds Ratio ES:
##
## OR [ 95 %CI] = 3.9 [ 1.778 , 8.556 ]
## p-value(OR) = 0.001
##
## Log OR [ 95 %CI] = 1.361 [ 0.575 , 2.147 ]
## var(lOR) = 0.157
## p-value(Log OR) = 0.001
##
## Other:
##
## NNT = 3.793
## Total N = 97
nofb <- c(2,7,7,17,4,19,21,14,7,8,7,4)
rw <- c(11,11,5,19,14,11,11,18,10,5,10,12)
ca <- c(18,12,10,19,11,20,9,13,15,16,18,14)
m.nofb <- mean(nofb); m.rw <- mean(rw); m.ca <- mean(ca)
sd.nofb <- sd(nofb); sd.rw <- sd(rw); sd.ca <- sd(ca)
n.nofb <- 12; n.rw <- 12; n.ca <- 12
# Correct answer
mes(m.ca, m.nofb, sd.ca, sd.nofb, n.ca, n.nofb, level=95, cer=0.2, dig=3, verbose=TRUE, id=NULL, data=NULL)
## Mean Differences ES:
##
## d [ 95 %CI] = 0.932 [ 0.041 , 1.824 ]
## var(d) = 0.185
## p-value(d) = 0.041
## U3(d) = 82.444 %
## CLES(d) = 74.515 %
## Cliff's Delta = 0.49
##
## g [ 95 %CI] = 0.9 [ 0.04 , 1.761 ]
## var(g) = 0.172
## p-value(g) = 0.041
## U3(g) = 81.601 %
## CLES(g) = 73.78 %
##
## Correlation ES:
##
## r [ 95 %CI] = 0.423 [ -0.002 , 0.718 ]
## var(r) = 0.026
## p-value(r) = 0.051
##
## z [ 95 %CI] = 0.451 [ -0.002 , 0.903 ]
## var(z) = 0.048
## p-value(z) = 0.051
##
## Odds Ratio ES:
##
## OR [ 95 %CI] = 5.426 [ 1.077 , 27.334 ]
## p-value(OR) = 0.041
##
## Log OR [ 95 %CI] = 1.691 [ 0.074 , 3.308 ]
## var(lOR) = 0.608
## p-value(Log OR) = 0.041
##
## Other:
##
## NNT = 2.975
## Total N = 24
# Right/wrong
mes(m.rw, m.nofb, sd.rw, sd.nofb, n.rw, n.nofb, level=95, cer=0.2, dig=3, verbose=TRUE, id=NULL, data=NULL)
## Mean Differences ES:
##
## d [ 95 %CI] = 0.31 [ -0.542 , 1.161 ]
## var(d) = 0.169
## p-value(d) = 0.459
## U3(d) = 62.16 %
## CLES(d) = 58.667 %
## Cliff's Delta = 0.173
##
## g [ 95 %CI] = 0.299 [ -0.523 , 1.121 ]
## var(g) = 0.157
## p-value(g) = 0.459
## U3(g) = 61.754 %
## CLES(g) = 58.373 %
##
## Correlation ES:
##
## r [ 95 %CI] = 0.153 [ -0.29 , 0.542 ]
## var(r) = 0.039
## p-value(r) = 0.487
##
## z [ 95 %CI] = 0.154 [ -0.298 , 0.607 ]
## var(z) = 0.048
## p-value(z) = 0.487
##
## Odds Ratio ES:
##
## OR [ 95 %CI] = 1.754 [ 0.374 , 8.22 ]
## p-value(OR) = 0.459
##
## Log OR [ 95 %CI] = 0.562 [ -0.983 , 2.107 ]
## var(lOR) = 0.555
## p-value(Log OR) = 0.459
##
## Other:
##
## NNT = 10.268
## Total N = 24
mes(33.89, 30.36, 6.48, 5.13, 97, 129, level=95, cer=0.2, dig=3, verbose=TRUE, id=NULL, data=NULL)
## Mean Differences ES:
##
## d [ 95 %CI] = 0.614 [ 0.343 , 0.885 ]
## var(d) = 0.019
## p-value(d) = 0
## U3(d) = 73.045 %
## CLES(d) = 66.796 %
## Cliff's Delta = 0.336
##
## g [ 95 %CI] = 0.612 [ 0.342 , 0.882 ]
## var(g) = 0.019
## p-value(g) = 0
## U3(g) = 72.977 %
## CLES(g) = 66.743 %
##
## Correlation ES:
##
## r [ 95 %CI] = 0.291 [ 0.166 , 0.407 ]
## var(r) = 0.004
## p-value(r) = 0
##
## z [ 95 %CI] = 0.299 [ 0.168 , 0.431 ]
## var(z) = 0.004
## p-value(z) = 0
##
## Odds Ratio ES:
##
## OR [ 95 %CI] = 3.047 [ 1.864 , 4.979 ]
## p-value(OR) = 0
##
## Log OR [ 95 %CI] = 1.114 [ 0.623 , 1.605 ]
## var(lOR) = 0.062
## p-value(Log OR) = 0
##
## Other:
##
## NNT = 4.761
## Total N = 226
mes(32.60, 30.36, 5.59, 5.13, 145, 129, level=95, cer=0.2, dig=3, verbose=TRUE, id=NULL, data=NULL)
## Mean Differences ES:
##
## d [ 95 %CI] = 0.416 [ 0.176 , 0.657 ]
## var(d) = 0.015
## p-value(d) = 0.001
## U3(d) = 66.147 %
## CLES(d) = 61.581 %
## Cliff's Delta = 0.232
##
## g [ 95 %CI] = 0.415 [ 0.175 , 0.656 ]
## var(g) = 0.015
## p-value(g) = 0.001
## U3(g) = 66.105 %
## CLES(g) = 61.55 %
##
## Correlation ES:
##
## r [ 95 %CI] = 0.204 [ 0.087 , 0.315 ]
## var(r) = 0.003
## p-value(r) = 0.001
##
## z [ 95 %CI] = 0.206 [ 0.087 , 0.326 ]
## var(z) = 0.004
## p-value(z) = 0.001
##
## Odds Ratio ES:
##
## OR [ 95 %CI] = 2.128 [ 1.375 , 3.294 ]
## p-value(OR) = 0.001
##
## Log OR [ 95 %CI] = 0.755 [ 0.319 , 1.192 ]
## var(lOR) = 0.049
## p-value(Log OR) = 0.001
##
## Other:
##
## NNT = 7.387
## Total N = 274
tes(2.74, 18, 34, level = 95, cer = 0.2, dig = 3, verbose = TRUE, id=NULL, data=NULL)
## Mean Differences ES:
##
## d [ 95 %CI] = 0.799 [ 0.192 , 1.405 ]
## var(d) = 0.091
## p-value(d) = 0.011
## U3(d) = 78.776 %
## CLES(d) = 71.388 %
## Cliff's Delta = 0.428
##
## g [ 95 %CI] = 0.787 [ 0.19 , 1.384 ]
## var(g) = 0.088
## p-value(g) = 0.011
## U3(g) = 78.426 %
## CLES(g) = 71.098 %
##
## Correlation ES:
##
## r [ 95 %CI] = 0.361 [ 0.091 , 0.582 ]
## var(r) = 0.015
## p-value(r) = 0.011
##
## z [ 95 %CI] = 0.378 [ 0.091 , 0.665 ]
## var(z) = 0.02
## p-value(z) = 0.011
##
## Odds Ratio ES:
##
## OR [ 95 %CI] = 4.257 [ 1.418 , 12.785 ]
## p-value(OR) = 0.011
##
## Log OR [ 95 %CI] = 1.449 [ 0.349 , 2.548 ]
## var(lOR) = 0.3
## p-value(Log OR) = 0.011
##
## Other:
##
## NNT = 3.535
## Total N = 52
tes(2.23, 18, 34, level = 95, cer = 0.2, dig = 3, verbose = TRUE, id=NULL, data=NULL)
## Mean Differences ES:
##
## d [ 95 %CI] = 0.65 [ 0.051 , 1.249 ]
## var(d) = 0.089
## p-value(d) = 0.034
## U3(d) = 74.216 %
## CLES(d) = 67.711 %
## Cliff's Delta = 0.354
##
## g [ 95 %CI] = 0.64 [ 0.05 , 1.231 ]
## var(g) = 0.086
## p-value(g) = 0.034
## U3(g) = 73.899 %
## CLES(g) = 67.462 %
##
## Correlation ES:
##
## r [ 95 %CI] = 0.301 [ 0.023 , 0.535 ]
## var(r) = 0.016
## p-value(r) = 0.035
##
## z [ 95 %CI] = 0.31 [ 0.023 , 0.597 ]
## var(z) = 0.02
## p-value(z) = 0.035
##
## Odds Ratio ES:
##
## OR [ 95 %CI] = 3.251 [ 1.096 , 9.641 ]
## p-value(OR) = 0.034
##
## Log OR [ 95 %CI] = 1.179 [ 0.092 , 2.266 ]
## var(lOR) = 0.293
## p-value(Log OR) = 0.034
##
## Other:
##
## NNT = 4.464
## Total N = 52
mes2(0.59, 0.43, 0.32, 18, 34, level = 95, cer = 0.2, dig = 3, verbose = TRUE, id=NULL, data=NULL)
## Mean Differences ES:
##
## d [ 95 %CI] = 0.5 [ -0.094 , 1.094 ]
## var(d) = 0.087
## p-value(d) = 0.097
## U3(d) = 69.146 %
## CLES(d) = 63.816 %
## Cliff's Delta = 0.276
##
## g [ 95 %CI] = 0.492 [ -0.092 , 1.077 ]
## var(g) = 0.085
## p-value(g) = 0.097
## U3(g) = 68.88 %
## CLES(g) = 63.616 %
##
## Correlation ES:
##
## r [ 95 %CI] = 0.231 [ -0.051 , 0.48 ]
## var(r) = 0.017
## p-value(r) = 0.105
##
## z [ 95 %CI] = 0.236 [ -0.051 , 0.523 ]
## var(z) = 0.02
## p-value(z) = 0.105
##
## Odds Ratio ES:
##
## OR [ 95 %CI] = 2.477 [ 0.844 , 7.27 ]
## p-value(OR) = 0.097
##
## Log OR [ 95 %CI] = 0.907 [ -0.17 , 1.984 ]
## var(lOR) = 0.287
## p-value(Log OR) = 0.097
##
## Other:
##
## NNT = 6.013
## Total N = 52
# t01
t01res <- mes2(68.7, 57.9, 13.33, 21, 21, level=95, cer=0.2, dig=3, verbose=TRUE, id=NULL, data=NULL)
ef01 <- t01res[c("N.total", "d", "var.d")]; rownames(ef01) <- c("ef01")
# t02
t02res <- mes2(52.8, 47.4, 8.85, 26, 24, level=95, cer=0.2, dig=3, verbose=TRUE, id=NULL, data=NULL)
ef02 <- t02res[c("N.total", "d", "var.d")]; rownames(ef02) <- c("ef02")
#t03
t03res <- mes2(27.0, 23.8, 7.80, 24, 24, level=95, cer=0.2, dig=3, verbose=TRUE, id=NULL, data=NULL)
ef03 <- t03res[c("N.total", "d", "var.d")]; rownames(ef03) <- c("ef03")
#t04
t04res <- mes(40.2, 41.7, 7.45, 6.19, 30, 30, level=95, cer=0.2, dig=3, verbose=TRUE, id=NULL, data=NULL)
ef04 <- t04res[c("N.total", "d", "var.d")]; rownames(ef04) <- c("ef04")
#t05
t05res <- mes(44.4, 41.7, 6.33, 6.19, 30, 30, level=95, cer=0.2, dig=3, verbose=TRUE, id=NULL, data=NULL)
ef05 <- t05res[c("N.total", "d", "var.d")]; rownames(ef05) <- c("ef05")
#t06
t06res <- mes(6.33, 3.54, 2.82, 2.53, 24, 24, level=95, cer=0.2, dig=3, verbose=TRUE, id=NULL, data=NULL)
ef06 <- t06res[c("N.total", "d", "var.d")]; rownames(ef06) <- c("ef06")
#t07
t07res <- mes(13.55, 9.00, 3.83, 3.20, 20, 20, level=95, cer=0.2, dig=3, verbose=TRUE, id=NULL, data=NULL)
ef07 <- t07res[c("N.total", "d", "var.d")]; rownames(ef07) <- c("ef07")
#t08
t08res <- mes(12.95, 10.10, 2.54, 3.77, 20, 20, level=95, cer=0.2, dig=3, verbose=TRUE, id=NULL, data=NULL)
ef08 <- t08res[c("N.total", "d", "var.d")]; rownames(ef08) <- c("ef08")
#t09
t09res <- tes(-0.72, 14, 14, level=95, cer=0.2, dig=3, verbose=TRUE, id=NULL, data=NULL)
ef09 <- t09res[c("N.total", "d", "var.d")]; rownames(ef09) <- c("ef09")
#t10
t10res <- mes(18.07, 16.12, 7.47, 7.49, 42, 45, level=95, cer=0.2, dig=2, verbose=TRUE, id=NULL, data=NULL)
ef10 <- t10res[c("N.total", "d", "var.d")]; rownames(ef10) <- c("ef10")
#t11
t11res <- mes(20.33, 21.07, 4.23, 5.75, 33, 27, level=95, cer=0.2, dig=3, verbose=TRUE, id=NULL, data=NULL)
ef11 <- t11res[c("N.total", "d", "var.d")]; rownames(ef11) <- c("ef11")
#t12
n1 = 34; n2 = 28; n3 = 35
d.f.m1 = 10.29; d.f.m2 = 10.25; d.f.m3 = 8.94
d.f.s1 = 1.62; d.f.s2 = 1.66; d.f.s3 = 1.95
fb.sg.pl <- sqrt((n1 * d.f.s1^2 + n2 * d.f.s2^2)/(n1 + n2 - 2))
fb.m <- (10.29 + 10.25) /2
t12res <- mes(fb.m, d.f.m3, fb.sg.pl, d.f.s3, n1+n2, n3, level=95, cer=0.2, dig=3, verbose=TRUE, id=NULL, data=NULL)
ef12 <- t12res[c("N.total", "d", "var.d")]; rownames(ef12) <- c("ef12")
#t13
nofb <- c(2,7,7,17,4,19,21,14,7,8,7,4)
rw <- c(11,11,5,19,14,11,11,18,10,5,10,12)
ca <- c(18,12,10,19,11,20,9,13,15,16,18,14)
m.nofb <- mean(nofb); m.rw <- mean(rw); m.ca <- mean(ca)
sd.nofb <- sd(nofb); sd.rw <- sd(rw); sd.ca <- sd(ca)
n.nofb <- 12; n.rw <- 12; n.ca <- 12
t13res <- mes(m.ca, m.nofb, sd.ca, sd.nofb, n.ca, n.nofb, level=95, cer=0.2, dig=3, verbose=TRUE, id=NULL, data=NULL)
ef13 <- t13res[c("N.total", "d", "var.d")]; rownames(ef13) <- c("ef13")
#t14
nofb <- c(2,7,7,17,4,19,21,14,7,8,7,4)
rw <- c(11,11,5,19,14,11,11,18,10,5,10,12)
ca <- c(18,12,10,19,11,20,9,13,15,16,18,14)
m.nofb <- mean(nofb); m.rw <- mean(rw); m.ca <- mean(ca)
sd.nofb <- sd(nofb); sd.rw <- sd(rw); sd.ca <- sd(ca)
n.nofb <- 12; n.rw <- 12; n.ca <- 12
t14res <- mes(m.rw, m.nofb, sd.rw, sd.nofb, n.rw, n.nofb, level=95, cer=0.2, dig=3, verbose=TRUE, id=NULL, data=NULL)
ef14 <- t14res[c("N.total", "d", "var.d")]; rownames(ef14) <- c("ef14")
#t15
t15res <- mes(33.89, 30.36, 6.48, 5.13, 97, 129, level=95, cer=0.2, dig=3, verbose=TRUE, id=NULL, data=NULL)
ef15 <- t15res[c("N.total", "d", "var.d")]; rownames(ef15) <- c("ef15")
#t16
t16res <- mes(32.60, 30.36, 5.59, 5.13, 145, 129, level=95, cer=0.2, dig=3, verbose=TRUE, id=NULL, data=NULL)
ef16 <- t16res[c("N.total", "d", "var.d")]; rownames(ef16) <- c("ef16")
#t17
t17res <- mes2(0.59, 0.43, 0.32, 18, 34, level = 95, cer = 0.2, dig = 3, verbose = TRUE, id=NULL, data=NULL)
ef17 <- t17res[c("N.total", "d", "var.d")]; rownames(ef17) <- c("ef17")
mod <- rbind(ef01, ef02, ef03, ef04, ef05, ef06, ef07, ef08, ef09, ef10,
ef11, ef12, ef13, ef14, ef15, ef16, ef17)
mod$SE <- sqrt(mod$var.d)