set.seed(1)
f1 <- rnorm(50, mean = 40, sd = 7)
f2 <- rnorm(50, mean = 42, sd = 8)
f3 <- rnorm(50, mean = 43, sd = 9)
f4 <- rnorm(50, mean = 44, sd = 10)
factors.df <- data.frame(cbind(f1, f2, f3, f4))
factors.df
## f1 f2 f3 f4
## 1 35.61482 45.18485 37.41670 48.50187
## 2 41.28550 37.10379 43.37904 43.81440
## 3 34.15060 44.72896 34.80171 40.81932
## 4 51.16697 32.96510 44.42226 34.70638
## 5 42.30655 53.46419 37.10874 29.12540
## 6 34.25672 57.84320 58.90559 33.24808
## 7 43.41200 39.06223 49.45037 54.00029
## 8 45.16827 33.64692 51.19157 37.78733
## 9 44.03047 46.55776 46.45767 30.15573
## 10 37.86228 40.91956 58.13958 62.69291
## 11 50.58247 61.21294 37.27837 48.25100
## 12 42.72890 41.68608 38.84520 41.61353
## 13 35.65132 47.51791 55.89054 54.58483
## 14 24.49710 42.22402 37.14373 52.86423
## 15 47.87452 36.05381 41.13357 37.80757
## 16 39.68546 43.51034 39.46473 66.06102
## 17 39.88667 27.56033 40.12006 41.44973
## 18 46.60685 53.72444 40.48798 29.75505
## 19 45.74855 43.22603 47.44769 42.55600
## 20 44.15731 59.38089 41.40403 46.07538
## 21 46.43284 45.80408 38.44638 67.07978
## 22 45.47495 36.32043 55.08735 45.05802
## 23 40.52195 46.88581 41.06879 48.56999
## 24 26.07454 34.52722 41.38399 43.22847
## 25 44.33878 31.97093 42.09828 40.65999
## 26 39.60710 44.33157 49.41400 43.65274
## 27 38.90943 38.45367 42.33792 51.87640
## 28 29.70473 42.00884 42.66129 64.75245
## 29 36.65295 42.59473 36.86506 54.27392
## 30 42.92559 37.28383 40.08157 56.07908
## 31 49.51076 37.45065 43.54144 31.68677
## 32 39.28049 40.91857 37.69995 53.83896
## 33 42.71370 51.42470 47.78347 46.19925
## 34 39.62336 29.81147 29.33445 29.32750
## 35 30.36058 46.75157 45.75902 49.21023
## 36 37.09504 44.66360 29.17195 42.41245
## 37 37.23997 50.50480 40.29121 58.64587
## 38 39.58481 39.56653 38.24548 36.33918
## 39 47.70018 44.96015 37.13115 39.69788
## 40 45.34223 44.13679 42.48793 34.73891
## 41 38.84833 37.65984 25.77077 42.22896
## 42 38.22647 51.66294 53.58925 48.02012
## 43 44.87874 51.28322 28.01525 36.68252
## 44 43.89664 47.60171 38.82823 52.30373
## 45 35.17871 54.69467 32.95672 31.91917
## 46 35.04753 46.46789 36.24263 33.52016
## 47 42.55207 31.78726 61.78450 58.41158
## 48 45.37973 37.41388 43.15656 33.84153
## 49 39.21358 32.20310 31.42330 48.11975
## 50 46.16775 38.21279 28.23455 40.18924
summary(factors.df)
## f1 f2 f3 f4
## Min. :24.50 Min. :27.56 Min. :25.77 Min. :29.13
## 1st Qu.:37.40 1st Qu.:37.42 1st Qu.:37.18 1st Qu.:36.96
## Median :40.90 Median :42.91 Median :40.78 Median :43.44
## Mean :40.70 Mean :42.94 Mean :41.63 Mean :44.77
## 3rd Qu.:45.10 3rd Qu.:46.85 3rd Qu.:45.42 3rd Qu.:52.20
## Max. :51.17 Max. :61.21 Max. :61.78 Max. :67.08
boxplot(f1, f2, f3, f4)
hist(f1)
v1 <- factors.df$f1
h <- hist(v1,
prob = TRUE,
ylim = c(0, 0.12),
xlim = c(20, 55),
breaks = 11,
col = "#E5E5E5",
border = 0,
main = "Histogram of variable v1")
curve(dnorm(x, mean = mean(v1), sd = sd(v1)),
col = "red",
lwd = 3,
add = TRUE)
lines(density(v1), col = "blue")
lines(density(v1, adjust = 3), col = "darkgreen")
rug(v1, col = "red")
stack.v <- stack(factors.df)
stack.v
## values ind
## 1 35.61482 f1
## 2 41.28550 f1
## 3 34.15060 f1
## 4 51.16697 f1
## 5 42.30655 f1
## 6 34.25672 f1
## 7 43.41200 f1
## 8 45.16827 f1
## 9 44.03047 f1
## 10 37.86228 f1
## 11 50.58247 f1
## 12 42.72890 f1
## 13 35.65132 f1
## 14 24.49710 f1
## 15 47.87452 f1
## 16 39.68546 f1
## 17 39.88667 f1
## 18 46.60685 f1
## 19 45.74855 f1
## 20 44.15731 f1
## 21 46.43284 f1
## 22 45.47495 f1
## 23 40.52195 f1
## 24 26.07454 f1
## 25 44.33878 f1
## 26 39.60710 f1
## 27 38.90943 f1
## 28 29.70473 f1
## 29 36.65295 f1
## 30 42.92559 f1
## 31 49.51076 f1
## 32 39.28049 f1
## 33 42.71370 f1
## 34 39.62336 f1
## 35 30.36058 f1
## 36 37.09504 f1
## 37 37.23997 f1
## 38 39.58481 f1
## 39 47.70018 f1
## 40 45.34223 f1
## 41 38.84833 f1
## 42 38.22647 f1
## 43 44.87874 f1
## 44 43.89664 f1
## 45 35.17871 f1
## 46 35.04753 f1
## 47 42.55207 f1
## 48 45.37973 f1
## 49 39.21358 f1
## 50 46.16775 f1
## 51 45.18485 f2
## 52 37.10379 f2
## 53 44.72896 f2
## 54 32.96510 f2
## 55 53.46419 f2
## 56 57.84320 f2
## 57 39.06223 f2
## 58 33.64692 f2
## 59 46.55776 f2
## 60 40.91956 f2
## 61 61.21294 f2
## 62 41.68608 f2
## 63 47.51791 f2
## 64 42.22402 f2
## 65 36.05381 f2
## 66 43.51034 f2
## 67 27.56033 f2
## 68 53.72444 f2
## 69 43.22603 f2
## 70 59.38089 f2
## 71 45.80408 f2
## 72 36.32043 f2
## 73 46.88581 f2
## 74 34.52722 f2
## 75 31.97093 f2
## 76 44.33157 f2
## 77 38.45367 f2
## 78 42.00884 f2
## 79 42.59473 f2
## 80 37.28383 f2
## 81 37.45065 f2
## 82 40.91857 f2
## 83 51.42470 f2
## 84 29.81147 f2
## 85 46.75157 f2
## 86 44.66360 f2
## 87 50.50480 f2
## 88 39.56653 f2
## 89 44.96015 f2
## 90 44.13679 f2
## 91 37.65984 f2
## 92 51.66294 f2
## 93 51.28322 f2
## 94 47.60171 f2
## 95 54.69467 f2
## 96 46.46789 f2
## 97 31.78726 f2
## 98 37.41388 f2
## 99 32.20310 f2
## 100 38.21279 f2
## 101 37.41670 f3
## 102 43.37904 f3
## 103 34.80171 f3
## 104 44.42226 f3
## 105 37.10874 f3
## 106 58.90559 f3
## 107 49.45037 f3
## 108 51.19157 f3
## 109 46.45767 f3
## 110 58.13958 f3
## 111 37.27837 f3
## 112 38.84520 f3
## 113 55.89054 f3
## 114 37.14373 f3
## 115 41.13357 f3
## 116 39.46473 f3
## 117 40.12006 f3
## 118 40.48798 f3
## 119 47.44769 f3
## 120 41.40403 f3
## 121 38.44638 f3
## 122 55.08735 f3
## 123 41.06879 f3
## 124 41.38399 f3
## 125 42.09828 f3
## 126 49.41400 f3
## 127 42.33792 f3
## 128 42.66129 f3
## 129 36.86506 f3
## 130 40.08157 f3
## 131 43.54144 f3
## 132 37.69995 f3
## 133 47.78347 f3
## 134 29.33445 f3
## 135 45.75902 f3
## 136 29.17195 f3
## 137 40.29121 f3
## 138 38.24548 f3
## 139 37.13115 f3
## 140 42.48793 f3
## 141 25.77077 f3
## 142 53.58925 f3
## 143 28.01525 f3
## 144 38.82823 f3
## 145 32.95672 f3
## 146 36.24263 f3
## 147 61.78450 f3
## 148 43.15656 f3
## 149 31.42330 f3
## 150 28.23455 f3
## 151 48.50187 f4
## 152 43.81440 f4
## 153 40.81932 f4
## 154 34.70638 f4
## 155 29.12540 f4
## 156 33.24808 f4
## 157 54.00029 f4
## 158 37.78733 f4
## 159 30.15573 f4
## 160 62.69291 f4
## 161 48.25100 f4
## 162 41.61353 f4
## 163 54.58483 f4
## 164 52.86423 f4
## 165 37.80757 f4
## 166 66.06102 f4
## 167 41.44973 f4
## 168 29.75505 f4
## 169 42.55600 f4
## 170 46.07538 f4
## 171 67.07978 f4
## 172 45.05802 f4
## 173 48.56999 f4
## 174 43.22847 f4
## 175 40.65999 f4
## 176 43.65274 f4
## 177 51.87640 f4
## 178 64.75245 f4
## 179 54.27392 f4
## 180 56.07908 f4
## 181 31.68677 f4
## 182 53.83896 f4
## 183 46.19925 f4
## 184 29.32750 f4
## 185 49.21023 f4
## 186 42.41245 f4
## 187 58.64587 f4
## 188 36.33918 f4
## 189 39.69788 f4
## 190 34.73891 f4
## 191 42.22896 f4
## 192 48.02012 f4
## 193 36.68252 f4
## 194 52.30373 f4
## 195 31.91917 f4
## 196 33.52016 f4
## 197 58.41158 f4
## 198 33.84153 f4
## 199 48.11975 f4
## 200 40.18924 f4
anova1 <- aov(values ~ ind, data = stack.v) # Conduct one-way ANOVA
anova1
## Call:
## aov(formula = values ~ ind, data = stack.v)
##
## Terms:
## ind Residuals
## Sum of Squares 466.436 12801.533
## Deg. of Freedom 3 196
##
## Residual standard error: 8.081704
## Estimated effects may be unbalanced
summary(anova1)
## Df Sum Sq Mean Sq F value Pr(>F)
## ind 3 466 155.48 2.38 0.0709 .
## Residuals 196 12802 65.31
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(anova1)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = values ~ ind, data = stack.v)
##
## $ind
## diff lwr upr p adj
## f2-f1 2.2354737 -1.9528008 6.423748 0.5114759
## f3-f1 0.9244931 -3.2637814 5.112768 0.9403319
## f4-f1 4.0655549 -0.1227196 8.253829 0.0606555
## f3-f2 -1.3109806 -5.4992551 2.877294 0.8491824
## f4-f2 1.8300812 -2.3581932 6.018356 0.6700704
## f4-f3 3.1410618 -1.0472126 7.329336 0.2134873
write.table(stack.v, "stack_v.txt", sep="\t")
%let path=/folders/myshortcuts/Programming-R/MARKDOWNS;
libname stat "&path";
proc import datafile="&path/stack_v.txt" dbms=tab out=stat.stack_v replace;
run;
data stat.stack_v_new;
set stat.stack_v (rename=(VAR3=groups));
run;
library(haven)
data <- read_sas("stack_v_new.sas7bdat")
data
## # A tibble: 200 x 3
## values ind groups
## <chr> <dbl> <chr>
## 1 1 35.6 f1
## 2 2 41.3 f1
## 3 3 34.2 f1
## 4 4 51.2 f1
## 5 5 42.3 f1
## 6 6 34.3 f1
## 7 7 43.4 f1
## 8 8 45.2 f1
## 9 9 44.0 f1
## 10 10 37.9 f1
## # ... with 190 more rows
proc anova data=stat.stack_v_new;
class groups;
model ind=groups;
run;
.
proc glm data=stat.stack_v_new;
class groups;
model ind=groups / solution;
means groups;
run;
.
.
.