ICNARC Paper 2

## Error: could not find function "libraary"
## degree
##     0     1     2     3     4     7 
## 33694  2614  5216   523  1347   959
## diploma
##     0     1     2     3     4     5     6     7     8     9    10    11 
## 19989  4145   517  1810   795  1789  3038  1146  2159   487   889     1 
##    12    13    14    15    17    20    37 
##   701  1701   452  2105   496  1446   687

plot of chunk init

N.dc.quart*ave.cost.nurse

ICU and Hospital mortality


display(cost.icu <- lmer(diedicu ~ IMlo + prop.occ.c + mean.daily.transfer + 
    N.dc.quart * ave.cost.nurse + N.supernum.perbed + num.consult.perbed + intensivist + 
    IMlomean.x + I(avyulos/100) + (1 | trust.code), data = dta4, family = binomial(), 
    na.action = na.omit, subset = ss8), digits = 3)
## glmer(formula = diedicu ~ IMlo + prop.occ.c + mean.daily.transfer + 
##     N.dc.quart * ave.cost.nurse + N.supernum.perbed + num.consult.perbed + 
##     intensivist + IMlomean.x + I(avyulos/100) + (1 | trust.code), 
##     data = dta4, family = binomial(), subset = ss8, na.action = na.omit)
##                                      coef.est coef.se
## (Intercept)                          -2.045    0.410 
## IMlo                                  0.966    0.012 
## prop.occ.c                            0.253    0.096 
## mean.daily.transfer                   0.488    0.409 
## N.dc.quart(4.25,4.82]                -1.063    1.118 
## N.dc.quart(4.82,5.68]                 0.043    0.567 
## N.dc.quart(5.68,14.2]                -0.372    1.022 
## ave.cost.nurse                        0.019    0.017 
## N.supernum.perbed                     0.034    0.099 
## num.consult.perbed                   -0.327    0.106 
## intensivistYes                       -0.146    0.113 
## IMlomean.x                           -0.053    0.020 
## I(avyulos/100)                        0.403    0.154 
## N.dc.quart(4.25,4.82]:ave.cost.nurse  0.052    0.053 
## N.dc.quart(4.82,5.68]:ave.cost.nurse -0.005    0.025 
## N.dc.quart(5.68,14.2]:ave.cost.nurse  0.011    0.050 
## 
## Error terms:
##  Groups     Name        Std.Dev.
##  trust.code (Intercept) 0.285   
##  Residual               1.000   
## ---
## number of obs: 36935, groups: trust.code, 63
## AIC = 22546.4, DIC = 22512
## deviance = 22512.4

display(cost.hosp <- lmer(diedhosp ~ IMlo + prop.occ.c + mean.daily.transfer + 
    N.dc.quart * ave.cost.nurse + N.supernum.perbed + num.consult.perbed + intensivist + 
    IMlomean.x + I(avyulos/100) + (1 | trust.code), data = dta4, family = binomial(), 
    na.action = na.omit, subset = ss8), digits = 3)
## glmer(formula = diedhosp ~ IMlo + prop.occ.c + mean.daily.transfer + 
##     N.dc.quart * ave.cost.nurse + N.supernum.perbed + num.consult.perbed + 
##     intensivist + IMlomean.x + I(avyulos/100) + (1 | trust.code), 
##     data = dta4, family = binomial(), subset = ss8, na.action = na.omit)
##                                      coef.est coef.se
## (Intercept)                          -0.498    0.373 
## IMlo                                  0.960    0.011 
## prop.occ.c                            0.245    0.082 
## mean.daily.transfer                   0.932    0.377 
## N.dc.quart(4.25,4.82]                 0.151    1.019 
## N.dc.quart(4.82,5.68]                 0.004    0.498 
## N.dc.quart(5.68,14.2]                 0.450    0.886 
## ave.cost.nurse                        0.001    0.015 
## N.supernum.perbed                     0.027    0.090 
## num.consult.perbed                   -0.239    0.095 
## intensivistYes                       -0.124    0.103 
## IMlomean.x                           -0.042    0.017 
## I(avyulos/100)                        0.247    0.140 
## N.dc.quart(4.25,4.82]:ave.cost.nurse -0.006    0.048 
## N.dc.quart(4.82,5.68]:ave.cost.nurse -0.002    0.022 
## N.dc.quart(5.68,14.2]:ave.cost.nurse -0.030    0.043 
## 
## Error terms:
##  Groups     Name        Std.Dev.
##  trust.code (Intercept) 0.267   
##  Residual               1.000   
## ---
## number of obs: 36359, groups: trust.code, 63
## AIC = 29335, DIC = 29301
## deviance = 29301.0

N.dc.quart*ratio.pbq.wte

display(pbq.icu <- lmer(diedicu ~ IMlo + prop.occ.c + mean.daily.transfer + 
    N.dc.quart * ratio.pbq.wte + N.supernum.perbed + num.consult.perbed + intensivist + 
    IMlomean.x + I(avyulos/100) + (1 | trust.code), data = dta4, family = binomial(), 
    na.action = na.omit, subset = ss8), digits = 3)
## glmer(formula = diedicu ~ IMlo + prop.occ.c + mean.daily.transfer + 
##     N.dc.quart * ratio.pbq.wte + N.supernum.perbed + num.consult.perbed + 
##     intensivist + IMlomean.x + I(avyulos/100) + (1 | trust.code), 
##     data = dta4, family = binomial(), subset = ss8, na.action = na.omit)
##                                     coef.est coef.se
## (Intercept)                         -0.833    0.291 
## IMlo                                 0.965    0.012 
## prop.occ.c                           0.229    0.094 
## mean.daily.transfer                  0.725    0.336 
## N.dc.quart(4.25,4.82]               -0.641    0.285 
## N.dc.quart(4.82,5.68]               -0.919    0.296 
## N.dc.quart(5.68,14.2]               -1.059    0.274 
## ratio.pbq.wte                       -0.974    0.283 
## N.supernum.perbed                    0.014    0.086 
## num.consult.perbed                  -0.301    0.090 
## intensivistYes                      -0.192    0.100 
## IMlomean.x                          -0.051    0.020 
## I(avyulos/100)                       0.362    0.138 
## N.dc.quart(4.25,4.82]:ratio.pbq.wte  0.827    0.350 
## N.dc.quart(4.82,5.68]:ratio.pbq.wte  1.075    0.372 
## N.dc.quart(5.68,14.2]:ratio.pbq.wte  1.182    0.359 
## 
## Error terms:
##  Groups     Name        Std.Dev.
##  trust.code (Intercept) 0.249   
##  Residual               1.000   
## ---
## number of obs: 38168, groups: trust.code, 65
## AIC = 23318.4, DIC = 23284
## deviance = 23284.4

display(pbq.hosp <- lmer(diedhosp ~ IMlo + prop.occ.c + mean.daily.transfer + 
    N.dc.quart * ratio.pbq.wte + N.supernum.perbed + num.consult.perbed + intensivist + 
    IMlomean.x + I(avyulos/100) + (1 | trust.code), data = dta4, family = binomial(), 
    na.action = na.omit, subset = ss8), digits = 3)
## glmer(formula = diedhosp ~ IMlo + prop.occ.c + mean.daily.transfer + 
##     N.dc.quart * ratio.pbq.wte + N.supernum.perbed + num.consult.perbed + 
##     intensivist + IMlomean.x + I(avyulos/100) + (1 | trust.code), 
##     data = dta4, family = binomial(), subset = ss8, na.action = na.omit)
##                                     coef.est coef.se
## (Intercept)                         -0.160    0.277 
## IMlo                                 0.961    0.011 
## prop.occ.c                           0.208    0.080 
## mean.daily.transfer                  0.857    0.330 
## N.dc.quart(4.25,4.82]               -0.051    0.274 
## N.dc.quart(4.82,5.68]               -0.421    0.284 
## N.dc.quart(5.68,14.2]               -0.387    0.263 
## ratio.pbq.wte                       -0.344    0.271 
## N.supernum.perbed                   -0.001    0.082 
## num.consult.perbed                  -0.243    0.085 
## intensivistYes                      -0.127    0.096 
## IMlomean.x                          -0.042    0.017 
## I(avyulos/100)                       0.250    0.132 
## N.dc.quart(4.25,4.82]:ratio.pbq.wte  0.091    0.335 
## N.dc.quart(4.82,5.68]:ratio.pbq.wte  0.509    0.355 
## N.dc.quart(5.68,14.2]:ratio.pbq.wte  0.323    0.342 
## 
## Error terms:
##  Groups     Name        Std.Dev.
##  trust.code (Intercept) 0.250   
##  Residual               1.000   
## ---
## number of obs: 37590, groups: trust.code, 65
## AIC = 30371.1, DIC = 30337
## deviance = 30337.1

Effect plots

ef.cost.icu <- effect("N.dc.quart:ave.cost.nurse", cost.icu)
ef.cost.hosp <- effect("N.dc.quart:ave.cost.nurse", cost.hosp)
ef.pbq.icu <- effect("N.dc.quart:ratio.pbq.wte", pbq.icu)
ef.pbq.hosp <- effect("N.dc.quart:ratio.pbq.wte", pbq.hosp)

plot(ef.pbq.icu)

plot of chunk effects1

N.dc.quart*ratio.ot.total.spend

display(ot.icu <- lmer(diedicu ~ IMlo + prop.occ.c + mean.daily.transfer + N.dc.quart * 
    ratio.ot.total.spend + N.supernum.perbed + num.consult.perbed + intensivist + 
    IMlomean.x + I(avyulos/100) + (1 | trust.code), data = dta4, family = binomial(), 
    na.action = na.omit, subset = ss8), digits = 3)
## glmer(formula = diedicu ~ IMlo + prop.occ.c + mean.daily.transfer + 
##     N.dc.quart * ratio.ot.total.spend + N.supernum.perbed + num.consult.perbed + 
##     intensivist + IMlomean.x + I(avyulos/100) + (1 | trust.code), 
##     data = dta4, family = binomial(), subset = ss8, na.action = na.omit)
##                                            coef.est coef.se
## (Intercept)                                -1.693    0.204 
## IMlo                                        0.965    0.012 
## prop.occ.c                                  0.261    0.096 
## mean.daily.transfer                         0.789    0.370 
## N.dc.quart(4.25,4.82]                      -0.084    0.122 
## N.dc.quart(4.82,5.68]                      -0.134    0.116 
## N.dc.quart(5.68,14.2]                      -0.165    0.118 
## ratio.ot.total.spend                       -1.962    7.041 
## N.supernum.perbed                           0.020    0.095 
## num.consult.perbed                         -0.244    0.099 
## intensivistYes                             -0.183    0.112 
## IMlomean.x                                 -0.055    0.020 
## I(avyulos/100)                              0.423    0.152 
## N.dc.quart(4.25,4.82]:ratio.ot.total.spend 14.977   11.803 
## N.dc.quart(4.82,5.68]:ratio.ot.total.spend  9.708   11.314 
## N.dc.quart(5.68,14.2]:ratio.ot.total.spend -1.343   10.841 
## 
## Error terms:
##  Groups     Name        Std.Dev.
##  trust.code (Intercept) 0.275   
##  Residual               1.000   
## ---
## number of obs: 36935, groups: trust.code, 63
## AIC = 22545.2, DIC = 22511
## deviance = 22511.2

display(ot.hosp <- lmer(diedhosp ~ IMlo + prop.occ.c + mean.daily.transfer + 
    N.dc.quart * ratio.ot.total.spend + N.supernum.perbed + num.consult.perbed + 
    intensivist + IMlomean.x + I(avyulos/100) + (1 | trust.code), data = dta4, 
    family = binomial(), na.action = na.omit, subset = ss8), digits = 3)
## glmer(formula = diedhosp ~ IMlo + prop.occ.c + mean.daily.transfer + 
##     N.dc.quart * ratio.ot.total.spend + N.supernum.perbed + num.consult.perbed + 
##     intensivist + IMlomean.x + I(avyulos/100) + (1 | trust.code), 
##     data = dta4, family = binomial(), subset = ss8, na.action = na.omit)
##                                            coef.est coef.se
## (Intercept)                                -0.540    0.181 
## IMlo                                        0.960    0.011 
## prop.occ.c                                  0.246    0.082 
## mean.daily.transfer                         1.005    0.334 
## N.dc.quart(4.25,4.82]                      -0.096    0.109 
## N.dc.quart(4.82,5.68]                      -0.081    0.102 
## N.dc.quart(5.68,14.2]                      -0.138    0.105 
## ratio.ot.total.spend                       -2.345    6.362 
## N.supernum.perbed                          -0.001    0.086 
## num.consult.perbed                         -0.205    0.088 
## intensivistYes                             -0.192    0.100 
## IMlomean.x                                 -0.041    0.017 
## I(avyulos/100)                              0.327    0.136 
## N.dc.quart(4.25,4.82]:ratio.ot.total.spend 25.442   10.424 
## N.dc.quart(4.82,5.68]:ratio.ot.total.spend  9.131   10.180 
## N.dc.quart(5.68,14.2]:ratio.ot.total.spend  8.603    9.609 
## 
## Error terms:
##  Groups     Name        Std.Dev.
##  trust.code (Intercept) 0.250   
##  Residual               1.000   
## ---
## number of obs: 36359, groups: trust.code, 63
## AIC = 29326.7, DIC = 29293
## deviance = 29292.7

### Effect plo t


ef.ot.icu <- effect("N.dc.quart:ratio.ot.total.spend", ot.icu)
ef.ot.hosp <- effect("N.dc.quart:ratio.ot.total.spend", ot.hosp)

plot(ef.ot.icu)

plot of chunk effects2

plot(ef.ot.hosp)

plot of chunk effects2

N.dc.quart*ratio.bank.total.spend


display(bank.icu <- lmer(diedicu ~ IMlo + prop.occ.c + mean.daily.transfer + 
    N.dc.quart * ratio.bank.total.spend + N.supernum.perbed + num.consult.perbed + 
    intensivist + IMlomean.x + I(avyulos/100) + (1 | trust.code), data = dta4, 
    family = binomial(), na.action = na.omit, subset = ss8), digits = 3)
## glmer(formula = diedicu ~ IMlo + prop.occ.c + mean.daily.transfer + 
##     N.dc.quart * ratio.bank.total.spend + N.supernum.perbed + 
##     num.consult.perbed + intensivist + IMlomean.x + I(avyulos/100) + 
##     (1 | trust.code), data = dta4, family = binomial(), subset = ss8, 
##     na.action = na.omit)
##                                              coef.est coef.se
## (Intercept)                                  -1.688    0.199 
## IMlo                                          0.966    0.012 
## prop.occ.c                                    0.270    0.096 
## mean.daily.transfer                           1.070    0.405 
## N.dc.quart(4.25,4.82]                         0.089    0.133 
## N.dc.quart(4.82,5.68]                        -0.075    0.129 
## N.dc.quart(5.68,14.2]                        -0.249    0.137 
## ratio.bank.total.spend                        1.197    4.249 
## N.supernum.perbed                             0.007    0.101 
## num.consult.perbed                           -0.264    0.097 
## intensivistYes                               -0.137    0.108 
## IMlomean.x                                   -0.054    0.020 
## I(avyulos/100)                                0.382    0.159 
## N.dc.quart(4.25,4.82]:ratio.bank.total.spend -5.031    4.755 
## N.dc.quart(4.82,5.68]:ratio.bank.total.spend -2.113    4.583 
## N.dc.quart(5.68,14.2]:ratio.bank.total.spend  0.257    4.561 
## 
## Error terms:
##  Groups     Name        Std.Dev.
##  trust.code (Intercept) 0.279   
##  Residual               1.000   
## ---
## number of obs: 36935, groups: trust.code, 63
## AIC = 22545.6, DIC = 22512
## deviance = 22511.6

display(bank.hosp <- lmer(diedhosp ~ IMlo + prop.occ.c + mean.daily.transfer + 
    N.dc.quart * ratio.bank.total.spend + N.supernum.perbed + num.consult.perbed + 
    intensivist + IMlomean.x + I(avyulos/100) + (1 | trust.code), data = dta4, 
    family = binomial(), na.action = na.omit, subset = ss8), digits = 3)
## glmer(formula = diedhosp ~ IMlo + prop.occ.c + mean.daily.transfer + 
##     N.dc.quart * ratio.bank.total.spend + N.supernum.perbed + 
##     num.consult.perbed + intensivist + IMlomean.x + I(avyulos/100) + 
##     (1 | trust.code), data = dta4, family = binomial(), subset = ss8, 
##     na.action = na.omit)
##                                              coef.est coef.se
## (Intercept)                                  -0.555    0.172 
## IMlo                                          0.960    0.011 
## prop.occ.c                                    0.250    0.082 
## mean.daily.transfer                           1.250    0.350 
## N.dc.quart(4.25,4.82]                         0.179    0.114 
## N.dc.quart(4.82,5.68]                        -0.006    0.111 
## N.dc.quart(5.68,14.2]                        -0.087    0.117 
## ratio.bank.total.spend                        4.054    3.690 
## N.supernum.perbed                            -0.032    0.088 
## num.consult.perbed                           -0.222    0.084 
## intensivistYes                               -0.095    0.093 
## IMlomean.x                                   -0.042    0.017 
## I(avyulos/100)                                0.282    0.138 
## N.dc.quart(4.25,4.82]:ratio.bank.total.spend -9.396    4.126 
## N.dc.quart(4.82,5.68]:ratio.bank.total.spend -4.654    3.979 
## N.dc.quart(5.68,14.2]:ratio.bank.total.spend -5.084    3.956 
## 
## Error terms:
##  Groups     Name        Std.Dev.
##  trust.code (Intercept) 0.243   
##  Residual               1.000   
## ---
## number of obs: 36359, groups: trust.code, 63
## AIC = 29326.4, DIC = 29292
## deviance = 29292.4

Effect plots

ef.bank.icu <- effect("N.dc.quart:ratio.bank.total.spend", bank.icu)
ef.bank.hosp <- effect("N.dc.quart:ratio.bank.total.spend", bank.hosp)

plot(ef.bank.icu)

plot of chunk effects3

plot(ef.bank.hosp)

plot of chunk effects3