Reduccion

En el presente documento se mostrará y explicará qué hace la función PCA_FA; la cual, a grandes rasgos, realiza el análisis de componentes principales y de factores de un dataframe.

La función

PCA_FA<-function(direccion){
  require(DataExplorer)
  require(GPArotation)
  require(psych)
  require(naniar)
  require(dplyr)
  require(ggplot2)
  require(lmtest)
  require(corrplot)
  require(ggcorrplot)
  require(Amelia)
  #Primero carga el arhivo y lo guarda en un dataframe, en este caso es la variable df
  df<-read.csv(file=direccion, header=TRUE, sep=";")
  #Es muy importante considerar el caso donde haya missing values en la base de datos, aquí es donde entra en juego el paquete "Amelia", su función principal, (i.e. amelia), nos permitirá lidiar con el problema de los Nan's.**IMPORTANTE: si hay observaciones cuyos valores sean todos Nan, entonces se procederá aplicando el método datos[complete.cases(datos),]
  if(all(is.na(df))){
    A<-amelia(df)
    Data<-A$imputations$imp1
    a<-which_na(A)
    Data<-Data[complete.cases(Data),]
  }
  else{
    Data<-df
  }
  #Mostraremos un reporte con toda la información necesaria de los datos conlos que vamos a trabajar
  R<-create_report(df)
  #Aplicamos la rutina de componentes principales de R a df, pedimos que scale=TRUE para estandarizar la información (de esa forma evitamos escalas distintas)
  y1=prcomp(Data,scale=TRUE)
  #Mostramos la desviación estandar, la proporción de varianza y la proporción de varianza acumulada de cada uno de los componentes principales que recientemente fueron obtenidos, dicha información ayuda a decidir cúantos componenetes principales vamos a ocupar, dicha información estáubicada en Importance
  SUMM<-summary(y1)
  Importance<-SUMM$importance
  PC<-y1$rotation
  Transformados<-y1$x
  #Aquí preparamos los parámetros necesarios para las gráficas de los modelos de pca y de fa
  #Nos fijamos que el último de los componenetes principales no tiene proporción acumulada de varianza menor que 1, (se quiere cocupar la menor cantidad de componentes).
  if(Importance[3,ncol(Importance)-1]<1){
    #Se puede notar que la distribución de las proporciones acumuladas de los componentes principales se asemeja a una exponencial(lambda*x).
    #Por lo que esta distribución se puede linealizar si le aplicamos -log(1-x), (los valores están en (0,1))
    #Importance[3,-ncol(Importance)]%>%plot()
    Y<-Importance[3,-ncol(Importance)]%>%(function(x) -log(1-x))
    #Importance[3,-ncol(Importance)]%>%(function(x) -log(1-x))%>%plot()
    #Creamos el modelo lineal que mejor se ajusta a Y
    modelo<-lm(Y~0+I(1:length(Y)))
    #Obtenemos la lambda de la distribución a partir de la pendiente del modelo lineal
    lambda<-modelo$coefficients[1]
    #De igual manera se calcula para cuál componente  por lo menos ya se acumula el 92.5% de la proporción acumulada de varianza, (ara estos fines eso es más que suficiente)
    inflexion<- round(-log(0.075/lambda)/lambda)%>% as.numeric()
    #Y estos son los conjuntos conlos que podremos plotear la gráfica de la distribución exponencial que más o menos se aproxima a la distribución real de la proporción de varianza de los PC
    dominio<-seq(0,ncol(Importance),by=0.01)
    imagen<-lambda*exp(-lambda*dominio) 
  }
  #Ahora, preparamos la gráfica de codo de los componentes principales
  Codo<-ggplot()+
    #Ejes coordenados
    aes(x=1:ncol(Importance),y=Importance[2,])+geom_point()+
    #Tipo de trazo
    geom_line(linetype=1)+
    #Nombre de los ejes
    ylab(label = "% of Var")+
    xlab(label = "PC")+
    #Estilo o tema
    theme_light()+ 
    #Título
    ggtitle(label = "Screeplot for the PCA")
  if(Importance[3,ncol(Importance)-1]<1){
    Codo<-Codo+
      #Le agregamos más detalles estéticos al plot 
      geom_line(aes(x=dominio,y=imagen),colour="red")+
      #Agregamos también la ubicación del componente que acumule el 92.5% 
      annotate("pointrange",x=inflexion,y=Importance[2,inflexion],colour="darkblue",ymin = 0,ymax = Importance[2,inflexion])+
      annotate("text",x=inflexion+0.1,y=Importance[2,inflexion]+0.05,label=paste0(colnames(Importance)[inflexion]),colour="darkblue")
  }
  #Seguimos con la composición de los componentes pricipales, o bien, la importancia relativa de cada componenete en términos de la variables originales
  p<-plot_prcomp(Data)
  Composicion<-p$page_1
  #Luego, con la gráfica de colores que representa las correlaciones entre cada una de las variables
  Corre<-ggcorrplot(cor(Data),hc.order=TRUE,type="lower")
  #Finalmete, se muestra la lista que contiene la información necesaria, es decir: 1)El reporte de la información original; 2)El dataframe que contiene la sd, proporcion de varianza, proporción acumulada de cada componenete; 3)Los pesos de cada componente cra a cada variable; 4)Los datos transformados en términos de los componentes principales; 5)La gráfica de codo; 6)La composición; 7)Las correlaciones.
  Output<-list(Report = R,Importance = Importance,Components = PC,
               x = Transformados,Screeplot = Codo,CStructure = Composicion,
               Correlations = Corre)
  return(Output)
  }

##Ejemplo Ahora, llevaremos a cabo un ejemplo de todo lo que anteriormente mencionamos

a<-PCA_FA("Ejercicio_paises.csv");
## Loading required package: DataExplorer
## Loading required package: GPArotation
## Loading required package: psych
## Loading required package: naniar
## Loading required package: dplyr
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
## Loading required package: ggplot2
## 
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
## 
##     %+%, alpha
## Loading required package: lmtest
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## Loading required package: corrplot
## corrplot 0.84 loaded
## Loading required package: ggcorrplot
## Loading required package: Amelia
## Loading required package: Rcpp
## ## 
## ## Amelia II: Multiple Imputation
## ## (Version 1.7.5, built: 2018-05-07)
## ## Copyright (C) 2005-2019 James Honaker, Gary King and Matthew Blackwell
## ## Refer to http://gking.harvard.edu/amelia/ for more information
## ##
## 
## 
## processing file: report.rmd
## 
  |                                                                       
  |                                                                 |   0%
  |                                                                       
  |..                                                               |   2%
##   ordinary text without R code
## 
## 
  |                                                                       
  |...                                                              |   5%
## label: global_options (with options) 
## List of 1
##  $ include: logi FALSE
## 
## 
  |                                                                       
  |.....                                                            |   7%
##   ordinary text without R code
## 
## 
  |                                                                       
  |......                                                           |  10%
## label: introduce
## 
  |                                                                       
  |........                                                         |  12%
##   ordinary text without R code
## 
## 
  |                                                                       
  |.........                                                        |  14%
## label: plot_intro
## 
  |                                                                       
  |...........                                                      |  17%
##   ordinary text without R code
## 
## 
  |                                                                       
  |............                                                     |  19%
## label: data_structure
## 
  |                                                                       
  |..............                                                   |  21%
##   ordinary text without R code
## 
## 
  |                                                                       
  |...............                                                  |  24%
## label: missing_profile
## 
  |                                                                       
  |.................                                                |  26%
##   ordinary text without R code
## 
## 
  |                                                                       
  |...................                                              |  29%
## label: univariate_distribution_header
## 
  |                                                                       
  |....................                                             |  31%
##   ordinary text without R code
## 
## 
  |                                                                       
  |......................                                           |  33%
## label: plot_histogram
## 
  |                                                                       
  |.......................                                          |  36%
##   ordinary text without R code
## 
## 
  |                                                                       
  |.........................                                        |  38%
## label: plot_density
## 
  |                                                                       
  |..........................                                       |  40%
##   ordinary text without R code
## 
## 
  |                                                                       
  |............................                                     |  43%
## label: plot_frequency_bar
## 
  |                                                                       
  |.............................                                    |  45%
##   ordinary text without R code
## 
## 
  |                                                                       
  |...............................                                  |  48%
## label: plot_response_bar
## 
  |                                                                       
  |................................                                 |  50%
##   ordinary text without R code
## 
## 
  |                                                                       
  |..................................                               |  52%
## label: plot_with_bar
## 
  |                                                                       
  |....................................                             |  55%
##   ordinary text without R code
## 
## 
  |                                                                       
  |.....................................                            |  57%
## label: plot_normal_qq
## 
  |                                                                       
  |.......................................                          |  60%
##   ordinary text without R code
## 
## 
  |                                                                       
  |........................................                         |  62%
## label: plot_response_qq
## 
  |                                                                       
  |..........................................                       |  64%
##   ordinary text without R code
## 
## 
  |                                                                       
  |...........................................                      |  67%
## label: plot_by_qq
## 
  |                                                                       
  |.............................................                    |  69%
##   ordinary text without R code
## 
## 
  |                                                                       
  |..............................................                   |  71%
## label: correlation_analysis
## 
  |                                                                       
  |................................................                 |  74%
##   ordinary text without R code
## 
## 
  |                                                                       
  |..................................................               |  76%
## label: principle_component_analysis
## 
  |                                                                       
  |...................................................              |  79%
##   ordinary text without R code
## 
## 
  |                                                                       
  |.....................................................            |  81%
## label: bivariate_distribution_header
## 
  |                                                                       
  |......................................................           |  83%
##   ordinary text without R code
## 
## 
  |                                                                       
  |........................................................         |  86%
## label: plot_response_boxplot
## 
  |                                                                       
  |.........................................................        |  88%
##   ordinary text without R code
## 
## 
  |                                                                       
  |...........................................................      |  90%
## label: plot_by_boxplot
## 
  |                                                                       
  |............................................................     |  93%
##   ordinary text without R code
## 
## 
  |                                                                       
  |..............................................................   |  95%
## label: plot_response_scatterplot
## 
  |                                                                       
  |...............................................................  |  98%
##   ordinary text without R code
## 
## 
  |                                                                       
  |.................................................................| 100%
## label: plot_by_scatterplot
## output file: /cloud/project/report.knit.md
## /usr/lib/rstudio-server/bin/pandoc/pandoc +RTS -K512m -RTS /cloud/project/report.utf8.md --to html4 --from markdown+autolink_bare_uris+ascii_identifiers+tex_math_single_backslash+smart --output /cloud/project/report.html --email-obfuscation none --self-contained --standalone --section-divs --table-of-contents --toc-depth 6 --template /home/rstudio-user/R/x86_64-pc-linux-gnu-library/3.5/rmarkdown/rmd/h/default.html --no-highlight --variable highlightjs=1 --variable 'theme:cerulean' --include-in-header /tmp/RtmpBkFLTD/rmarkdown-str6da20409951.html --mathjax --variable 'mathjax-url:https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'
## 
## Output created: report.html
## 
## 
## Report is generated at "/cloud/project/report.html".

##El dataframe que contiene la sd, proporcion de varianza, proporción acumulada de cada componenete

a$Importance
##                             PC1      PC2      PC3      PC4       PC5
## Standard deviation     2.009546 1.390194 1.184621 1.039342 0.9291441
## Proportion of Variance 0.336520 0.161050 0.116940 0.090020 0.0719400
## Cumulative Proportion  0.336520 0.497580 0.614520 0.704540 0.7764800
##                              PC6       PC7       PC8       PC9      PC10
## Standard deviation     0.8619797 0.8132745 0.7556971 0.5704844 0.4080445
## Proportion of Variance 0.0619200 0.0551200 0.0475900 0.0271200 0.0138800
## Cumulative Proportion  0.8384000 0.8935200 0.9411100 0.9682300 0.9821000
##                             PC11      PC12
## Standard deviation     0.3820547 0.2622959
## Proportion of Variance 0.0121600 0.0057300
## Cumulative Proportion  0.9942700 1.0000000

##Los pesos de cada componente cra a cada variable

a$Components
##               PC1         PC2         PC3          PC4         PC5
## PAIS  0.052645215 -0.05445434 -0.29020539  0.792603803 -0.04441202
## X1    0.313387887 -0.34386737  0.10492597 -0.129396768  0.47751452
## X2    0.391545693  0.04429061  0.16916686  0.077164191  0.12442861
## X3   -0.115735882  0.57694652 -0.20197274  0.116178700 -0.08499706
## X4   -0.296459155  0.18140951  0.50249973  0.150132217  0.26870949
## X5   -0.260381982  0.17931209  0.58150424  0.173935577  0.17453355
## X6   -0.445057717  0.02353114 -0.15357365 -0.032193528 -0.04480418
## X7   -0.093139472 -0.31516261  0.37474153 -0.001249501 -0.72974127
## X8   -0.008053745  0.46120102 -0.10843532 -0.365486879  0.02665443
## X9    0.241366294  0.16021138  0.07959544 -0.305680632 -0.26268627
## X10  -0.414150549 -0.23502149 -0.18312716 -0.140959964  0.09238293
## X11  -0.374208928 -0.29224721 -0.17047731 -0.186712651  0.17847928
##              PC6          PC7           PC8          PC9        PC10
## PAIS  0.15587442 -0.499094558 -0.0310017303  0.047979054 -0.04509946
## X1    0.01760370 -0.317443743  0.1514888059 -0.081740043  0.50434318
## X2   -0.11672131 -0.007052855  0.6405070602 -0.329951264 -0.27006907
## X3    0.04808067  0.172535393  0.5361564627  0.051856060  0.22135046
## X4    0.12577965 -0.110609175 -0.1550291525 -0.445008830 -0.38402552
## X5    0.07374817 -0.066090232  0.1056264288  0.508367248  0.31216703
## X6    0.05766856 -0.053758203 -0.0043782747 -0.565837701  0.46225857
## X7   -0.23152729 -0.241232141  0.2275761896 -0.052279232  0.07189749
## X8   -0.39937308 -0.672900377 -0.1010751474  0.055747217 -0.08134798
## X9    0.82727556 -0.235035248 -0.0003185064 -0.007144679 -0.02341877
## X10   0.17041770 -0.126357299  0.2661862732 -0.046790122 -0.03858335
## X11   0.09133403 -0.136484567  0.3321212080  0.307792194 -0.38631590
##             PC11        PC12
## PAIS -0.02233426  0.02574363
## X1    0.36267489 -0.10566147
## X2   -0.39657922  0.17796903
## X3    0.43682040 -0.17372922
## X4    0.33441465 -0.15007180
## X5   -0.32934271  0.12597572
## X6   -0.18970286  0.44571736
## X7    0.20627128 -0.07073559
## X8   -0.09415541 -0.00888659
## X9   -0.03546701  0.07622700
## X10  -0.36771333 -0.67568467
## X11   0.27515439  0.47097758

##Los datos transformados

a$x
##               PC1         PC2          PC3          PC4          PC5
##  [1,]  0.63450064  1.46834756 -0.340351488 -1.495974823 -0.024665313
##  [2,]  2.47914718  0.75343638  0.439891223 -0.882805647  0.890488792
##  [3,] -0.47971397 -3.59976195  0.930191991 -1.732317811  1.730376158
##  [4,]  1.05330385 -1.29321531  0.582838262 -1.089160099  0.544844013
##  [5,] -0.57309075 -0.44026945  1.226064774 -0.938343907 -0.610598361
##  [6,] -3.52211506 -0.56196228  0.398610346 -1.272781059  0.087218564
##  [7,] -2.23635897  0.88094243 -0.515773655 -1.409146684  0.067159223
##  [8,]  2.31581295  0.75960751  0.633244682 -1.262123617 -0.496157564
##  [9,] -2.94939235 -0.35020168 -0.055200325 -1.030089018 -0.626411230
## [10,]  2.26526119  1.54277535  0.042312441 -1.292871189  0.682752013
## [11,] -1.39161547  0.82458538 -0.972064370 -1.013065668 -0.221672093
## [12,]  1.66575945  0.78899225  0.125917967 -1.401818609  0.259966616
## [13,] -0.35219186  1.95716535  2.178886327 -0.959157659  1.041010311
## [14,] -2.51708389  1.08288554  1.242826748 -0.373824783 -1.927054139
## [15,]  1.74508364  0.73115420 -0.004119231 -1.189965445  0.720506512
## [16,] -5.51356407  0.27273622  2.407445406 -0.732952826  0.256575769
## [17,]  0.52253390  1.01814139 -0.058018480 -1.284473204  0.186552295
## [18,]  1.93715814  1.21984363 -0.158515347 -1.215034355  1.040516376
## [19,] -0.35715119  1.04308983 -0.547772984 -1.770300492 -0.101505871
## [20,] -2.33516807  1.41606406  0.616246718 -1.194568510  0.083355070
## [21,]  2.35473131  0.07885918  0.331330914 -0.985356619  0.950753967
## [22,]  1.03135424 -0.32875895  0.373301006 -1.499923720 -0.945575085
## [23,]  0.22908309 -0.05566990  0.078632953 -0.580397543 -1.297673350
## [24,] -0.13440141 -1.21575364  0.823881123 -0.345118770 -1.649285389
## [25,] -2.12244984  2.30491317  5.432222775  1.414996493  1.507017150
## [26,] -2.85506116  0.26501698 -1.164238426 -0.451229389 -0.186258363
## [27,]  1.47221651 -0.19377167  0.326885007 -1.103979222 -0.585798591
## [28,]  1.30995091 -0.24065089  0.316705867 -1.303023504 -0.340429932
## [29,]  1.05056973 -1.30668848  0.978392877  0.102868105 -0.428283506
## [30,]  1.39272452 -0.11959726  0.100966956 -0.483608033 -0.392278265
## [31,] -2.92995058 -6.24968322 -0.831251886 -2.390539452  2.463017302
## [32,] -1.27877447  1.00218555 -1.197879191 -0.629508599 -0.516512084
## [33,] -2.40019332  1.05468730  0.970189260 -0.384636808 -0.302457616
## [34,]  2.33783782  0.30447014  0.155624404  0.195107295  0.751502551
## [35,]  1.58912103  0.36176006  0.552283396 -0.884016248 -0.858139986
## [36,] -2.93843584  1.59975191 -1.568429279 -1.389776568 -0.330464797
## [37,] -4.97681987  1.92544597  3.958736306  1.171462028  1.414554292
## [38,]  1.56705688  1.38017690 -0.598947862 -1.103622930  0.954969466
## [39,]  1.99372378  1.58942947 -0.388248708 -0.445767704  0.507556838
## [40,] -1.74625906  0.43538441 -0.860838915 -0.655436468 -0.546541529
## [41,]  1.89783574 -0.17893879  0.076539640 -0.839455881  0.400238625
## [42,]  2.55113580  0.84533747  0.066483773 -0.458825003 -0.568962754
## [43,] -2.92888790 -0.29139408 -0.278006766  0.229932927  0.006136431
## [44,]  1.94556751  0.05201258  0.053598158 -0.844464825  0.112772947
## [45,] -1.25938832  0.35806196 -0.783555335  0.380125423 -1.078998418
## [46,]  0.44404817  0.34199116  2.620687177  0.905036740  0.523644742
## [47,]  1.01486979  1.66578073  0.037704182 -0.405470089  0.337806508
## [48,]  1.27686501 -4.23724434  3.437869285  0.316460923 -4.532346210
## [49,]  0.63883341 -2.07605175  1.205229311  0.202163019 -0.338293583
## [50,] -1.85433518 -0.85060204 -1.174428477  0.506988840 -0.101124719
## [51,] -2.71494087 -1.03067902 -1.638879785  0.078303766 -0.566158769
## [52,] -1.20526031 -0.96799621 -0.799808249  0.268629439  0.451527886
## [53,]  1.36317658 -2.49735028  0.019102967  0.395014435  1.623930436
## [54,]  1.73375594  0.18962955 -0.328023272  0.795956067  0.469380944
## [55,] -2.51557192 -1.97064902 -1.278577075  0.052402196 -0.486619758
## [56,]  0.94989498 -1.05738585 -0.235775156  0.346686917  0.199883775
## [57,]  0.62680781 -3.02384924  0.305639558  0.560680359  0.762495667
## [58,]  0.26506075  0.39512152 -0.245746646 -0.730034092 -0.586126151
## [59,]  0.97836287 -0.34888198 -0.204498032  0.976571536  0.259868164
## [60,]  0.02448431 -0.36407840  1.186973420  0.362346418 -0.230001498
## [61,]  2.19356950  1.19329202 -0.381343782  0.858970085  0.240206111
## [62,]  1.91594156  1.39312496 -0.404451211  0.260643304  0.090040257
## [63,]  2.22117325  0.76049606 -0.273161404  0.367957656  0.362684484
## [64,]  1.87280082  0.49904638 -0.309665926 -0.307993704  0.044636143
## [65,]  2.07463885 -0.08894215 -0.126662437  0.734954966  0.760538935
## [66,] -3.51433847 -0.03972563 -1.494532119  0.497142626  0.101603576
## [67,] -1.99768545  0.02739976 -1.408300830  0.343778016 -0.537028792
## [68,]  0.94348224 -2.82711846 -0.040130963  0.013844714  1.002231436
## [69,]  2.39486979 -1.79315625  1.930707232  0.443986596 -2.108090649
## [70,]  0.91262325  0.18307729 -0.366379233 -0.016978244 -0.959899635
## [71,]  1.93299086  0.01545290 -0.141229091  0.001082414  0.107078584
## [72,]  1.28777744  0.26449948 -0.317364890  0.250441084  0.192948186
## [73,] -1.32178761  0.71802427 -0.785747936  0.934457405 -0.168931432
## [74,] -1.50229803  0.67740414 -1.048498098  0.945211383 -1.166129073
## [75,] -4.34376582  0.96933475  1.795633588  2.231804714  1.542151895
## [76,] -2.01340602  0.52547486 -1.776574148  0.527032743 -0.298957952
## [77,] -0.72647845  0.34202520 -0.556746535  1.095644902 -1.664718500
## [78,]  1.83375211  0.69877393 -0.615656673  0.736212253  0.330343961
## [79,] -2.67144526 -1.51733128 -2.069261327 -0.226410695  0.482480002
## [80,]  0.30377747 -2.23273291 -0.479093212  2.106425706  1.268681686
## [81,]  1.06204924  0.24316171 -0.518174879  0.847401296 -0.887060755
## [82,]  2.10658505 -0.69349392  0.136272063  1.070792170 -0.373149422
## [83,] -3.21155946  1.61966892 -1.522066683  0.311524599 -0.088808099
## [84,] -2.49041475  0.36680096 -1.190049727  1.149875760  0.265746905
## [85,] -0.25043725 -0.84200479  0.152537311  1.801478165  0.877491601
## [86,]  0.83977341  1.18020243 -0.054022087  0.814842556 -1.127740793
## [87,]  2.24317690  1.23376823 -0.789324802  1.023021708  0.536368433
## [88,]  0.76029701 -1.25764618 -0.538657008  2.040439315  0.376387165
## [89,]  0.23137452 -0.09290639 -0.034761587  1.459555648 -0.028775550
## [90,] -1.94506728  0.30663367 -0.693391297  1.675781107 -0.576025331
## [91,] -0.06686614  0.02654301 -1.158907016  2.046217457 -0.488483246
## [92,]  0.24324471  0.03785076 -0.693730043  0.408262288  0.191463503
## [93,]  1.44217742  0.97701165 -0.759538614  1.349387063 -0.489923701
## [94,]  2.67068250 -1.42050453  0.031044133  1.671621370  1.057698320
## [95,]  2.41193510  1.13919327 -0.613308080  1.238061430  0.333039617
## [96,]  1.58740327  0.34860449 -0.889970951  1.486764094  0.387917648
##                PC6          PC7         PC8          PC9         PC10
##  [1,] -1.227590233  0.861222576 -0.66263185  0.460315341 -0.295565095
##  [2,] -0.418582327  1.479599746  1.83807959 -0.734480546  0.004978460
##  [3,]  0.260252676  0.330213157 -0.49577924  0.429092909 -0.105123243
##  [4,]  0.292116647  1.510587181 -0.98650073  0.054504340 -0.056937658
##  [5,] -0.567864047  0.810379952 -0.73039560 -0.334742978 -0.294182421
##  [6,]  0.295930735  0.470877802  0.90345218 -0.234613552  0.200523840
##  [7,] -0.711910781  0.466270394 -0.46957749 -0.547014863  0.110914748
##  [8,]  2.032574156  1.328892595  0.66562561 -0.308995996 -0.127658160
##  [9,] -0.148475692  0.917184793  0.24134950 -0.522204211 -0.151240636
## [10,] -0.409773458  0.432957422  1.19706696 -0.357196900  0.196587330
## [11,] -0.575839361  1.306409338  0.39514050  0.682953115 -0.318036341
## [12,] -0.451096089  0.254687500  0.08637092 -0.159119764 -0.128719988
## [13,] -0.672029943 -0.688883754 -0.83927764 -0.078946127 -0.655063556
## [14,] -0.835938047  0.744869868  0.79341539  1.330697902  0.799944543
## [15,] -0.697871962  0.319878831 -0.18525734  0.003384177  0.224839276
## [16,] -0.638317851 -1.186896864  1.49523148  0.481549492  0.877279160
## [17,] -0.599197284  0.061334783 -0.81702984  0.227359849  0.071120603
## [18,] -1.253848119 -0.133388987  0.86027173 -0.210293052 -0.002105563
## [19,] -1.467009602 -0.878505998  0.45679883  1.086903391 -0.486276552
## [20,] -0.724638223 -0.842737961 -0.53399002 -0.469527767 -0.076865459
## [21,] -0.353387681  0.224997703  0.24117403 -0.386054576  0.062526793
## [22,]  1.041376507 -0.140154803 -1.09817423 -0.094158082  0.626305815
## [23,]  0.074171618  1.100624085 -0.64744707  0.553188778 -0.099591998
## [24,] -0.780692884  0.728553666 -0.56658233  0.028209446  0.314878086
## [25,]  0.970820865  0.627315084  0.33467856  2.313215354  0.877902507
## [26,]  0.497962684  1.336729145  0.22663931 -0.733394636  0.344174622
## [27,]  1.126329717  0.261199261 -0.86185559 -0.028560967 -0.040204803
## [28,] -0.002107572 -0.484499798 -1.03047482  0.067357611 -0.115511503
## [29,] -0.418796527  1.153102127 -0.09675804 -0.125501119  0.039266775
## [30,]  1.182867541  1.109992119 -0.64344361  0.033097380  0.045455358
## [31,]  1.102716060 -1.534446370  1.74917815  0.862122781 -0.657527265
## [32,] -0.295053011  0.625328923  0.15469544  0.498560577 -0.196591228
## [33,] -0.506692126 -0.500694117 -0.99230043 -0.610157298 -0.546767025
## [34,] -0.364767679  1.201363545  1.20296654 -0.585334904 -0.184349493
## [35,]  1.358561444 -0.131743194 -0.29560691  0.069652077  0.111323877
## [36,] -0.726380284 -1.151671769  0.25289798 -0.338087040  0.355575160
## [37,]  0.941914846 -0.312784865 -0.57409203 -1.767697904 -0.642200501
## [38,] -1.063868419 -1.070057976  1.08843670  0.041812528 -0.381712786
## [39,] -0.020605035  0.045029466  0.94493440 -0.052411904  0.416839042
## [40,] -0.557494592 -0.237934092 -0.74122314 -0.402351169  0.173489281
## [41,]  0.246186307 -0.488692571 -1.08762010  0.016274323  0.007051703
## [42,]  3.030005078  0.844892191  0.49051488 -0.177493726 -0.076182997
## [43,]  0.448402534  0.707402643 -0.10783062 -0.904069732 -0.030038997
## [44,]  0.419664948 -0.686297563 -0.75691819  0.031353595  0.161734398
## [45,] -0.426269677  1.176893961 -0.13749252  0.449155922 -0.405886173
## [46,]  0.102709818  0.195390085  0.04043355  0.675196671  0.017576951
## [47,] -0.374743410 -0.708963449 -0.40710337  0.071134953 -0.516443345
## [48,] -1.980380629 -1.272281237  1.90941479 -0.958665148 -0.271271446
## [49,] -0.487753439 -0.269506288 -0.17632698 -0.079466698  0.209484099
## [50,] -0.294437895  1.309724589 -0.72494345 -0.020386928 -0.338601299
## [51,]  0.821590035  0.798025190  0.68016684 -0.771405059  0.967322992
## [52,]  0.268005460  0.515065416  0.02575599 -0.378585470  1.034047617
## [53,] -0.498115653  0.370227316 -0.97935254 -0.058124039  0.844112791
## [54,]  0.376681018  1.167117296  0.53351736 -0.033595052  0.538756481
## [55,]  0.831872155  0.764093373 -0.00460736  0.375427550 -1.181225700
## [56,]  0.317681222  0.516621367 -0.84676044  0.100495061  0.010783669
## [57,] -0.900089427  0.155134356  0.25791907 -0.026626030 -0.197130718
## [58,]  0.409504746 -1.543039550 -0.58652433  0.212431664  0.414366761
## [59,] -1.322091940  0.633692679 -0.19670500 -0.034982462 -0.093805844
## [60,]  0.496156662 -0.678351585 -0.47383471  0.067312818 -0.230906919
## [61,] -0.065811090  0.669789954  1.48344436 -0.430554775 -0.422229809
## [62,] -0.107384261 -0.304656455  0.46547093 -0.153460351 -0.442611954
## [63,] -0.221989834 -0.277800508  0.59805415 -0.269639729 -0.211936120
## [64,]  0.173163291 -1.235566873 -0.38473533  0.119813615  0.275961549
## [65,]  0.117276804  0.230364341  0.30046172 -0.195886193 -0.057147453
## [66,] -0.432276403 -0.140713543  0.67152317  0.033852742  0.161580765
## [67,]  0.132179425 -0.180372051  0.16191819 -0.320176573  0.578046250
## [68,] -0.160305923 -1.044422790 -1.28080575  0.180244874  0.466571677
## [69,]  1.303296728 -0.931840132  0.77167324 -0.552156666 -0.001120608
## [70,]  0.340185931 -1.039104844 -0.82175993  0.166774720  0.124105238
## [71,]  1.226613211 -0.861268110 -0.95794788  0.231569068  0.080638972
## [72,] -0.734859593 -1.125985966 -0.95819283  0.069204680 -0.356831741
## [73,]  0.060747571  0.117440926  0.14791554  1.030969889 -0.425612948
## [74,] -0.581036703  0.000158564 -0.50923095 -0.113716657 -0.018508574
## [75,]  0.755354375  0.100898624 -0.49212062 -1.174020578 -0.912032739
## [76,]  0.193956228 -0.154519018  0.41176034  0.960384297 -0.739646433
## [77,] -0.415152241 -0.008400968  0.16590968  0.585315112 -0.444268822
## [78,] -0.249771009 -0.628120945  0.19955931  0.046254203  0.173293489
## [79,]  2.700024563 -0.688753138  0.79495047  0.023084640 -0.159376314
## [80,] -2.528714828  0.747897955 -0.77760022  0.182449437  0.308061711
## [81,]  0.426694090 -0.273732055 -1.16086698  0.505621512 -0.152684216
## [82,]  0.115418119 -0.359687455 -0.18217910 -0.244284523 -0.421327348
## [83,] -0.146758104 -1.768968254  0.06209458 -0.659632383  0.824782888
## [84,]  0.085798610 -0.401695846 -0.61158381 -1.040430033  0.410618163
## [85,] -0.008456980  0.171502444  0.57854372  0.670203214 -0.019473494
## [86,]  1.948862221 -0.692612470  0.07049132  0.265021507 -0.181060874
## [87,]  0.150252958 -0.704909103  0.96855188 -0.102678295  0.275572368
## [88,] -1.073152098  0.614203548 -0.70949371  0.095652877 -0.017594073
## [89,] -0.216804286 -0.609326457 -0.23409752 -0.353767062  0.046213549
## [90,]  0.273693319  0.097766318  0.83551209  1.447930292 -0.413687124
## [91,] -0.048657842  0.937483262 -0.75764510  0.084324605  0.083077477
## [92,]  0.244986837 -1.893821603 -0.58878585  0.589822168 -0.076993358
## [93,]  0.617142258 -0.402302326  0.26239470  0.317454490  0.337701036
## [94,] -0.200346042 -0.443780814  0.55860585 -0.564079781  0.209204189
## [95,] -0.135096837 -1.032636569  1.25580421 -0.338360607 -0.260043455
## [96,]  0.288582952 -0.404856376  0.35069742  0.208382359  0.223320115
##               PC11          PC12
##  [1,]  0.033398278 -0.2633198970
##  [2,] -0.144605691  0.0429970946
##  [3,] -0.061210212 -0.0819468382
##  [4,] -0.179018637  0.0742436434
##  [5,]  0.251229586 -0.1632662036
##  [6,]  0.546752631  0.2691201270
##  [7,] -0.086332551  0.1779942451
##  [8,] -0.048973082  0.1052047433
##  [9,] -0.039118512 -0.1322678776
## [10,]  0.147210150 -0.1404102820
## [11,]  0.555015527  0.0903010757
## [12,] -0.261107520  0.0106172516
## [13,] -0.169646514 -0.1980116765
## [14,] -0.581896706  0.3994119676
## [15,]  0.120561864 -0.2060137995
## [16,] -0.392227234 -0.3650943774
## [17,]  0.025550907 -0.0688660941
## [18,] -0.027885153 -0.0886158394
## [19,]  0.911935434  0.2698991681
## [20,]  0.030528081  0.0718722375
## [21,] -0.296675802  0.0809992178
## [22,]  0.227303708  0.1247725528
## [23,]  0.471486097 -0.3144940038
## [24,]  0.590253579 -0.2122736425
## [25,] -0.607529978  0.1042679724
## [26,]  0.014911937  0.6270672081
## [27,] -0.228496139  0.2538679416
## [28,] -0.297040669  0.1201487585
## [29,] -0.109879821  0.0013212658
## [30,] -0.022629149  0.0336268641
## [31,]  0.536102721  0.2361980906
## [32,]  0.150872808 -0.3329714280
## [33,]  0.001130534  0.1291244270
## [34,] -0.356579884  0.0944658525
## [35,]  0.348080010 -0.1154517524
## [36,] -0.578825791 -0.3735258076
## [37,]  0.790081688 -0.3899520465
## [38,]  0.034588020  0.2379233721
## [39,]  0.545849004 -0.3016861628
## [40,] -0.368293542  0.7764383449
## [41,] -0.332789245  0.0995127918
## [42,] -0.041521219  0.1873414104
## [43,]  0.087128848  0.0786423940
## [44,] -0.099181931  0.0358289667
## [45,]  0.110204707 -0.1660916697
## [46,] -0.777310080  0.2236589811
## [47,] -0.028111496 -0.1796213255
## [48,]  0.150925489 -0.0119280020
## [49,]  0.133724133 -0.0749048560
## [50,] -0.430936361  0.4339666373
## [51,] -0.540650674 -1.0254140449
## [52,]  0.691009604  0.3003517474
## [53,]  0.284685884 -0.0918088354
## [54,]  0.668485674 -0.2939968079
## [55,] -1.448896669 -1.0813537713
## [56,] -0.114052318  0.0973910036
## [57,] -0.099778586  0.0590052534
## [58,]  0.424208895 -0.1668612859
## [59,] -0.026007570 -0.0891110558
## [60,]  0.115493729 -0.1121798667
## [61,] -0.338532144  0.0773177347
## [62,] -0.275395387  0.0009100605
## [63,] -0.299464283  0.0533298590
## [64,]  0.181771507 -0.1396669010
## [65,] -0.164261457  0.0739470024
## [66,] -0.057043257  0.3952856067
## [67,] -0.049213945  0.0182941110
## [68,]  0.008640030 -0.1987349360
## [69,] -0.140601264  0.2312255213
## [70,]  0.108743856  0.0442865221
## [71,] -0.341857109  0.1489762830
## [72,] -0.443793144  0.0667329242
## [73,]  0.221330400  0.0781885156
## [74,]  0.052981736  0.2637707388
## [75,]  0.707680153  0.0689844709
## [76,]  0.155978462  0.1820535338
## [77,]  0.210691625 -0.0663161559
## [78,]  0.250317571 -0.1633131819
## [79,] -0.251058582 -0.0234850908
## [80,]  0.224941968 -0.2156523507
## [81,]  0.171267855 -0.1496767444
## [82,] -0.568606093  0.1956997194
## [83,] -0.737389425 -0.0981765311
## [84,] -0.266988068  0.3947392963
## [85,] -0.057855450  0.1363807394
## [86,]  0.459808645 -0.1268157794
## [87,]  0.362969697 -0.1819447033
## [88,] -0.040820906 -0.0728483600
## [89,] -0.149290281  0.2547674906
## [90,]  0.255368881  0.1333002026
## [91,]  0.049464138  0.1385197933
## [92,] -0.101637475 -0.0495181169
## [93,]  0.771059873 -0.3341883353
## [94,] -0.265727385  0.1583280235
## [95,] -0.318098508  0.0711713706
## [96,]  0.473116975 -0.1720156905

##La gráfica de codo

a$Screeplot

##La composición

a$CStructure

a$Correlations