Olesya Volchenko
Here is an example.
We are going to simulate 4 different datasets to see how the results for ANOVA will be different.
dat1 <- data.frame(cond = factor(rep(c("A","B", "C"), each = 200)),
rating = c(rnorm(200, mean = -3),
rnorm(200, mean = 0),
rnorm(200, mean = 3)))mean = -3, 0, 3; sd = 1; normal distribution
p1 <- ggplot(dat1, aes(x=rating, fill=cond)) +
geom_density(alpha=.3) +
scale_x_continuous(limits = c(-15, 15)) +
ylim(c(0, 0.5))
p1dat2 <- data.frame(cond = factor(rep(c("A","B", "C"), each = 200)),
rating = c(rnorm(200, mean = -1),
rnorm(200, mean = 0),
rnorm(200, mean = 1)))mean = -1, 0, 1; sd = 1; normal distribution
p2 <- ggplot(dat2, aes(x=rating, fill=cond)) +
geom_density(alpha=.3) +
scale_x_continuous(limits = c(-15, 15)) +
ylim(c(0, 0.5))
p2dat3 <- data.frame(cond = factor(rep(c("A","B", "C"), each=200)),
rating = c(rnorm(200, mean = -3, sd = 3),
rnorm(200, mean = 0, sd = 3),
rnorm(200, mean = 3, sd = 3)))mean = -3, 0, 3; sd = 3; normal distribution
p3 <- ggplot(dat3, aes(x = rating, fill = cond)) +
geom_density(alpha = .3) +
scale_x_continuous(limits = c(-15, 15)) +
ylim(c(0, 0.5))
p3dat4 <- data.frame(cond = factor(rep(c("A","B", "C"), each=200)),
rating = c(rnorm(200, mean = -1, sd = 3),
rnorm(200, mean = 0, sd = 3),
rnorm(200, mean = 1, sd = 3)))mean = -1, 0, 1; sd = 3; normal distribution
p4 <- ggplot(dat4, aes(x = rating, fill = cond)) +
geom_density(alpha = .3) +
scale_x_continuous(limits = c(-15, 15)) +
ylim(c(0, 0.5))
p4anova1 <- oneway.test(dat1$rating ~ dat1$cond, var.equal = T)
anova2 <-oneway.test(dat2$rating ~ dat2$cond, var.equal = T)
anova3 <-oneway.test(dat3$rating ~ dat3$cond, var.equal = T)
anova4 <-oneway.test(dat4$rating ~ dat4$cond, var.equal = T)
anova1; anova2; anova3; anova4##
## One-way analysis of means
##
## data: dat1$rating and dat1$cond
## F = 1983.3, num df = 2, denom df = 597, p-value < 2.2e-16
##
## One-way analysis of means
##
## data: dat2$rating and dat2$cond
## F = 211.55, num df = 2, denom df = 597, p-value < 2.2e-16
##
## One-way analysis of means
##
## data: dat3$rating and dat3$cond
## F = 199.11, num df = 2, denom df = 597, p-value < 2.2e-16
##
## One-way analysis of means
##
## data: dat4$rating and dat4$cond
## F = 24.895, num df = 2, denom df = 597, p-value = 4.126e-11
| data1 | data2 | data3 | data4 | |
|---|---|---|---|---|
| group mean 1 | -3.000 | -1.0000 | -3.0000 | -1.00000 |
| group mean 2 | 0.000 | 0.0000 | 0.0000 | 0.00000 |
| group mean 3 | 3.000 | 1.0000 | 3.0000 | 1.00000 |
| SD | 1.000 | 1.0000 | 3.0000 | 3.00000 |
| F-statistic | 1983.288 | 211.5492 | 199.1143 | 24.89488 |
| omega-squared | 0.853 | 0.3710 | 0.3830 | 0.10200 |
| df num | 2.000 | 2.0000 | 2.0000 | 2.00000 |
| df denom | 597.000 | 597.0000 | 597.0000 | 597.00000 |
| p-value | 0.000 | 0.0000 | 0.0000 | 0.00000 |