The dataset by proposed by Sheryl Piechocki, the details can be found here.
Based on the data we’ve analyzed the student has maintained an overall grade above 90% with her best performance on ACT Prep matreial which has an overall of 94.34%. This is spite of the poor performance during chapter 1 in which she scored 60% which was her lowest grade so far. It is encouraging to see that she improved her grade for the second trimester by almost 7%.
suppressMessages(library(tidyverse))
repcard <-
read_csv("repcard.csv", #import the csv file into a df
col_types =
cols(
`ACT Prep` = "i",
Chapter = "i",
Classwork = "i",
Writing = "i"),
skip = 1) %>%
as_tibble() %>% # Convert to a tibble
mutate(Trimester = ifelse(Chapter < 5,1,2)) %>% #Add trimester as a variable
rename(ACT_prep = `ACT Prep`) %>% #rename variable
filter(!is.na(Chapter)) %>% #Remove NA values
select(Trimester, everything()) %>% #Set Trimester as first variable
gather("Component","Grade",3:5) #Set grade components as rows
## Warning: 6 parsing failures.
## row col expected actual file
## 6 Chapter an integer Trimester 2 'repcard.csv'
## 6 Writing an integer Category 'repcard.csv'
## 7 Chapter an integer Chapter 'repcard.csv'
## 7 Writing an integer Writing 'repcard.csv'
## 7 Classwork an integer Classwork 'repcard.csv'
## ... ......... .......... ........... .............
## See problems(...) for more details.
p <- ggplot(repcard, aes(x = Component, y = Grade, fill = Component))
p <- p + ggtitle("Grade by Chapter & Component")
p <- p + theme(legend.position = "bottom")
p <- p + geom_bar(stat = "identity", width = 0.95, position = "stack")
p <- p + facet_grid(. ~ Chapter)
p <- p + theme(axis.title.x=element_blank(),
axis.text.x=element_blank(),
axis.ticks.x=element_blank())
p
p <- ggplot(data = repcard, aes(x = Chapter, y = Grade, fill = Component))
p <- p + ggtitle("Grade by Chapter & Component")
#p <- p + scale_y_continuous(labels = scales::percent)
p <- p + theme(legend.position = "none")
#p <- p + scale_fill_manual(values=c('#01426A','#8D0013'))
p <- p + geom_bar(stat = "identity", width = 0.95)
p <- p + facet_grid(. ~ Component)
p
grades_by_c <- repcard %>%
group_by(Component) %>%
summarise(avg_grade = mean(Grade))
(grades_by_c)
## # A tibble: 3 x 2
## Component avg_grade
## <chr> <dbl>
## 1 ACT_prep 94.4
## 2 Classwork 91.2
## 3 Writing 90.6
grades_by_chp <- repcard %>%
group_by(Chapter) %>%
summarise(avg_grade = mean(Grade))
(grades_by_chp)
## # A tibble: 8 x 2
## Chapter avg_grade
## <int> <dbl>
## 1 1 78.3
## 2 2 93.3
## 3 3 96.7
## 4 4 86.7
## 5 5 96.7
## 6 6 88.3
## 7 7 100
## 8 8 96.7
grades_by_tri <- repcard %>%
group_by(Trimester) %>%
summarise(avg_grade = mean(Grade))
(grades_by_tri)
## # A tibble: 2 x 2
## Trimester avg_grade
## <dbl> <dbl>
## 1 1 88.8
## 2 2 95.4