1976: Desenvolvimento da linguagem estastística de programação S, nos Laboratórios Bell, no EUA, por Jhon Chambers, Rick Becker e Allan Wilks;
Objetivo da linguagem S era:
Transformar ideias em softwares, de forma rápida e com fidelidade
1995: O código é disponibilizado ao público sob a licença GPL.
1. A liberdade de executar o programa, para qualquer propósito;
2. A liberdade de estudar como o programa funciona e adaptá-lo para as suas necessidades;
3. A liberdade de redistribuir cópias de modo que você possa ajudar ao seu próximo;
4. A liberdade de aperfeiçoar o programa, e liberar os seus aperfeiçoamentos, de modo que toda a comunidade se beneficie deles.
2+3+4+7
## [1] 16
5-5-8
## [1] -8
6*3*3
## [1] 54
s<-c(10, 4, 15, 10) #Número de espécies em parcelas
s
## [1] 10 4 15 10
x<-1
x
## [1] 1
y<-5
x+y
## [1] 6
especies<-c("Araucaria angustifolia", "Lithraea brasiliensis",
"Jacaranda puberula")
especies
## [1] "Araucaria angustifolia" "Lithraea brasiliensis"
## [3] "Jacaranda puberula"
c(1,2,3,4,5,6,7,8,9,10)
## [1] 1 2 3 4 5 6 7 8 9 10
(1:10)
## [1] 1 2 3 4 5 6 7 8 9 10
seq(from=0, to=100, by = 10)
## [1] 0 10 20 30 40 50 60 70 80 90 100
rep("norte", 10)
## [1] "norte" "norte" "norte" "norte" "norte" "norte" "norte" "norte"
## [9] "norte" "norte"
c(rep("norte",10), rep("sul", 10))
## [1] "norte" "norte" "norte" "norte" "norte" "norte" "norte" "norte"
## [9] "norte" "norte" "sul" "sul" "sul" "sul" "sul" "sul"
## [17] "sul" "sul" "sul" "sul"
dinamica<-matrix(c(1,2,9,8,22,14,4,5,2), nc=3)
colnames(dinamica)<-c("P", "CEL", "CTS")
rownames(dinamica)<-c("Aumentou", "Estável", "Reduziu")
dinamica
## P CEL CTS
## Aumentou 1 8 4
## Estável 2 22 5
## Reduziu 9 14 2
spp <- c("Araucaria", "Prunus", "Ocotea")
dap <- c(35, 20, 25)
tabela <- data.frame(spp, dap)
tabela
## spp dap
## 1 Araucaria 35
## 2 Prunus 20
## 3 Ocotea 25
x<-c(3,4,5,6)
y<-c(4,5,6,9)
z<-c(x,y)
z
## [1] 3 4 5 6 4 5 6 9
rbind(x,y)
## [,1] [,2] [,3] [,4]
## x 3 4 5 6
## y 4 5 6 9
cbind(x,y)
## x y
## [1,] 3 4
## [2,] 4 5
## [3,] 5 6
## [4,] 6 9
genero<-"Myrcia"
epiteto<-c("oblongata", "palustris", "splendes")
especie<-paste(genero,epiteto)
especie
## [1] "Myrcia oblongata" "Myrcia palustris" "Myrcia splendes"
rep(especie, times=4)
## [1] "Myrcia oblongata" "Myrcia palustris" "Myrcia splendes"
## [4] "Myrcia oblongata" "Myrcia palustris" "Myrcia splendes"
## [7] "Myrcia oblongata" "Myrcia palustris" "Myrcia splendes"
## [10] "Myrcia oblongata" "Myrcia palustris" "Myrcia splendes"
rep(especie, each=4)
## [1] "Myrcia oblongata" "Myrcia oblongata" "Myrcia oblongata"
## [4] "Myrcia oblongata" "Myrcia palustris" "Myrcia palustris"
## [7] "Myrcia palustris" "Myrcia palustris" "Myrcia splendes"
## [10] "Myrcia splendes" "Myrcia splendes" "Myrcia splendes"
1+2 #adição
## [1] 3
4-3 #subtração
## [1] 1
5*5 #Multiplicação
## [1] 25
10/2 #Divisão
## [1] 5
5^2 #potência
## [1] 25
(5+5)*2 # O que tiver entre parentêses é calculado primeiro
## [1] 20
log(30) #logarítmo natural
## [1] 3.401197
sqrt(30) #raiz quadrada
## [1] 5.477226
exp(1) # Exponencial
## [1] 2.718282
sin (30) # O R trabalha com os ângulos em Radiano!
## [1] -0.9880316
sin(30*pi/180) # para transformar radiano em graus.
## [1] 0.5
cap<-c(35,160,20,30,50, 141,21,25)
cap
## [1] 35 160 20 30 50 141 21 25
dap<-cap/pi
dap
## [1] 11.140846 50.929582 6.366198 9.549297 15.915494 44.881694 6.684508
## [8] 7.957747
as<-(pi*dap^2)/40000
as
## [1] 0.009748240 0.203718327 0.003183099 0.007161972 0.019894368 0.158207971
## [7] 0.003509366 0.004973592
sum(as)
## [1] 0.4103969
bifurcacoes<-c(10,15,12)
sqrt(sum(bifurcacoes^2))
## [1] 21.65641
dap.fundido<-sqrt(sum(bifurcacoes^2))
dap.fundido
## [1] 21.65641
dap
## [1] 11.140846 50.929582 6.366198 9.549297 15.915494 44.881694 6.684508
## [8] 7.957747
dap[3]
## [1] 6.366198
dap[c(1,7)]
## [1] 11.140846 6.684508
max(dap)
## [1] 50.92958
min(dap)
## [1] 6.366198
summary(dap)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 6.366 7.639 10.345 19.178 23.157 50.930
| Operador | Resultado |
|---|---|
| x == y | Retorna TRUE se x for igual a y |
| x != y | Retorna TRUE se x for diferente de y |
| x > y | Retorna TRUE se x for maior do que y |
| x >= y | Retorna TRUE se x for maior ou igual a y |
| x < y | Retorna TRUE se x for menor do que y |
| x <= y | Retorna TRUE se x for menor ou igual a y |
dap
## [1] 11.140846 50.929582 6.366198 9.549297 15.915494 44.881694 6.684508
## [8] 7.957747
dap>10
## [1] TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE
which(dap>10)
## [1] 1 2 5 6
area.sec <- function(x){
dap <- x/pi
as <- (pi*dap^2)/40000
return(list(areas.seccionais =as,soma.as=sum(as)))
}
area.sec(cap)
## $areas.seccionais
## [1] 0.009748240 0.203718327 0.003183099 0.007161972 0.019894368 0.158207971
## [7] 0.003509366 0.004973592
##
## $soma.as
## [1] 0.4103969
Caso necessário, usar “.” ou “_" para separar palavras;
Salvar arquivo no formato csv, com um nome curto, sem espaço, acento e caracteres especiais.
dados<-read.table("dados/vegetation_data.csv", header=T,
sep=";", dec=",")
amb<-read.table("dados/environmental_data.csv",header=T,
sep=";", dec=",", row.names=1)
#dados<-read.table(file.choose(), header=T, sep=";", dec=",")
#amb<-read.table(file.choose(),header=T, sep=";", dec=",",
#row.names=1)
Environment>Import dataset>From CSV…
Verificando a importação
head(dados)
## parc Exp Family spp dap
## 1 1 Norte PRIMULACEAE Myrsine umbellata 12.732395
## 2 1 Norte SAPINDACEAE Allophylus edulis 8.594367
## 3 1 Norte PRIMULACEAE Myrsine umbellata 7.002817
## 4 1 Norte PRIMULACEAE Myrsine umbellata 7.639437
## 5 1 Norte PRIMULACEAE Myrsine umbellata 6.684508
## 6 1 Norte MYRTACEAE Eugenia pluriflora 5.252113
head(amb)
## arg ph P K Na MO hal Al Ca Mg CTCph7 CTCef V
## 1 31 3.9 2.0 54 0 4.2 24.4 11.2 0.8 0.5 25.83846 37.03846 5.567133
## 2 27 4.2 1.7 95 0 7.3 19.4 6.1 2.8 1.2 23.64359 29.74359 17.948162
## 3 24 4.8 5.6 125 0 9.1 9.7 1.6 9.2 1.8 21.02051 22.62051 53.854599
## 4 28 3.8 1.3 88 0 6.5 27.4 9.4 2.7 1.0 31.32564 40.72564 12.531718
## 5 22 4.5 2.5 188 0 9.5 13.8 2.8 6.0 1.4 21.68205 24.48205 36.352886
## 6 21 4.9 6.6 202 4 9.6 9.7 1.1 11.1 2.1 23.43534 24.53534 58.609519
## SB cd cotmedia desmax decmed
## 1 1.438462 94.28 1000.25 4 8
## 2 4.243590 94.54 1009.25 5 9
## 3 11.320513 93.24 1014.50 4 9
## 4 3.925641 94.80 1019.50 2 5
## 5 7.882051 92.72 1022.75 3 6
## 6 13.735340 91.68 1028.75 3 6
str(dados)
## 'data.frame': 1843 obs. of 5 variables:
## $ parc : int 1 1 1 1 1 1 1 1 1 1 ...
## $ Exp : Factor w/ 2 levels "Norte","Sul": 1 1 1 1 1 1 1 1 1 1 ...
## $ Family: Factor w/ 36 levels "ANACARDIACEAE",..: 23 31 23 23 23 20 32 22 31 6 ...
## $ spp : Factor w/ 90 levels "Acca sellowiana",..: 62 2 62 62 62 27 83 72 45 31 ...
## $ dap : num 12.73 8.59 7 7.64 6.68 ...
summary(amb)
## arg ph P K
## Min. :14.00 Min. :3.800 Min. : 0.500 Min. : 38.0
## 1st Qu.:22.25 1st Qu.:4.500 1st Qu.: 3.225 1st Qu.: 91.5
## Median :27.00 Median :4.750 Median : 5.300 Median :122.0
## Mean :26.68 Mean :4.870 Mean : 6.052 Mean :135.8
## 3rd Qu.:30.00 3rd Qu.:5.275 3rd Qu.: 8.350 3rd Qu.:150.0
## Max. :40.00 Max. :6.300 Max. :28.200 Max. :609.0
## Na MO hal Al
## Min. : 0.00 Min. : 0.500 Min. : 3.10 Min. : 0.000
## 1st Qu.: 0.00 1st Qu.: 6.825 1st Qu.: 8.70 1st Qu.: 0.500
## Median : 0.00 Median : 8.200 Median :10.90 Median : 1.100
## Mean : 2.24 Mean : 8.108 Mean :12.32 Mean : 2.068
## 3rd Qu.: 4.00 3rd Qu.: 9.600 3rd Qu.:15.40 3rd Qu.: 2.575
## Max. :12.00 Max. :12.000 Max. :27.40 Max. :11.200
## Ca Mg CTCph7 CTCef
## Min. : 0.800 Min. :0.100 Min. :14.03 Min. :15.42
## 1st Qu.: 5.350 1st Qu.:1.000 1st Qu.:18.97 1st Qu.:19.84
## Median : 7.450 Median :1.700 Median :21.59 Median :23.10
## Mean : 6.992 Mean :1.916 Mean :21.59 Mean :23.66
## 3rd Qu.: 9.000 3rd Qu.:2.675 3rd Qu.:24.17 3rd Qu.:26.33
## Max. :14.400 Max. :4.500 Max. :33.51 Max. :40.73
## V SB cd cotmedia
## Min. : 5.567 Min. : 1.438 Min. :67.76 Min. : 900.7
## 1st Qu.:31.455 1st Qu.: 7.329 1st Qu.:82.45 1st Qu.: 978.9
## Median :43.716 Median : 9.484 Median :88.82 Median :1001.1
## Mean :44.605 Mean : 9.266 Mean :87.20 Mean :1000.5
## 3rd Qu.:58.498 3rd Qu.:11.587 3rd Qu.:92.53 3rd Qu.:1023.5
## Max. :82.061 Max. :19.393 Max. :95.32 Max. :1113.4
## desmax decmed
## Min. : 1.00 Min. : 2.00
## 1st Qu.: 3.25 1st Qu.: 6.00
## Median : 5.00 Median : 9.00
## Mean : 6.18 Mean :11.86
## 3rd Qu.: 8.00 3rd Qu.:16.75
## Max. :18.00 Max. :38.00
names(dados)
## [1] "parc" "Exp" "Family" "spp" "dap"
names(amb)
## [1] "arg" "ph" "P" "K" "Na" "MO"
## [7] "hal" "Al" "Ca" "Mg" "CTCph7" "CTCef"
## [13] "V" "SB" "cd" "cotmedia" "desmax" "decmed"
dim(dados)
## [1] 1843 5
dim(amb)
## [1] 50 18
dados$dap
dados[,5]
dados[1,]
## parc Exp Family spp dap
## 1 1 Norte PRIMULACEAE Myrsine umbellata 12.7324
cas.dec<-dados[dados$spp=="Casearia decandra", ]
cas.dec
## parc Exp Family spp dap
## 13 1 Norte SALICACEAE Casearia decandra 5.000000
## 24 1 Norte SALICACEAE Casearia decandra 8.350464
## 28 1 Norte SALICACEAE Casearia decandra 8.276057
## 30 1 Norte SALICACEAE Casearia decandra 6.684508
## 32 1 Norte SALICACEAE Casearia decandra 5.825071
## 38 1 Norte SALICACEAE Casearia decandra 8.244226
## 73 2 Norte SALICACEAE Casearia decandra 6.589015
## 99 3 Norte SALICACEAE Casearia decandra 10.185916
## 156 4 Norte SALICACEAE Casearia decandra 5.029296
## 166 5 Norte SALICACEAE Casearia decandra 9.969250
## 169 5 Norte SALICACEAE Casearia decandra 11.140846
## 171 5 Norte SALICACEAE Casearia decandra 5.220282
## 175 5 Norte SALICACEAE Casearia decandra 9.135494
## 182 5 Norte SALICACEAE Casearia decandra 5.411268
## 201 5 Norte SALICACEAE Casearia decandra 10.603590
## 202 5 Norte SALICACEAE Casearia decandra 11.974926
## 217 5 Norte SALICACEAE Casearia decandra 7.289296
## 220 6 Norte SALICACEAE Casearia decandra 9.167325
## 223 6 Norte SALICACEAE Casearia decandra 5.411268
## 226 6 Norte SALICACEAE Casearia decandra 6.461691
## 233 6 Norte SALICACEAE Casearia decandra 5.729578
## 235 6 Norte SALICACEAE Casearia decandra 20.991517
## 246 7 Norte SALICACEAE Casearia decandra 5.506761
## 255 7 Norte SALICACEAE Casearia decandra 13.655494
## 256 7 Norte SALICACEAE Casearia decandra 5.283944
## 268 7 Norte SALICACEAE Casearia decandra 7.760105
## 279 7 Norte SALICACEAE Casearia decandra 6.875494
## 282 8 Norte SALICACEAE Casearia decandra 7.257465
## 303 8 Norte SALICACEAE Casearia decandra 6.079719
## 310 8 Norte SALICACEAE Casearia decandra 5.888733
## 322 9 Norte SALICACEAE Casearia decandra 5.029296
## 330 9 Norte SALICACEAE Casearia decandra 5.411268
## 336 9 Norte SALICACEAE Casearia decandra 6.047888
## 339 9 Norte SALICACEAE Casearia decandra 6.810716
## 340 9 Norte SALICACEAE Casearia decandra 5.474930
## 351 9 Norte SALICACEAE Casearia decandra 6.652677
## 353 10 Norte SALICACEAE Casearia decandra 8.021409
## 359 10 Norte SALICACEAE Casearia decandra 5.920564
## 360 10 Norte SALICACEAE Casearia decandra 6.589015
## 363 10 Norte SALICACEAE Casearia decandra 7.575775
## 383 10 Norte SALICACEAE Casearia decandra 17.411551
## 393 11 Norte SALICACEAE Casearia decandra 11.331832
## 395 11 Norte SALICACEAE Casearia decandra 10.918029
## 417 11 Norte SALICACEAE Casearia decandra 10.026761
## 422 11 Norte SALICACEAE Casearia decandra 8.689860
## 438 12 Norte SALICACEAE Casearia decandra 16.376263
## 442 12 Norte SALICACEAE Casearia decandra 11.236339
## 456 12 Norte SALICACEAE Casearia decandra 8.116902
## 461 12 Norte SALICACEAE Casearia decandra 8.276057
## 534 14 Norte SALICACEAE Casearia decandra 5.793240
## 547 14 Norte SALICACEAE Casearia decandra 5.570423
## 549 14 Norte SALICACEAE Casearia decandra 5.856902
## 571 15 Norte SALICACEAE Casearia decandra 7.352958
## 572 15 Norte SALICACEAE Casearia decandra 5.252113
## 581 15 Norte SALICACEAE Casearia decandra 15.830885
## 582 15 Norte SALICACEAE Casearia decandra 6.079719
## 622 16 Norte SALICACEAE Casearia decandra 7.689342
## 624 16 Norte SALICACEAE Casearia decandra 5.952395
## 642 16 Norte SALICACEAE Casearia decandra 7.607606
## 663 16 Norte SALICACEAE Casearia decandra 6.759721
## 664 16 Norte SALICACEAE Casearia decandra 6.366198
## 667 16 Norte SALICACEAE Casearia decandra 7.260606
## 673 16 Norte SALICACEAE Casearia decandra 20.053523
## 674 16 Norte SALICACEAE Casearia decandra 6.047888
## 728 17 Norte SALICACEAE Casearia decandra 6.366198
## 739 17 Norte SALICACEAE Casearia decandra 5.156620
## 746 17 Norte SALICACEAE Casearia decandra 13.878311
## 756 17 Norte SALICACEAE Casearia decandra 5.220282
## 764 18 Sul SALICACEAE Casearia decandra 6.398029
## 774 18 Sul SALICACEAE Casearia decandra 7.970215
## 777 18 Sul SALICACEAE Casearia decandra 6.436238
## 795 19 Sul SALICACEAE Casearia decandra 5.283944
## 797 19 Sul SALICACEAE Casearia decandra 5.729578
## 804 19 Sul SALICACEAE Casearia decandra 5.665916
## 807 19 Sul SALICACEAE Casearia decandra 6.654504
## 849 20 Sul SALICACEAE Casearia decandra 9.899437
## 890 21 Sul SALICACEAE Casearia decandra 6.366198
## 892 21 Sul SALICACEAE Casearia decandra 8.530705
## 896 21 Sul SALICACEAE Casearia decandra 7.766761
## 897 21 Sul SALICACEAE Casearia decandra 11.045353
## 900 21 Sul SALICACEAE Casearia decandra 6.079719
## 903 21 Sul SALICACEAE Casearia decandra 5.474930
## 927 22 Sul SALICACEAE Casearia decandra 5.665916
## 931 22 Sul SALICACEAE Casearia decandra 33.079136
## 941 23 Sul SALICACEAE Casearia decandra 17.130692
## 954 23 Sul SALICACEAE Casearia decandra 7.174623
## 956 23 Sul SALICACEAE Casearia decandra 11.395494
## 963 24 Sul SALICACEAE Casearia decandra 6.047637
## 986 24 Sul SALICACEAE Casearia decandra 9.294649
## 988 24 Sul SALICACEAE Casearia decandra 5.570423
## 1000 25 Sul SALICACEAE Casearia decandra 10.414183
## 1008 25 Sul SALICACEAE Casearia decandra 12.127607
## 1010 25 Sul SALICACEAE Casearia decandra 7.512113
## 1021 25 Sul SALICACEAE Casearia decandra 7.507324
## 1024 25 Sul SALICACEAE Casearia decandra 7.766761
## 1025 26 Sul SALICACEAE Casearia decandra 9.660325
## 1037 26 Sul SALICACEAE Casearia decandra 9.199156
## 1047 26 Sul SALICACEAE Casearia decandra 8.435212
## 1049 26 Sul SALICACEAE Casearia decandra 7.384789
## 1056 26 Sul SALICACEAE Casearia decandra 5.315775
## 1065 27 Sul SALICACEAE Casearia decandra 6.716339
## 1070 27 Sul SALICACEAE Casearia decandra 8.276057
## 1075 27 Sul SALICACEAE Casearia decandra 5.156620
## 1087 27 Sul SALICACEAE Casearia decandra 5.156620
## 1100 28 Sul SALICACEAE Casearia decandra 5.220282
## 1112 28 Sul SALICACEAE Casearia decandra 6.620846
## 1126 29 Sul SALICACEAE Casearia decandra 6.493522
## 1127 29 Sul SALICACEAE Casearia decandra 6.212346
## 1143 29 Sul SALICACEAE Casearia decandra 5.538592
## 1145 30 Sul SALICACEAE Casearia decandra 10.122254
## 1151 30 Sul SALICACEAE Casearia decandra 5.920564
## 1162 30 Sul SALICACEAE Casearia decandra 11.363663
## 1163 30 Sul SALICACEAE Casearia decandra 8.785353
## 1179 30 Sul SALICACEAE Casearia decandra 6.557184
## 1191 31 Sul SALICACEAE Casearia decandra 7.734930
## 1201 31 Sul SALICACEAE Casearia decandra 8.530705
## 1205 31 Sul SALICACEAE Casearia decandra 6.461691
## 1220 31 Sul SALICACEAE Casearia decandra 8.296233
## 1252 32 Sul SALICACEAE Casearia decandra 5.347606
## 1256 32 Sul SALICACEAE Casearia decandra 5.825071
## 1260 33 Sul SALICACEAE Casearia decandra 7.639437
## 1264 33 Sul SALICACEAE Casearia decandra 9.326480
## 1266 33 Sul SALICACEAE Casearia decandra 6.493522
## 1272 33 Sul SALICACEAE Casearia decandra 8.880846
## 1274 33 Sul SALICACEAE Casearia decandra 8.594367
## 1278 33 Sul SALICACEAE Casearia decandra 11.745635
## 1295 34 Sul SALICACEAE Casearia decandra 7.766761
## 1302 34 Sul SALICACEAE Casearia decandra 9.517466
## 1306 35 Sul SALICACEAE Casearia decandra 5.284328
## 1308 35 Sul SALICACEAE Casearia decandra 5.793240
## 1327 35 Sul SALICACEAE Casearia decandra 7.384789
## 1331 35 Sul SALICACEAE Casearia decandra 6.334367
## 1332 35 Sul SALICACEAE Casearia decandra 7.098310
## 1347 36 Sul SALICACEAE Casearia decandra 7.512113
## 1355 36 Sul SALICACEAE Casearia decandra 8.562536
## 1380 37 Sul SALICACEAE Casearia decandra 15.314047
## 1402 37 Sul SALICACEAE Casearia decandra 9.820930
## 1436 38 Sul SALICACEAE Casearia decandra 58.569019
## 1438 38 Sul SALICACEAE Casearia decandra 6.780001
## 1499 40 Sul SALICACEAE Casearia decandra 5.634085
## 1515 40 Sul SALICACEAE Casearia decandra 5.856902
## 1539 41 Sul SALICACEAE Casearia decandra 8.689860
## 1559 42 Sul SALICACEAE Casearia decandra 5.729578
## 1574 43 Sul SALICACEAE Casearia decandra 5.156620
## 1584 43 Sul SALICACEAE Casearia decandra 7.034648
## 1588 43 Sul SALICACEAE Casearia decandra 10.631550
## 1660 45 Sul SALICACEAE Casearia decandra 9.071832
## 1724 46 Sul SALICACEAE Casearia decandra 7.480282
## 1725 46 Sul SALICACEAE Casearia decandra 12.824610
summary(cas.dec$dap)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 5.000 5.889 7.261 8.482 9.135 58.569
mean(cas.dec$dap)
## [1] 8.482273
sd(cas.dec$dap)
## [1] 5.472392
hist(cas.dec$dap)
cap<-c(37,52,18,21,75)
h<-c(21, 24, 10, 12, 30)
dap<-cap/pi
plot(dap, h, pch=20, xlab="DAP (cm) ", ylab="Altura (m)")
jpeg(file="resultados/plot1.jpg")
plot(dap, h, pch=20, xlab="DAP (cm) ", ylab="Altura (m)")
dev.off()
## quartz_off_screen
## 2
names(dados)
## [1] "parc" "Exp" "Family" "spp" "dap"
source("R/fitoR.R")
fitoR(dados, 200, "resultados/fitossociologia")
## N AB DA DR DoA DoR FA FR VI
## Araucaria angustifolia 125 5.27 125 6.78 5.27 14.35 68 4.05 8.40
## Lithraea brasiliensis 101 3.94 101 5.48 3.94 10.72 80 4.77 6.99
## Casearia decandra 149 1.19 149 8.08 1.19 3.24 86 5.13 5.48
## Jacaranda puberula 172 1.54 172 9.33 1.54 4.20 46 2.74 5.43
## Matayba elaeagnoides 84 2.21 84 4.56 2.21 6.01 38 2.26 4.28
## Podocarpus lambertii 69 1.48 69 3.74 1.48 4.03 64 3.81 3.86
## Sapium glandulosum 66 1.26 66 3.58 1.26 3.42 40 2.38 3.13
## Ocotea pulchella 34 1.60 34 1.84 1.60 4.36 52 3.10 3.10
## Myrsine umbellata 69 0.70 69 3.74 0.70 1.92 56 3.34 3.00
## Lamanonia ternata 37 1.67 37 2.01 1.67 4.55 40 2.38 2.98
## Casearia obliqua 55 0.92 55 2.98 0.92 2.49 48 2.86 2.78
## Cupania vernalis 55 0.69 55 2.98 0.69 1.87 56 3.34 2.73
## Dicksonia sellowiana 38 1.53 38 2.06 1.53 4.18 22 1.31 2.52
## Duranta vestita 51 0.32 51 2.77 0.32 0.88 56 3.34 2.33
## Dasyphyllum tomentosum 26 1.27 26 1.41 1.27 3.46 34 2.03 2.30
## Vernonanthura discolor 21 1.02 21 1.14 1.02 2.78 22 1.31 1.74
## Prunus myrtifolia 22 0.68 22 1.19 0.68 1.85 36 2.15 1.73
## Zanthoxylum rhoifolium 28 0.34 28 1.52 0.34 0.91 32 1.91 1.45
## Allophylus guaraniticus 32 0.22 32 1.74 0.22 0.60 30 1.79 1.37
## Solanum sanctaecatharinae 22 0.37 22 1.19 0.37 1.01 30 1.79 1.33
## Zanthoxylum kleinii 28 0.47 28 1.52 0.47 1.27 20 1.19 1.33
## Ilex theezans 21 0.38 21 1.14 0.38 1.04 28 1.67 1.28
## Cinnamomum amoenum 12 0.68 12 0.65 0.68 1.85 20 1.19 1.23
## Banara tomentosa 24 0.11 24 1.30 0.11 0.31 34 2.03 1.21
## Eugenia pluriflora 23 0.20 23 1.25 0.20 0.55 30 1.79 1.20
## Drimys brasiliensis 22 0.12 22 1.19 0.12 0.32 34 2.03 1.18
## Myrcia guianensis 23 0.20 23 1.25 0.20 0.55 28 1.67 1.15
## Calyptranthes concinna 30 0.22 30 1.63 0.22 0.60 20 1.19 1.14
## Myrsine coriacea 16 0.35 16 0.87 0.35 0.94 26 1.55 1.12
## Machaerium paraguariense 18 0.35 18 0.98 0.35 0.95 22 1.31 1.08
## Xylosma ciliatifolia 22 0.16 22 1.19 0.16 0.44 26 1.55 1.06
## Myrcia hatschbachii 18 0.28 18 0.98 0.28 0.75 20 1.19 0.97
## Blepharocalyx salicifolius 19 0.14 19 1.03 0.14 0.38 24 1.43 0.95
## Dasyphyllum spinescens 8 0.51 8 0.43 0.51 1.40 14 0.83 0.89
## Annona rugulosa 17 0.11 17 0.92 0.11 0.31 24 1.43 0.89
## Gochnatia polymorpha 11 0.38 11 0.60 0.38 1.02 14 0.83 0.82
## Roupala montana 14 0.22 14 0.76 0.22 0.61 18 1.07 0.81
## Myrcia palustris 16 0.12 16 0.87 0.12 0.34 20 1.19 0.80
## Sebastiania commersoniana 17 0.27 17 0.92 0.27 0.74 10 0.60 0.75
## Symplocos uniflora 12 0.15 12 0.65 0.15 0.42 18 1.07 0.71
## Schinus terebinthifolius 20 0.15 20 1.09 0.15 0.42 8 0.48 0.66
## Campomanesia xanthocarpa 8 0.21 8 0.43 0.21 0.58 14 0.83 0.62
## Dalbergia frutescens 11 0.11 11 0.60 0.11 0.31 14 0.83 0.58
## Oreopanax fulvus 10 0.10 10 0.54 0.10 0.27 14 0.83 0.55
## Nectandra megapotamica 7 0.15 7 0.38 0.15 0.41 14 0.83 0.54
## Celtis iguanaea 12 0.11 12 0.65 0.11 0.30 10 0.60 0.52
## Scutia buxifolia 8 0.14 8 0.43 0.14 0.37 12 0.72 0.51
## Inga sessilis 14 0.19 14 0.76 0.19 0.51 4 0.24 0.50
## Styrax leprosus 8 0.13 8 0.43 0.13 0.36 12 0.72 0.50
## Ocotea puberula 4 0.26 4 0.22 0.26 0.70 8 0.48 0.46
## Myrcia laruotteana 7 0.06 7 0.38 0.06 0.17 14 0.83 0.46
## Cedrela fissilis 9 0.15 9 0.49 0.15 0.41 8 0.48 0.46
## Allophylus edulis 7 0.05 7 0.38 0.05 0.13 12 0.72 0.41
## Sebastiania brasiliensis 9 0.07 9 0.49 0.07 0.19 8 0.48 0.39
## Clethra scabra 6 0.11 6 0.33 0.11 0.29 8 0.48 0.37
## Coutarea hexandra 5 0.07 5 0.27 0.07 0.18 10 0.60 0.35
## Eugenia pyriformis 5 0.06 5 0.27 0.06 0.17 10 0.60 0.35
## Erythroxylum deciduum 5 0.10 5 0.27 0.10 0.27 8 0.48 0.34
## Ilex dumosa 6 0.04 6 0.33 0.04 0.12 8 0.48 0.31
## Escallonia bifida 6 0.08 6 0.33 0.08 0.23 6 0.36 0.30
## Maytenus dasyclada 4 0.06 4 0.22 0.06 0.16 8 0.48 0.28
## Ilex brevicuspis 5 0.11 5 0.27 0.11 0.30 4 0.24 0.27
## Xylosma tweediana 4 0.01 4 0.22 0.01 0.03 8 0.48 0.24
## Myrrhinium atropurpureum 3 0.03 3 0.16 0.03 0.09 6 0.36 0.20
## Solanum pabstii 3 0.02 3 0.16 0.02 0.04 6 0.36 0.19
## Nectandra lanceolata 2 0.06 2 0.11 0.06 0.16 4 0.24 0.17
## NI 3 0.04 3 0.16 0.04 0.11 4 0.24 0.17
## Ilex microdonta 2 0.03 2 0.11 0.03 0.09 4 0.24 0.15
## Eugenia uniflora 2 0.03 2 0.11 0.03 0.08 4 0.24 0.14
## Myrcia multiflora 1 0.08 1 0.05 0.08 0.21 2 0.12 0.13
## Mimosa scabrella 1 0.06 1 0.05 0.06 0.17 2 0.12 0.11
## Handroanthus albus 1 0.03 1 0.05 0.03 0.09 2 0.12 0.09
## Machaerium stipitatum 1 0.03 1 0.05 0.03 0.09 2 0.12 0.09
## Ocotea diospyrifolia 1 0.03 1 0.05 0.03 0.08 2 0.12 0.08
## Lauraceae 1 1 0.03 1 0.05 0.03 0.07 2 0.12 0.08
## Piptocarpha angustifolia 1 0.02 1 0.05 0.02 0.06 2 0.12 0.08
## Maytenus boaria 1 0.01 1 0.05 0.01 0.03 2 0.12 0.07
## Myrtaceae sp. 1 0.01 1 0.05 0.01 0.02 2 0.12 0.06
## Myrsine sp. 1 0.01 1 0.05 0.01 0.02 2 0.12 0.06
## Myrceugenia myrcioides 1 0.01 1 0.05 0.01 0.02 2 0.12 0.06
## Quillaja brasiliensis 1 0.00 1 0.05 0.00 0.01 2 0.12 0.06
## Citronella paniculata 1 0.00 1 0.05 0.00 0.01 2 0.12 0.06
## Ilex paraguariensis 1 0.00 1 0.05 0.00 0.01 2 0.12 0.06
## Acca sellowiana 1 0.00 1 0.05 0.00 0.01 2 0.12 0.06
## Myrceugenia euosma 1 0.00 1 0.05 0.00 0.01 2 0.12 0.06
## Myrciaria 1 0.00 1 0.05 0.00 0.01 2 0.12 0.06
## Myrceugenia oxysepala 1 0.00 1 0.05 0.00 0.01 2 0.12 0.06
## Eugenia uruguayensis 1 0.00 1 0.05 0.00 0.01 2 0.12 0.06
## Rhamnus sphaerosperma 1 0.00 1 0.05 0.00 0.01 2 0.12 0.06
## Myrcianthes gigantea 1 0.00 1 0.05 0.00 0.01 2 0.12 0.06
## Densidade total por área = 1843 ± 616.61 ind/ha
## Área basal total por área = 36.72 ± 12.86 m2/ha
## Riqueza = 90 esp.
## Índice de Shannon-Wiener (H') = 3.744051
## Equabilidade de Pielou (J) = 0.8320464
https://higuchip.shinyapps.io/FitoCom/
https://github.com/higuchip/forest.din
source("https://bit.ly/2Eytboh")
dados.din<-read.table("https://bit.ly/2XzHBNH", header=T,
dec=",", sep=";")
head(dados.din)
## Parcela n Especie
## 1 1 1 Myrsine umbellata Mart.
## 2 1 2 Allophylus edulis (A.St.-Hil., Cambess. & A.Juss.) Radlk.
## 3 1 3 Myrsine umbellata Mart.
## 4 1 4 Myrsine umbellata Mart.
## 5 1 5 Myrsine umbellata Mart.
## 6 1 6 Eugenia pluriflora DC.
## DAP1 DAP2
## 1 12.732395 13.050705
## 2 8.594367 8.753522
## 3 7.002817 7.671268
## 4 7.639437 8.021409
## 5 6.684508 NA
## 6 5.252113 5.729578
dinamica<-forest.din(dados.din, 5)
## $n.parc
## N0 sob mort recr N1 TX.MORT TX.RECR TX.NC TURN
## 1 46 42 4 3 45 1.80 1.37 -0.44 1.59
## 2 35 34 1 1 35 0.58 0.58 0.00 0.58
##
## $n.spp
## N0 sob mort recr
## Allophylus edulis (A.St.-Hil., Cambess. & A.Juss.) Radlk. 1 1 0 0
## Araucaria angustifolia (Bertol.) Kuntze 3 3 0 1
## Calyptranthes concinna DC. 4 4 0 0
## Casearia decandra Jacq. 7 4 3 2
## Casearia obliqua Spreng. 1 1 0 0
## Cupania vernalis Cambess. 4 4 0 1
## Dasyphyllum spinescens (Less.) Cabrera 1 1 0 0
## Drimys brasiliensis Miers 1 1 0 0
## Duranta vestita Cham. 2 2 0 0
## Erythroxylum deciduum A.St.-Hil. 1 1 0 0
## Eugenia pluriflora DC. 5 5 0 0
## Ilex theezans Mart. ex Reissek 1 1 0 0
## Jacaranda puberula Cham. 13 12 1 0
## Lamanonia ternata Vell. 1 1 0 0
## Lithraea brasiliensis Marchand 5 5 0 0
## Matayba elaeagnoides Radlk. 3 3 0 0
## Maytenus dasyclada Mart. 1 1 0 0
## Moquiniastrum polymorphum (Less.) G. Sancho 4 4 0 0
## Myrcia laruotteana Cambess. 1 1 0 0
## Myrsine umbellata Mart. 6 5 1 0
## Ocotea pulchella Mart. 3 3 0 0
## Podocarpus lambertii Klotzsch ex Endl. 7 7 0 0
## Scutia buxifolia Reissek 1 1 0 0
## Solanum sanctaecatharinae Dunal 3 3 0 0
## Zanthoxylum kleinii (R.S.Cowan) P.G.Waterman 2 2 0 0
## N1 TX.MORT
## Allophylus edulis (A.St.-Hil., Cambess. & A.Juss.) Radlk. 1 0.00
## Araucaria angustifolia (Bertol.) Kuntze 4 0.00
## Calyptranthes concinna DC. 4 0.00
## Casearia decandra Jacq. 6 10.59
## Casearia obliqua Spreng. 1 0.00
## Cupania vernalis Cambess. 5 0.00
## Dasyphyllum spinescens (Less.) Cabrera 1 0.00
## Drimys brasiliensis Miers 1 0.00
## Duranta vestita Cham. 2 0.00
## Erythroxylum deciduum A.St.-Hil. 1 0.00
## Eugenia pluriflora DC. 5 0.00
## Ilex theezans Mart. ex Reissek 1 0.00
## Jacaranda puberula Cham. 12 1.59
## Lamanonia ternata Vell. 1 0.00
## Lithraea brasiliensis Marchand 5 0.00
## Matayba elaeagnoides Radlk. 3 0.00
## Maytenus dasyclada Mart. 1 0.00
## Moquiniastrum polymorphum (Less.) G. Sancho 4 0.00
## Myrcia laruotteana Cambess. 1 0.00
## Myrsine umbellata Mart. 5 3.58
## Ocotea pulchella Mart. 3 0.00
## Podocarpus lambertii Klotzsch ex Endl. 7 0.00
## Scutia buxifolia Reissek 1 0.00
## Solanum sanctaecatharinae Dunal 3 0.00
## Zanthoxylum kleinii (R.S.Cowan) P.G.Waterman 2 0.00
## TX.RECR TX.NC
## Allophylus edulis (A.St.-Hil., Cambess. & A.Juss.) Radlk. 0.00 0.00
## Araucaria angustifolia (Bertol.) Kuntze 5.59 5.92
## Calyptranthes concinna DC. 0.00 0.00
## Casearia decandra Jacq. 7.79 -3.04
## Casearia obliqua Spreng. 0.00 0.00
## Cupania vernalis Cambess. 4.36 4.56
## Dasyphyllum spinescens (Less.) Cabrera 0.00 0.00
## Drimys brasiliensis Miers 0.00 0.00
## Duranta vestita Cham. 0.00 0.00
## Erythroxylum deciduum A.St.-Hil. 0.00 0.00
## Eugenia pluriflora DC. 0.00 0.00
## Ilex theezans Mart. ex Reissek 0.00 0.00
## Jacaranda puberula Cham. 0.00 -1.59
## Lamanonia ternata Vell. 0.00 0.00
## Lithraea brasiliensis Marchand 0.00 0.00
## Matayba elaeagnoides Radlk. 0.00 0.00
## Maytenus dasyclada Mart. 0.00 0.00
## Moquiniastrum polymorphum (Less.) G. Sancho 0.00 0.00
## Myrcia laruotteana Cambess. 0.00 0.00
## Myrsine umbellata Mart. 0.00 -3.58
## Ocotea pulchella Mart. 0.00 0.00
## Podocarpus lambertii Klotzsch ex Endl. 0.00 0.00
## Scutia buxifolia Reissek 0.00 0.00
## Solanum sanctaecatharinae Dunal 0.00 0.00
## Zanthoxylum kleinii (R.S.Cowan) P.G.Waterman 0.00 0.00
## TURN
## Allophylus edulis (A.St.-Hil., Cambess. & A.Juss.) Radlk. 0.00
## Araucaria angustifolia (Bertol.) Kuntze 2.80
## Calyptranthes concinna DC. 0.00
## Casearia decandra Jacq. 9.19
## Casearia obliqua Spreng. 0.00
## Cupania vernalis Cambess. 2.18
## Dasyphyllum spinescens (Less.) Cabrera 0.00
## Drimys brasiliensis Miers 0.00
## Duranta vestita Cham. 0.00
## Erythroxylum deciduum A.St.-Hil. 0.00
## Eugenia pluriflora DC. 0.00
## Ilex theezans Mart. ex Reissek 0.00
## Jacaranda puberula Cham. 0.79
## Lamanonia ternata Vell. 0.00
## Lithraea brasiliensis Marchand 0.00
## Matayba elaeagnoides Radlk. 0.00
## Maytenus dasyclada Mart. 0.00
## Moquiniastrum polymorphum (Less.) G. Sancho 0.00
## Myrcia laruotteana Cambess. 0.00
## Myrsine umbellata Mart. 1.79
## Ocotea pulchella Mart. 0.00
## Podocarpus lambertii Klotzsch ex Endl. 0.00
## Scutia buxifolia Reissek 0.00
## Solanum sanctaecatharinae Dunal 0.00
## Zanthoxylum kleinii (R.S.Cowan) P.G.Waterman 0.00
##
## $ab.parc
## AB0 G.sob P.sob AB.m AB.r AB1 Tx.perda.AB Tx.ganho.AB
## 1 0.7342 0.0763 -0.0200 0.0169 0.0066 0.7802 1.0266 2.2227
## 2 1.1205 0.1658 -0.0038 0.0031 0.0020 1.2815 0.1222 2.7691
## Tx.nc.AB Turn.AB
## 1 1.2232 1.6247
## 2 2.7223 1.4456
##
## $ab.spp
## AB0 G.sob
## Allophylus edulis (A.St.-Hil., Cambess. & A.Juss.) Radlk. 0.0058 0.0002
## Araucaria angustifolia (Bertol.) Kuntze 0.1542 0.0381
## Calyptranthes concinna DC. 0.0191 0.0016
## Casearia decandra Jacq. 0.0276 0.0032
## Casearia obliqua Spreng. 0.0040 0.0010
## Cupania vernalis Cambess. 0.1103 0.0218
## Dasyphyllum spinescens (Less.) Cabrera 0.3151 0.0392
## Drimys brasiliensis Miers 0.0050 0.0000
## Duranta vestita Cham. 0.0092 0.0014
## Erythroxylum deciduum A.St.-Hil. 0.0466 0.0069
## Eugenia pluriflora DC. 0.0276 0.0020
## Ilex theezans Mart. ex Reissek 0.0069 0.0000
## Jacaranda puberula Cham. 0.1012 0.0189
## Lamanonia ternata Vell. 0.0021 0.0000
## Lithraea brasiliensis Marchand 0.1775 0.0274
## Matayba elaeagnoides Radlk. 0.0733 0.0047
## Maytenus dasyclada Mart. 0.0100 0.0000
## Moquiniastrum polymorphum (Less.) G. Sancho 0.2310 0.0140
## Myrcia laruotteana Cambess. 0.0200 0.0000
## Myrsine umbellata Mart. 0.0660 0.0065
## Ocotea pulchella Mart. 0.2639 0.0333
## Podocarpus lambertii Klotzsch ex Endl. 0.1295 0.0115
## Scutia buxifolia Reissek 0.0077 0.0010
## Solanum sanctaecatharinae Dunal 0.0368 0.0093
## Zanthoxylum kleinii (R.S.Cowan) P.G.Waterman 0.0044 0.0001
## P.sob AB.m
## Allophylus edulis (A.St.-Hil., Cambess. & A.Juss.) Radlk. 0.0000 0.0000
## Araucaria angustifolia (Bertol.) Kuntze 0.0000 0.0000
## Calyptranthes concinna DC. -0.0019 0.0000
## Casearia decandra Jacq. 0.0000 0.0134
## Casearia obliqua Spreng. 0.0000 0.0000
## Cupania vernalis Cambess. -0.0011 0.0000
## Dasyphyllum spinescens (Less.) Cabrera 0.0000 0.0000
## Drimys brasiliensis Miers -0.0007 0.0000
## Duranta vestita Cham. 0.0000 0.0000
## Erythroxylum deciduum A.St.-Hil. 0.0000 0.0000
## Eugenia pluriflora DC. 0.0000 0.0000
## Ilex theezans Mart. ex Reissek -0.0007 0.0000
## Jacaranda puberula Cham. 0.0000 0.0031
## Lamanonia ternata Vell. 0.0000 0.0000
## Lithraea brasiliensis Marchand -0.0003 0.0000
## Matayba elaeagnoides Radlk. -0.0066 0.0000
## Maytenus dasyclada Mart. -0.0054 0.0000
## Moquiniastrum polymorphum (Less.) G. Sancho -0.0068 0.0000
## Myrcia laruotteana Cambess. -0.0002 0.0000
## Myrsine umbellata Mart. 0.0000 0.0035
## Ocotea pulchella Mart. 0.0000 0.0000
## Podocarpus lambertii Klotzsch ex Endl. -0.0001 0.0000
## Scutia buxifolia Reissek 0.0000 0.0000
## Solanum sanctaecatharinae Dunal 0.0000 0.0000
## Zanthoxylum kleinii (R.S.Cowan) P.G.Waterman 0.0000 0.0000
## AB.r AB1
## Allophylus edulis (A.St.-Hil., Cambess. & A.Juss.) Radlk. 0.0000 0.0060
## Araucaria angustifolia (Bertol.) Kuntze 0.0020 0.1943
## Calyptranthes concinna DC. 0.0000 0.0187
## Casearia decandra Jacq. 0.0045 0.0218
## Casearia obliqua Spreng. 0.0000 0.0051
## Cupania vernalis Cambess. 0.0021 0.1332
## Dasyphyllum spinescens (Less.) Cabrera 0.0000 0.3543
## Drimys brasiliensis Miers 0.0000 0.0042
## Duranta vestita Cham. 0.0000 0.0106
## Erythroxylum deciduum A.St.-Hil. 0.0000 0.0535
## Eugenia pluriflora DC. 0.0000 0.0296
## Ilex theezans Mart. ex Reissek 0.0000 0.0062
## Jacaranda puberula Cham. 0.0000 0.1170
## Lamanonia ternata Vell. 0.0000 0.0021
## Lithraea brasiliensis Marchand 0.0000 0.2047
## Matayba elaeagnoides Radlk. 0.0000 0.0713
## Maytenus dasyclada Mart. 0.0000 0.0046
## Moquiniastrum polymorphum (Less.) G. Sancho 0.0000 0.2383
## Myrcia laruotteana Cambess. 0.0000 0.0198
## Myrsine umbellata Mart. 0.0000 0.0691
## Ocotea pulchella Mart. 0.0000 0.2972
## Podocarpus lambertii Klotzsch ex Endl. 0.0000 0.1409
## Scutia buxifolia Reissek 0.0000 0.0087
## Solanum sanctaecatharinae Dunal 0.0000 0.0462
## Zanthoxylum kleinii (R.S.Cowan) P.G.Waterman 0.0000 0.0045
## Tx.perda.AB
## Allophylus edulis (A.St.-Hil., Cambess. & A.Juss.) Radlk. 0.0000
## Araucaria angustifolia (Bertol.) Kuntze 0.0000
## Calyptranthes concinna DC. 2.1347
## Casearia decandra Jacq. 12.4432
## Casearia obliqua Spreng. 0.0000
## Cupania vernalis Cambess. 0.1935
## Dasyphyllum spinescens (Less.) Cabrera 0.0000
## Drimys brasiliensis Miers 3.1123
## Duranta vestita Cham. 0.0000
## Erythroxylum deciduum A.St.-Hil. 0.0000
## Eugenia pluriflora DC. 0.0000
## Ilex theezans Mart. ex Reissek 2.0658
## Jacaranda puberula Cham. 0.6117
## Lamanonia ternata Vell. 0.3028
## Lithraea brasiliensis Marchand 0.0295
## Matayba elaeagnoides Radlk. 1.8669
## Maytenus dasyclada Mart. 14.3771
## Moquiniastrum polymorphum (Less.) G. Sancho 0.5951
## Myrcia laruotteana Cambess. 0.1871
## Myrsine umbellata Mart. 1.0861
## Ocotea pulchella Mart. 0.0000
## Podocarpus lambertii Klotzsch ex Endl. 0.0218
## Scutia buxifolia Reissek 0.0000
## Solanum sanctaecatharinae Dunal 0.0000
## Zanthoxylum kleinii (R.S.Cowan) P.G.Waterman 0.0000
## Tx.ganho.AB
## Allophylus edulis (A.St.-Hil., Cambess. & A.Juss.) Radlk. 0.7313
## Araucaria angustifolia (Bertol.) Kuntze 4.5256
## Calyptranthes concinna DC. 1.7506
## Casearia decandra Jacq. 8.2574
## Casearia obliqua Spreng. 4.4319
## Cupania vernalis Cambess. 3.8875
## Dasyphyllum spinescens (Less.) Cabrera 2.3149
## Drimys brasiliensis Miers 0.0000
## Duranta vestita Cham. 2.7850
## Erythroxylum deciduum A.St.-Hil. 2.7389
## Eugenia pluriflora DC. 1.3638
## Ilex theezans Mart. ex Reissek 0.0000
## Jacaranda puberula Cham. 3.4610
## Lamanonia ternata Vell. 0.0000
## Lithraea brasiliensis Marchand 2.8368
## Matayba elaeagnoides Radlk. 1.3405
## Maytenus dasyclada Mart. 0.0000
## Moquiniastrum polymorphum (Less.) G. Sancho 1.2070
## Myrcia laruotteana Cambess. 0.0000
## Myrsine umbellata Mart. 1.9650
## Ocotea pulchella Mart. 2.3462
## Podocarpus lambertii Klotzsch ex Endl. 1.6906
## Scutia buxifolia Reissek 2.4622
## Solanum sanctaecatharinae Dunal 4.4114
## Zanthoxylum kleinii (R.S.Cowan) P.G.Waterman 0.5954
## Tx.nc.AB Turn.AB
## Allophylus edulis (A.St.-Hil., Cambess. & A.Juss.) Radlk. 0.7367 0.3656
## Araucaria angustifolia (Bertol.) Kuntze 4.7401 2.2628
## Calyptranthes concinna DC. -0.3909 1.9426
## Casearia decandra Jacq. -4.5625 10.3503
## Casearia obliqua Spreng. 4.6375 2.2160
## Cupania vernalis Cambess. 3.8434 2.0405
## Dasyphyllum spinescens (Less.) Cabrera 2.3698 1.1575
## Drimys brasiliensis Miers -3.1123 1.5561
## Duranta vestita Cham. 2.8647 1.3925
## Erythroxylum deciduum A.St.-Hil. 2.8161 1.3695
## Eugenia pluriflora DC. 1.3826 0.6819
## Ilex theezans Mart. ex Reissek -2.0658 1.0329
## Jacaranda puberula Cham. 2.9514 2.0363
## Lamanonia ternata Vell. -0.3028 0.1514
## Lithraea brasiliensis Marchand 2.8893 1.4332
## Matayba elaeagnoides Radlk. -0.5335 1.6037
## Maytenus dasyclada Mart. -14.3771 7.1885
## Moquiniastrum polymorphum (Less.) G. Sancho 0.6194 0.9010
## Myrcia laruotteana Cambess. -0.1871 0.0935
## Myrsine umbellata Mart. 0.8965 1.5255
## Ocotea pulchella Mart. 2.4026 1.1731
## Podocarpus lambertii Klotzsch ex Endl. 1.6974 0.8562
## Scutia buxifolia Reissek 2.5244 1.2311
## Solanum sanctaecatharinae Dunal 4.6150 2.2057
## Zanthoxylum kleinii (R.S.Cowan) P.G.Waterman 0.5989 0.2977
##
## DINAMICA DA COMUNIDADE TOTAL
## Riqueza ano 1 = 25 especies
## Riqueza ano 2 = 25 especies
## Abundancia ano 1 = 81 +/- 7.78 ind
## Abundancia ano 2 = 80 +/- 7.07 ind
## Taxa de Mortalidade = 1.27 %.ano-1
## Taxa de Recrutamento = 1.02 %.ano-1
## Taxa de Mudança Líquida em n = -0.25 %.ano-1
## Taxa de Rotatividade Líquida em n = 1.14 %.ano-1
## Area basal ano 1 = 1.85 +/- 0.27 m2
## Area basal ano 2 = 2.06 +/- 0.35 m2
## Taxa de Perda em AB = 0.48 %.ano-1
## Taxa de Ganho em AB = 2.56 %.ano-1
## Taxa de Mudança Líquida em AB = 2.14 %.ano-1
## Taxa de Rotatividade Líquida em AB = 1.52 %.ano-1
# 5 representa o tempo entre intervalo
install.packages("vegan", repos = "https://cloud.r-project.org")
##
## The downloaded binary packages are in
## /var/folders/_8/fv7tchz12mx1nvk8k86mnr680000gn/T//Rtmp7w5Z10/downloaded_packages
install.packages("iNEXT", repos = "https://cloud.r-project.org")
##
## The downloaded binary packages are in
## /var/folders/_8/fv7tchz12mx1nvk8k86mnr680000gn/T//Rtmp7w5Z10/downloaded_packages
library(vegan)
## Warning: package 'vegan' was built under R version 3.4.4
## Loading required package: permute
## Loading required package: lattice
## Warning: package 'lattice' was built under R version 3.4.4
## This is vegan 2.5-4
library(iNEXT)
## Warning: package 'iNEXT' was built under R version 3.4.4
matriz<-as.data.frame.matrix(table(dados$spp, dados$parc)) #matriz de abundância
matriz.bin<-matriz
matriz.bin[matriz.bin>0] <-1
curva_plots<-iNEXT(matriz.bin, q=0, datatype="incidence_raw")
ggiNEXT(curva_plots, type = 1)
curva_plots
## Compare 1 assemblages with Hill number order q = 0.
## $class: iNEXT
##
## $DataInfo: basic data information
## site T U S.obs SC Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
## 1 site.1 50 839 90 0.9753 21 6 3 9 4 3 7 0 2 5
##
## $iNextEst: diversity estimates with rarefied and extrapolated samples.
## t method order qD qD.LCL qD.UCL SC SC.LCL SC.UCL
## 1 1 interpolated 0 16.780 15.919 17.641 0.365 0.344 0.387
## 10 25 interpolated 0 77.013 72.080 81.946 0.958 0.948 0.969
## 20 50 observed 0 90.000 81.597 98.403 0.975 0.965 0.985
## 30 74 extrapolated 0 98.748 87.005 110.491 0.981 0.970 0.992
## 40 100 extrapolated 0 105.845 90.223 121.466 0.986 0.975 0.997
##
## $AsyEst: asymptotic diversity estimates along with related statistics.
## Observed Estimator Est_s.e. 95% Lower 95% Upper
## Species Richness 90.000 126.015 22.344 101.769 200.209
## Shannon diversity 57.181 61.191 1.868 57.530 64.852
## Simpson diversity 44.397 45.906 1.391 44.397 48.631
##
## NOTE: Only show five estimates, call iNEXT.object$iNextEst. to show complete output.
spp_freq<-(apply(matriz,1, sum)) #frequencia das espécies
curva_individuos<-iNEXT(spp_freq, q=0, datatype="abundance")
ggiNEXT(curva_individuos, type=1)
curva_individuos
## Compare 1 assemblages with Hill number order q = 0.
## $class: iNEXT
##
## $DataInfo: basic data information
## site n S.obs SC f1 f2 f3 f4 f5 f6 f7 f8 f9 f10
## 1 site.1 1843 90 0.9886 21 3 3 3 4 3 3 4 2 1
##
## $iNextEst: diversity estimates with rarefied and extrapolated samples.
## m method order qD qD.LCL qD.UCL SC SC.LCL SC.UCL
## 1 1 interpolated 0 1.000 1.000 1.000 0.036 0.033 0.039
## 10 921 interpolated 0 77.965 73.110 82.820 0.984 0.979 0.988
## 20 1843 observed 0 90.000 81.707 98.293 0.989 0.985 0.993
## 30 2716 extrapolated 0 99.303 88.243 110.363 0.990 0.986 0.994
## 40 3686 extrapolated 0 108.264 94.166 122.362 0.991 0.987 0.996
##
## $AsyEst: asymptotic diversity estimates along with related statistics.
## Observed Estimator Est_s.e. 95% Lower 95% Upper
## Species Richness 90.000 163.460 53.853 110.315 355.639
## Shannon diversity 42.269 43.978 1.280 42.269 46.487
## Simpson diversity 27.319 27.715 1.049 27.319 29.771
##
## NOTE: Only show five estimates, call iNEXT.object$iNextEst. to show complete output.
matriz.parc<-table(dados$parc, dados$spp)
specnumber(matriz.parc, MARGIN=1)
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
## 20 17 16 16 17 13 18 19 15 22 18 16 17 22 24 20 20 11 19 15 15 10 14 21 18
## 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
## 11 19 17 12 17 16 17 18 12 15 14 27 18 15 25 25 11 15 11 16 16 15 12 20 12
matriz.setor<-table(dados$Exp, dados$spp)
specnumber(matriz.setor, MARGIN=1)
## Norte Sul
## 64 80
Podemos fazer uma comparação direta da riqueza entre setores?
Verificar a intensidade amostral dos setores
apply(matriz.setor,1, sum) # numero de indivíduos por setor
## Norte Sul
## 758 1085
rarefy(matriz.setor,758, se=TRUE)
##
## Norte Sul
## S 64 74.457655
## se 0 2.000529
## attr(,"Subsample")
## [1] 758
rarecurve (matriz.setor, sample = 758, cex = 0.6)
H<-diversity(matriz.setor, index="shannon")
H
## Norte Sul
## 3.312685 3.773019
J.norte <-H[1]/log(64)
J.norte
J.sul <-H[2]/log(80)
J.sul
## Norte
## 0.7965323
## Sul
## 0.8610216
apply(matriz.parc, 2, sum)
## Acca sellowiana Allophylus edulis
## 1 7
## Allophylus guaraniticus Annona rugulosa
## 32 17
## Araucaria angustifolia Banara tomentosa
## 125 24
## Blepharocalyx salicifolius Calyptranthes concinna
## 19 30
## Campomanesia xanthocarpa Casearia decandra
## 8 149
## Casearia obliqua Cedrela fissilis
## 55 9
## Celtis iguanaea Cinnamomum amoenum
## 12 12
## Citronella paniculata Clethra scabra
## 1 6
## Coutarea hexandra Cupania vernalis
## 5 55
## Dalbergia frutescens Dasyphyllum spinescens
## 11 8
## Dasyphyllum tomentosum Dicksonia sellowiana
## 26 38
## Drimys brasiliensis Duranta vestita
## 22 51
## Erythroxylum deciduum Escallonia bifida
## 5 6
## Eugenia pluriflora Eugenia pyriformis
## 23 5
## Eugenia uniflora Eugenia uruguayensis
## 2 1
## Gochnatia polymorpha Handroanthus albus
## 11 1
## Ilex brevicuspis Ilex dumosa
## 5 6
## Ilex microdonta Ilex paraguariensis
## 2 1
## Ilex theezans Inga sessilis
## 21 14
## Jacaranda puberula Lamanonia ternata
## 172 37
## Lauraceae 1 Lithraea brasiliensis
## 1 101
## Machaerium paraguariense Machaerium stipitatum
## 18 1
## Matayba elaeagnoides Maytenus boaria
## 84 1
## Maytenus dasyclada Mimosa scabrella
## 4 1
## Myrceugenia euosma Myrceugenia myrcioides
## 1 1
## Myrceugenia oxysepala Myrcia guianensis
## 1 23
## Myrcia hatschbachii Myrcia laruotteana
## 18 7
## Myrcia multiflora Myrcia palustris
## 1 16
## Myrcianthes gigantea Myrciaria
## 1 1
## Myrrhinium atropurpureum Myrsine coriacea
## 3 16
## Myrsine sp. Myrsine umbellata
## 1 69
## Myrtaceae sp. Nectandra lanceolata
## 1 2
## Nectandra megapotamica NI
## 7 3
## Ocotea diospyrifolia Ocotea puberula
## 1 4
## Ocotea pulchella Oreopanax fulvus
## 34 10
## Piptocarpha angustifolia Podocarpus lambertii
## 1 69
## Prunus myrtifolia Quillaja brasiliensis
## 22 1
## Rhamnus sphaerosperma Roupala montana
## 1 14
## Sapium glandulosum Schinus terebinthifolius
## 66 20
## Scutia buxifolia Sebastiania brasiliensis
## 8 9
## Sebastiania commersoniana Solanum pabstii
## 17 3
## Solanum sanctaecatharinae Styrax leprosus
## 22 8
## Symplocos uniflora Vernonanthura discolor
## 12 21
## Xylosma ciliatifolia Xylosma tweediana
## 22 4
## Zanthoxylum kleinii Zanthoxylum rhoifolium
## 28 28
apply(matriz.parc, 2, sum)>10
## Acca sellowiana Allophylus edulis
## FALSE FALSE
## Allophylus guaraniticus Annona rugulosa
## TRUE TRUE
## Araucaria angustifolia Banara tomentosa
## TRUE TRUE
## Blepharocalyx salicifolius Calyptranthes concinna
## TRUE TRUE
## Campomanesia xanthocarpa Casearia decandra
## FALSE TRUE
## Casearia obliqua Cedrela fissilis
## TRUE FALSE
## Celtis iguanaea Cinnamomum amoenum
## TRUE TRUE
## Citronella paniculata Clethra scabra
## FALSE FALSE
## Coutarea hexandra Cupania vernalis
## FALSE TRUE
## Dalbergia frutescens Dasyphyllum spinescens
## TRUE FALSE
## Dasyphyllum tomentosum Dicksonia sellowiana
## TRUE TRUE
## Drimys brasiliensis Duranta vestita
## TRUE TRUE
## Erythroxylum deciduum Escallonia bifida
## FALSE FALSE
## Eugenia pluriflora Eugenia pyriformis
## TRUE FALSE
## Eugenia uniflora Eugenia uruguayensis
## FALSE FALSE
## Gochnatia polymorpha Handroanthus albus
## TRUE FALSE
## Ilex brevicuspis Ilex dumosa
## FALSE FALSE
## Ilex microdonta Ilex paraguariensis
## FALSE FALSE
## Ilex theezans Inga sessilis
## TRUE TRUE
## Jacaranda puberula Lamanonia ternata
## TRUE TRUE
## Lauraceae 1 Lithraea brasiliensis
## FALSE TRUE
## Machaerium paraguariense Machaerium stipitatum
## TRUE FALSE
## Matayba elaeagnoides Maytenus boaria
## TRUE FALSE
## Maytenus dasyclada Mimosa scabrella
## FALSE FALSE
## Myrceugenia euosma Myrceugenia myrcioides
## FALSE FALSE
## Myrceugenia oxysepala Myrcia guianensis
## FALSE TRUE
## Myrcia hatschbachii Myrcia laruotteana
## TRUE FALSE
## Myrcia multiflora Myrcia palustris
## FALSE TRUE
## Myrcianthes gigantea Myrciaria
## FALSE FALSE
## Myrrhinium atropurpureum Myrsine coriacea
## FALSE TRUE
## Myrsine sp. Myrsine umbellata
## FALSE TRUE
## Myrtaceae sp. Nectandra lanceolata
## FALSE FALSE
## Nectandra megapotamica NI
## FALSE FALSE
## Ocotea diospyrifolia Ocotea puberula
## FALSE FALSE
## Ocotea pulchella Oreopanax fulvus
## TRUE FALSE
## Piptocarpha angustifolia Podocarpus lambertii
## FALSE TRUE
## Prunus myrtifolia Quillaja brasiliensis
## TRUE FALSE
## Rhamnus sphaerosperma Roupala montana
## FALSE TRUE
## Sapium glandulosum Schinus terebinthifolius
## TRUE TRUE
## Scutia buxifolia Sebastiania brasiliensis
## FALSE FALSE
## Sebastiania commersoniana Solanum pabstii
## TRUE FALSE
## Solanum sanctaecatharinae Styrax leprosus
## TRUE FALSE
## Symplocos uniflora Vernonanthura discolor
## TRUE TRUE
## Xylosma ciliatifolia Xylosma tweediana
## TRUE FALSE
## Zanthoxylum kleinii Zanthoxylum rhoifolium
## TRUE TRUE
matriz.parc.10<-matriz.parc[,apply(matriz.parc, 2, sum)>10]
y <- dispindmorisita(matriz.parc.10, unique.rm = TRUE)
y
## imor mclu muni imst
## Allophylus guaraniticus 2.8225806 1.684594 0.43725537 0.51177664
## Annona rugulosa 2.9411765 2.326401 -0.09031772 0.50644776
## Araucaria angustifolia 1.9870968 1.171148 0.85931384 0.50835519
## Banara tomentosa 1.6304348 1.922714 0.24151811 0.34161996
## Blepharocalyx salicifolius 3.2163743 2.179023 0.03082869 0.51084620
## Calyptranthes concinna 6.4367816 1.731807 0.39844540 0.54873783
## Casearia decandra 1.1699619 1.143395 0.88212781 0.50027189
## Casearia obliqua 3.0976431 1.393008 0.67694290 0.51753488
## Celtis iguanaea 16.6666667 2.929310 -0.58591669 0.64592262
## Cinnamomum amoenum 1.5151515 2.929310 -0.58591669 0.13350665
## Cupania vernalis 2.4915825 1.393008 0.67694290 0.51130058
## Dalbergia frutescens 6.3636364 3.122241 -0.74450835 0.53457285
## Dasyphyllum tomentosum 2.1538462 1.848897 0.30219666 0.50316659
## Dicksonia sellowiana 7.3968706 1.573579 0.52851126 0.56012515
## Drimys brasiliensis 1.2987013 2.010591 0.16928174 0.14778544
## Duranta vestita 1.7647059 1.424448 0.65109833 0.50350235
## Eugenia pluriflora 2.3715415 1.964655 0.20704166 0.50423528
## Gochnatia polymorpha 4.5454545 3.122241 -0.74450835 0.51518005
## Ilex theezans 2.6190476 2.061121 0.12774582 0.50581915
## Inga sessilis 28.0219780 2.632493 -0.34192950 0.76800529
## Jacaranda puberula 4.7905617 1.124108 0.89798197 0.53750780
## Lamanonia ternata 2.4774775 1.589511 0.51541435 0.50917121
## Lithraea brasiliensis 1.5346535 1.212224 0.82554916 0.50330441
## Machaerium paraguariense 5.5555556 2.248377 -0.02618138 0.53462896
## Matayba elaeagnoides 4.2885829 1.255692 0.78981827 0.53111021
## Myrcia guianensis 2.7667984 1.964655 0.20704166 0.50834951
## Myrcia hatschbachii 3.9215686 2.248377 -0.02618138 0.51751973
## Myrcia palustris 3.3333333 2.414828 -0.16300557 0.50965118
## Myrsine coriacea 1.6666667 2.414828 -0.16300557 0.23559997
## Myrsine umbellata 2.0460358 1.312094 0.74345465 0.50753721
## Ocotea pulchella 0.9803922 1.643103 0.47136110 -0.01854559
## Podocarpus lambertii 1.4705882 1.312094 0.74345465 0.50162765
## Prunus myrtifolia 1.5151515 2.010591 0.16928174 0.25487633
## Roupala montana 3.2967033 2.632493 -0.34192950 0.50701124
## Sapium glandulosum 3.1934732 1.326499 0.73161410 0.51917855
## Schinus terebinthifolius 35.7894737 2.116969 0.08183771 0.85161208
## Sebastiania commersoniana 18.0147059 2.326401 -0.09031772 0.66453871
## Solanum sanctaecatharinae 2.1645022 2.010591 0.16928174 0.50160359
## Symplocos uniflora 2.2727273 2.929310 -0.58591669 0.32983996
## Vernonanthura discolor 3.5714286 2.061121 0.12774582 0.51575243
## Xylosma ciliatifolia 2.5974026 2.010591 0.16928174 0.50611397
## Zanthoxylum kleinii 5.1587302 1.786015 0.35388579 0.53497652
## Zanthoxylum rhoifolium 2.3809524 1.786015 0.35388579 0.50616976
## pchisq
## Allophylus guaraniticus 5.109267e-06
## Annona rugulosa 3.357340e-03
## Araucaria angustifolia 1.747199e-15
## Banara tomentosa 7.973246e-02
## Blepharocalyx salicifolius 4.247673e-04
## Calyptranthes concinna 2.935773e-21
## Casearia decandra 1.167383e-02
## Casearia obliqua 4.728755e-14
## Celtis iguanaea 9.429680e-24
## Cinnamomum amoenum 2.681175e-01
## Cupania vernalis 3.366007e-09
## Dalbergia frutescens 1.143292e-05
## Dasyphyllum tomentosum 5.429438e-03
## Dicksonia sellowiana 3.807201e-35
## Drimys brasiliensis 2.497814e-01
## Duranta vestita 6.369685e-04
## Eugenia pluriflora 4.076704e-03
## Gochnatia polymorpha 1.234802e-03
## Ilex theezans 2.500485e-03
## Inga sessilis 1.300579e-56
## Jacaranda puberula 1.915754e-115
## Lamanonia ternata 1.294590e-05
## Lithraea brasiliensis 1.199004e-05
## Machaerium paraguariense 9.097079e-09
## Matayba elaeagnoides 8.231758e-42
## Myrcia guianensis 5.460601e-04
## Myrcia hatschbachii 3.395690e-05
## Myrcia palustris 1.373030e-03
## Myrsine coriacea 1.550663e-01
## Myrsine umbellata 6.605116e-08
## Ocotea pulchella 4.992701e-01
## Podocarpus lambertii 2.723578e-03
## Prunus myrtifolia 1.383804e-01
## Roupala montana 4.367426e-03
## Sapium glandulosum 9.564804e-19
## Schinus terebinthifolius 4.843279e-118
## Sebastiania commersoniana 1.118438e-41
## Solanum sanctaecatharinae 1.342437e-02
## Symplocos uniflora 8.624581e-02
## Vernonanthura discolor 2.103234e-05
## Xylosma ciliatifolia 1.920311e-03
## Zanthoxylum kleinii 6.727342e-14
## Zanthoxylum rhoifolium 8.004724e-04
?vegdist
Atentar para os argumentos method e binary
Bray-Curtis
vegdist(matriz.setor, method="bray", binary=F)
## Norte
## Sul 0.4313619
vegdist(matriz.setor, method="bray", binary=T)
## Norte
## Sul 0.25
vegdist(matriz.setor, method="jaccard", binary=T)
## Norte
## Sul 0.4
vegdist(matriz.setor, method="euclidean", binary=F)
## Norte
## Sul 152.4041
Além da definição da medida de distância, é necessário escolher um método de ligação
UPGMA - Distância não-euclideâna (Maximização da correlação cofenética)
dist.bray<-vegdist(matriz.parc, method="bray", binary=F)
agrupamento<-hclust(dist.bray, method="average")
plot(agrupamento, hang=-1)
dist.ward<-vegdist(matriz.parc, method="euclidean", binary=F)
agrupamento<-hclust(dist.ward, method="ward.D2")
plot(agrupamento, hang=-1)
Ferramenta para reconhecimento de padrões
Explorando dados ambientais
dim (amb)
names(amb)
summary(amb)
amb.pca<-rda(amb, scale=T)
summary(amb.pca)
##
## Call:
## rda(X = amb, scale = T)
##
## Partitioning of correlations:
## Inertia Proportion
## Total 18 1
## Unconstrained 18 1
##
## Eigenvalues, and their contribution to the correlations
##
## Importance of components:
## PC1 PC2 PC3 PC4 PC5 PC6
## Eigenvalue 8.8268 2.1053 1.47089 1.21485 1.13823 0.79450
## Proportion Explained 0.4904 0.1170 0.08172 0.06749 0.06323 0.04414
## Cumulative Proportion 0.4904 0.6073 0.68905 0.75654 0.81978 0.86392
## PC7 PC8 PC9 PC10 PC11 PC12
## Eigenvalue 0.69897 0.48973 0.42928 0.30179 0.23173 0.164537
## Proportion Explained 0.03883 0.02721 0.02385 0.01677 0.01287 0.009141
## Cumulative Proportion 0.90275 0.92996 0.95381 0.97057 0.98345 0.992587
## PC13 PC14 PC15
## Eigenvalue 0.080657 0.043958 0.0088237
## Proportion Explained 0.004481 0.002442 0.0004902
## Cumulative Proportion 0.997068 0.999510 1.0000000
##
## Scaling 2 for species and site scores
## * Species are scaled proportional to eigenvalues
## * Sites are unscaled: weighted dispersion equal on all dimensions
## * General scaling constant of scores: 5.449632
##
##
## Species scores
##
## PC1 PC2 PC3 PC4 PC5 PC6
## arg -0.2415 -0.243726 -0.61642 -0.93366 -0.23462 0.27546
## ph 1.2063 0.120044 -0.13306 -0.08120 0.06712 -0.10549
## P 0.6868 -0.534307 -0.23192 -0.14070 -0.05421 0.62402
## K 0.6857 0.370407 -0.05829 -0.05568 0.72755 0.33868
## Na 0.8050 -0.249722 0.21765 -0.36965 -0.05084 -0.68786
## MO 0.6819 -0.659944 0.14244 0.12477 -0.63611 0.06970
## hal -1.1726 -0.357639 -0.14457 -0.01769 0.24199 -0.04616
## Al -1.0782 -0.130639 -0.32686 0.02056 0.05770 -0.25638
## Ca 1.0194 -0.387144 0.48975 0.17053 0.26978 0.13673
## Mg 0.9150 -0.515201 -0.24395 -0.22580 -0.17668 -0.21666
## CTCph7 -0.6621 -0.929702 0.05363 0.01849 0.52453 -0.02264
## CTCef -0.9615 -0.722142 -0.11014 0.02252 0.40017 -0.13252
## V 1.2511 -0.026752 0.13824 0.01822 0.06677 0.01076
## SB 1.1238 -0.445070 0.28497 0.04778 0.18798 0.04795
## cd -0.8865 0.168676 0.02078 0.31602 -0.25107 0.19016
## cotmedia -0.5742 -0.546073 0.17972 0.52136 -0.39358 0.15143
## desmax 0.7781 -0.086668 -0.80883 0.52985 -0.02268 -0.08816
## decmed 0.8180 -0.008116 -0.82156 0.46291 0.13976 -0.14450
##
##
## Site scores (weighted sums of species scores)
##
## PC1 PC2 PC3 PC4 PC5 PC6
## 1 -1.66327 -0.02792 -1.16446 -0.37252 0.646962 -1.02249
## 2 -0.99424 0.09757 -0.47235 0.17616 -0.041248 -0.48256
## 3 0.05129 -0.01909 0.77335 0.47820 -0.288871 0.64742
## 4 -1.62041 -0.93054 -0.34880 -0.10487 1.066213 -0.83574
## 5 -0.37980 0.20392 0.71619 0.49832 -0.123916 0.29290
## 6 0.26439 -0.51989 1.44843 0.42491 0.315730 0.35409
## 7 0.31237 -0.44804 1.31383 0.48432 0.235213 0.09818
## 8 -0.14761 0.15368 1.17712 0.59626 -0.082255 -0.78996
## 9 -1.06982 0.42656 -0.08967 -0.19907 -0.483676 -0.26290
## 10 -1.25665 0.36500 -0.76810 -1.19561 -0.349475 -0.20276
## 11 -0.34678 1.19636 -0.33424 -0.23672 -1.702831 0.27325
## 12 -0.24617 0.25802 -0.59060 0.99324 -0.688886 -0.19331
## 13 -0.14335 0.80187 -0.11434 -0.49371 -0.160703 -0.03167
## 14 -0.24758 -0.72102 0.10229 -0.54485 0.603770 0.05286
## 15 -0.36821 1.00738 -0.43001 -0.12467 -1.262976 0.57496
## 16 -0.94017 -0.27270 -0.66430 -0.03402 0.455160 -0.52404
## 17 0.24792 0.16699 0.51345 0.37312 0.137440 0.89975
## 18 -0.82473 -0.85432 0.44519 -0.06820 -0.700002 0.99987
## 19 -0.29982 -1.18314 0.35188 2.18371 -0.385066 -0.22783
## 20 -1.40695 -0.38943 -0.85724 0.96718 0.143737 -0.81069
## 21 -0.16251 0.39539 0.44913 1.51047 -0.939136 0.15812
## 22 0.71013 -1.19488 -0.03408 0.46999 -0.530523 0.54304
## 23 1.44978 -1.61758 0.47697 -0.15304 0.515726 -0.91473
## 24 0.33532 -0.68049 0.27773 -0.56959 -0.406943 -0.21474
## 25 0.35509 -1.17601 0.28517 -1.30899 -0.041913 0.75309
## 26 -0.47814 -0.26489 0.30354 -0.69511 -0.242876 0.80441
## 27 -0.07808 -0.40963 0.29224 -0.83906 -0.312402 1.28881
## 28 -0.49828 1.04624 -0.15756 -0.64334 -0.537544 0.71116
## 29 -0.94661 -1.01113 -0.77776 -0.87573 1.197117 0.74488
## 30 0.36259 1.11508 1.51742 0.63519 -0.198276 -0.62042
## 31 -0.11946 0.49193 0.61354 0.37228 0.272812 0.45660
## 32 -0.36848 -0.08644 0.36849 -0.05599 0.549167 -0.37684
## 33 0.39074 0.36672 -0.15212 0.85963 0.193988 0.44118
## 34 -0.22190 0.28937 0.93321 -0.08953 0.485077 0.28442
## 35 -0.22047 0.07618 1.23439 0.26175 1.035379 0.71099
## 36 0.61179 -0.41057 1.35380 -1.15807 0.156673 -1.95644
## 37 -0.22773 -0.40510 -0.58103 0.41236 0.635637 0.62514
## 38 0.13306 -0.65749 -0.15206 -0.82289 0.415861 -0.22236
## 39 -0.08562 0.42294 0.17896 -0.19334 -0.027633 0.48715
## 40 0.78941 1.15205 -0.19569 -0.36869 0.122711 0.29602
## 41 0.68842 1.19852 -0.46326 0.16470 0.135935 -1.23881
## 42 0.88612 2.28423 -0.39509 0.09470 3.488473 0.77132
## 43 0.24762 1.07609 -0.16870 -0.45954 -1.140394 0.60782
## 44 0.74628 0.42047 0.09715 -1.61812 -1.008378 -1.06608
## 45 1.64164 -0.08347 -0.96451 -0.62084 0.411489 -0.46992
## 46 1.25118 -0.57012 -1.19730 0.11311 -0.078978 -0.31414
## 47 1.50923 -1.05080 -1.97550 0.11948 -0.407121 2.04597
## 48 0.72591 0.06633 -1.72614 2.24212 -0.009111 -0.95500
## 49 0.83529 -0.25668 -0.20708 0.04120 -0.467749 -0.64277
## 50 0.81723 0.16246 -0.24147 -0.62630 -0.601388 -1.54721
Verificar quantos componentes principais explicam de forma significativa a variação total dos dados
screeplot(amb.pca, bstick = TRUE, type = "lines")
Plotagem da PCA
biplot(amb.pca, display="species",
scalling=3, col="black", xlim=c(-2,2), ylim=c(-2,2))
exposicao<-c(rep("Norte", 17), rep("Sul", 33))
points(amb.pca, "sites", pch=19, cex=1.2, col="black", bg="black",
select=exposicao=="Norte")
points(amb.pca, "sites", pch=1, col="black", bg="black",cex=1.2,
select=exposicao=="Sul")
legend(x = "topleft",
legend = c("Norte", "Sul"),
pch = c(19,1))
Plotagem da PCA
eixosPCA<-scores(amb.pca, choices = 1:2, display = "sites")
PCA1<-eixosPCA[,1]
PCA1
## 1 2 3 4 5 6
## -1.66327341 -0.99423747 0.05129339 -1.62040732 -0.37979635 0.26439320
## 7 8 9 10 11 12
## 0.31236821 -0.14760607 -1.06981556 -1.25664504 -0.34677992 -0.24616890
## 13 14 15 16 17 18
## -0.14335041 -0.24758077 -0.36821037 -0.94017340 0.24792304 -0.82472726
## 19 20 21 22 23 24
## -0.29982374 -1.40695375 -0.16250645 0.71012951 1.44978386 0.33532329
## 25 26 27 28 29 30
## 0.35509079 -0.47814414 -0.07807768 -0.49828137 -0.94661166 0.36259261
## 31 32 33 34 35 36
## -0.11946132 -0.36847863 0.39074326 -0.22189503 -0.22047406 0.61178897
## 37 38 39 40 41 42
## -0.22773481 0.13305563 -0.08561953 0.78941248 0.68842171 0.88612350
## 43 44 45 46 47 48
## 0.24762083 0.74627960 1.64164452 1.25118444 1.50922594 0.72591183
## 49 50
## 0.83529205 0.81723176
shapiro.test(PCA1)
##
## Shapiro-Wilk normality test
##
## data: PCA1
## W = 0.98054, p-value = 0.575
t.test(PCA1 ~ exposicao)
##
## Welch Two Sample t-test
##
## data: PCA1 by exposicao
## t = -3.8256, df = 36.281, p-value = 0.0004957
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.1656423 -0.3580773
## sample estimates:
## mean in group Norte mean in group Sul
## -0.5028275 0.2590323
ordNMDS<-metaMDS(as.data.frame.matrix(matriz.parc), k=4)
fig <-ordiplot(ordNMDS, type = "none")
points(fig, "sites", pch=19,select=exposicao=="Norte")
points(fig, "sites", pch=1, select=exposicao=="Sul")
sp.names <- make.cepnames(colnames(matriz.parc))
stems <- colSums(matriz.parc)
orditorp(ordNMDS, "sp", label = sp.names,
priority=stems, pch="+", pcol="grey")
legend(x = "topleft", legend = c("Norte", "Sul"), pch = c(19,1))
fig <-ordiplot(ordNMDS, type = "none")
points(fig, "sites", pch=19,select=exposicao=="Norte")
points(fig, "sites", pch=1, select=exposicao=="Sul")
sp.names <- make.cepnames(colnames(matriz.parc))
stems <- colSums(matriz.parc)
orditorp(ordNMDS, "sp", label = sp.names,
priority=stems, pch="+", pcol="grey")
legend(x = "topleft", legend = c("Norte", "Sul"), pch = c(19,1))
ordisurf(ordNMDS ~ PCA1, col = "blue", add = TRUE)
Importância
Aplicações Práticas
Instalando e carregando pacotres
install.packages("FD", repos="https://cloud.r-project.org")
##
## The downloaded binary packages are in
## /var/folders/_8/fv7tchz12mx1nvk8k86mnr680000gn/T//Rtmp7w5Z10/downloaded_packages
install.packages("ade4", repos= "https://cloud.r-project.org")
##
## The downloaded binary packages are in
## /var/folders/_8/fv7tchz12mx1nvk8k86mnr680000gn/T//Rtmp7w5Z10/downloaded_packages
library(FD)
library(ade4)
traits<-read.table("dados/traits.csv", header=T,
dec=",", sep=";",
row.names = 1)
com<-read.table("dados/com.csv", header=T,
dec=",", sep=";")
traits.dist<-gowdis(traits) # distância de gower, para variáveis categóricas
traits.dist.eucl<-cailliez(traits.dist) #transformação para distância euclideâna
traits.pcoa<-dudi.pco(traits.dist.eucl, scannf = FALSE, nf = 2)
summary(traits.pcoa)
scatter(traits.pcoa)
traits.hs<-dudi.hillsmith(traits, scannf = FALSE, nf = 2)
summary(traits.hs)
scatter(traits.hs)
*CWM = Community Weight Mean
div.func <- dbFD(traits, com,
corr = "cailliez",
w.abun=T)
div.func
div.func$RaoQ
summary(div.func$RaoQ)
hist(div.func$RaoQ)
div.func$CWM
summary(div.func$CWM)
## Species x species distance matrix was not Euclidean. Cailliez correction was applied.
## FRic: Dimensionality reduction was required. The last 12 PCoA axes (out of 17 in total) were removed.
## FRic: Quality of the reduced-space representation (based on corrected distance matrix) = 0.7096153
## $nbsp
## [1] 6 6 9 11 15 13 8 7 6 11 15 16 15 15 10 8 8 8 8 11 13 9 16
## [24] 11 12
##
## $sing.sp
## [1] 6 6 9 11 15 13 8 7 6 11 15 16 15 15 10 8 8 8 8 11 13 9 16
## [24] 11 12
##
## $FRic
## [1] 1.701374e-06 4.469394e-06 5.696701e-05 7.617572e-05 4.638981e-04
## [6] 6.232094e-04 8.225095e-05 1.647947e-05 1.043393e-06 1.367686e-04
## [11] 1.060210e-03 1.064993e-03 9.216791e-04 7.149760e-04 1.088182e-04
## [16] 2.704459e-05 1.809452e-05 9.931395e-06 2.739250e-06 2.282601e-04
## [21] 3.871523e-04 1.670447e-05 6.020594e-04 1.455325e-04 1.672048e-04
##
## $qual.FRic
## [1] 0.7096153
##
## $FEve
## [1] 0.6934175 0.3779311 0.5068645 0.6648568 0.7808703 0.7085845 0.3915754
## [8] 0.4255295 0.4890798 0.6895451 0.7326684 0.7747733 0.7241348 0.6194890
## [15] 0.5640070 0.6350105 0.6890385 0.6776917 0.5675089 0.5544553 0.6363097
## [22] 0.7274673 0.8415437 0.6884759 0.6671649
##
## $FDiv
## [1] 0.6554344 0.6619238 0.6895003 0.6592815 0.7296117 0.7537305 0.6510742
## [8] 0.7984487 0.7273462 0.6833119 0.7806063 0.7383027 0.7457102 0.7474127
## [15] 0.7379384 0.7246758 0.7800939 0.7453293 0.8072460 0.6059265 0.6678749
## [22] 0.6387584 0.8126102 0.6886366 0.4911008
##
## $FDis
## [1] 0.10476612 0.12619316 0.14371986 0.13496758 0.15350596 0.16433762
## [7] 0.13725767 0.13210059 0.13838472 0.14077595 0.19907212 0.18892989
## [13] 0.18174223 0.16649213 0.15541988 0.15876572 0.14721591 0.13432604
## [19] 0.09944852 0.09832454 0.14675669 0.10223861 0.19878610 0.12425234
## [25] 0.08481834
##
## $RaoQ
## [1] 0.01443958 0.01754580 0.02328394 0.02249951 0.02907238 0.03162781
## [7] 0.02200716 0.01838782 0.02076295 0.02641487 0.04561279 0.04228302
## [13] 0.03976211 0.03346936 0.02985990 0.02848246 0.02299939 0.02279779
## [19] 0.01392420 0.01603954 0.02643244 0.01365353 0.04373526 0.02314626
## [25] 0.01391159
##
## $CWM
## AF AFE DM Hmax Dec SD
## 1 5.436928 101.68757 0.5834526 12.81429 P Zoo
## 2 6.167338 99.45863 0.5869952 13.68333 P Zoo
## 3 6.656722 97.69237 0.6101795 14.14286 P Zoo
## 4 6.580093 102.76838 0.5778983 13.49091 P Zoo
## 5 6.718199 104.41190 0.5361976 12.75758 P Zoo
## 6 7.618422 102.62757 0.5219977 12.66279 P Zoo
## 7 6.960145 99.74801 0.5902900 13.23729 P Zoo
## 8 6.596034 97.91516 0.5991982 14.10294 P Zoo
## 9 6.661597 96.96368 0.6062242 14.35821 P Zoo
## 10 6.216049 106.24836 0.5598673 12.38000 P Zoo
## 11 8.426278 101.72864 0.5632224 13.19149 P Zoo
## 12 8.050706 102.83395 0.5578318 13.29412 P Zoo
## 13 7.444659 103.08833 0.5332741 13.57692 P Zoo
## 14 8.085461 105.79385 0.5343582 13.40000 P Zoo
## 15 5.770036 103.80049 0.5906381 12.93220 P Zoo
## 16 7.081918 99.60127 0.5777860 13.32432 P Zoo
## 17 6.004974 97.86701 0.5924458 13.97872 P Zoo
## 18 6.763918 105.76747 0.5447421 11.93182 P Zoo
## 19 4.769351 103.76283 0.5790798 12.55814 P Zoo
## 20 4.701606 104.23365 0.5742980 12.33824 P Zoo
## 21 7.479661 101.89468 0.5876119 13.55319 P Zoo
## 22 5.840690 102.88049 0.5629431 13.45714 P Zoo
## 23 8.501410 99.15315 0.5744437 12.86486 P Zoo
## 24 6.563005 107.59737 0.5496543 11.77273 P Zoo
## 25 5.435446 108.12279 0.5640417 12.05263 P Zoo
##
## [1] 0.01443958 0.01754580 0.02328394 0.02249951 0.02907238 0.03162781
## [7] 0.02200716 0.01838782 0.02076295 0.02641487 0.04561279 0.04228302
## [13] 0.03976211 0.03346936 0.02985990 0.02848246 0.02299939 0.02279779
## [19] 0.01392420 0.01603954 0.02643244 0.01365353 0.04373526 0.02314626
## [25] 0.01391159
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.01365 0.01839 0.02315 0.02569 0.02986 0.04561
## AF AFE DM Hmax Dec SD
## 1 5.436928 101.68757 0.5834526 12.81429 P Zoo
## 2 6.167338 99.45863 0.5869952 13.68333 P Zoo
## 3 6.656722 97.69237 0.6101795 14.14286 P Zoo
## 4 6.580093 102.76838 0.5778983 13.49091 P Zoo
## 5 6.718199 104.41190 0.5361976 12.75758 P Zoo
## 6 7.618422 102.62757 0.5219977 12.66279 P Zoo
## 7 6.960145 99.74801 0.5902900 13.23729 P Zoo
## 8 6.596034 97.91516 0.5991982 14.10294 P Zoo
## 9 6.661597 96.96368 0.6062242 14.35821 P Zoo
## 10 6.216049 106.24836 0.5598673 12.38000 P Zoo
## 11 8.426278 101.72864 0.5632224 13.19149 P Zoo
## 12 8.050706 102.83395 0.5578318 13.29412 P Zoo
## 13 7.444659 103.08833 0.5332741 13.57692 P Zoo
## 14 8.085461 105.79385 0.5343582 13.40000 P Zoo
## 15 5.770036 103.80049 0.5906381 12.93220 P Zoo
## 16 7.081918 99.60127 0.5777860 13.32432 P Zoo
## 17 6.004974 97.86701 0.5924458 13.97872 P Zoo
## 18 6.763918 105.76747 0.5447421 11.93182 P Zoo
## 19 4.769351 103.76283 0.5790798 12.55814 P Zoo
## 20 4.701606 104.23365 0.5742980 12.33824 P Zoo
## 21 7.479661 101.89468 0.5876119 13.55319 P Zoo
## 22 5.840690 102.88049 0.5629431 13.45714 P Zoo
## 23 8.501410 99.15315 0.5744437 12.86486 P Zoo
## 24 6.563005 107.59737 0.5496543 11.77273 P Zoo
## 25 5.435446 108.12279 0.5640417 12.05263 P Zoo
## AF AFE DM Hmax Dec
## Min. :4.702 Min. : 96.96 Min. :0.5220 Min. :11.77 P:25
## 1st Qu.:6.005 1st Qu.: 99.60 1st Qu.:0.5578 1st Qu.:12.66
## Median :6.657 Median :102.77 Median :0.5744 Median :13.24
## Mean :6.661 Mean :102.31 Mean :0.5703 Mean :13.11
## 3rd Qu.:7.445 3rd Qu.:104.23 3rd Qu.:0.5876 3rd Qu.:13.55
## Max. :8.501 Max. :108.12 Max. :0.6102 Max. :14.36
## SD
## Zoo:25
##
##
##
##
##