Objetivo Geral

Objetivos Específicos

Estrutura do Minicurso

Apresentação

Com o R você pode:

Pontos fortes

Quem está usando o R no dia-a-dia

Um pouco de história

A licença GPL é baseada em 4 liberdades:

1. A liberdade de executar o programa, para qualquer propósito;

2. A liberdade de estudar como o programa funciona e adaptá-lo para as suas necessidades;

3. A liberdade de redistribuir cópias de modo que você possa ajudar ao seu próximo;

4. A liberdade de aperfeiçoar o programa, e liberar os seus aperfeiçoamentos, de modo que toda a comunidade se beneficie deles.

  • 1997: Criação do R Development Core Team;
  • 2000: Primeira versão do R 1.0.0;
  • 2016: R 3.3.1 – “Bug in Your Hair”

Noções Básicas

Primeiro contato

Interface R

Versão Linux (Ubuntu)

Interface R-Studio

Conhecendo a interface do R-Studio

Criando um projeto

  • Dicas:
  • Não nomear diretórios com acento, espaço ou caracteres especiais;
  • Organização estrutura de diretórios para projetos:
    • dados
    • resultados (Figuras e tabelas)
    • R (funções)
    • manuscrito (artigo, dissertação, tese, referências)

Como encontrar e instalar pacotes

  • A partir da internet;
  • A partir de arquivos locais.

Fazendo contas simples

2+3+4+7
## [1] 16
5-5-8
## [1] -8
6*3*3
## [1] 54

Escrevendo scripts

s<-c(10, 4, 15, 10) #Número de espécies em parcelas
s
## [1] 10  4 15 10
x<-1
x
## [1] 1
y<-5
x+y 
## [1] 6
especies<-c("Araucaria angustifolia", "Lithraea brasiliensis", 
            "Jacaranda puberula") 
especies
## [1] "Araucaria angustifolia" "Lithraea brasiliensis" 
## [3] "Jacaranda puberula"
c(1,2,3,4,5,6,7,8,9,10)
##  [1]  1  2  3  4  5  6  7  8  9 10
(1:10)
##  [1]  1  2  3  4  5  6  7  8  9 10
seq(from=0, to=100, by = 10)
##  [1]   0  10  20  30  40  50  60  70  80  90 100
rep("norte", 10)
##  [1] "norte" "norte" "norte" "norte" "norte" "norte" "norte" "norte"
##  [9] "norte" "norte"
c(rep("norte",10), rep("sul", 10))
##  [1] "norte" "norte" "norte" "norte" "norte" "norte" "norte" "norte"
##  [9] "norte" "norte" "sul"   "sul"   "sul"   "sul"   "sul"   "sul"  
## [17] "sul"   "sul"   "sul"   "sul"
dinamica<-matrix(c(1,2,9,8,22,14,4,5,2), nc=3)
colnames(dinamica)<-c("P", "CEL", "CTS")
rownames(dinamica)<-c("Aumentou", "Estável", "Reduziu")
dinamica
##          P CEL CTS
## Aumentou 1   8   4
## Estável  2  22   5
## Reduziu  9  14   2
spp <- c("Araucaria", "Prunus", "Ocotea") 
dap <- c(35, 20, 25) 
tabela <- data.frame(spp, dap)  
tabela
##         spp dap
## 1 Araucaria  35
## 2    Prunus  20
## 3    Ocotea  25

Combinando vetores

x<-c(3,4,5,6)
y<-c(4,5,6,9)
z<-c(x,y)
z
## [1] 3 4 5 6 4 5 6 9
rbind(x,y)
##   [,1] [,2] [,3] [,4]
## x    3    4    5    6
## y    4    5    6    9
cbind(x,y)
##      x y
## [1,] 3 4
## [2,] 4 5
## [3,] 5 6
## [4,] 6 9
genero<-"Myrcia"
epiteto<-c("oblongata", "palustris", "splendes")
especie<-paste(genero,epiteto)
especie
## [1] "Myrcia oblongata" "Myrcia palustris" "Myrcia splendes"

Repetindo vetores

rep(especie, times=4)
##  [1] "Myrcia oblongata" "Myrcia palustris" "Myrcia splendes" 
##  [4] "Myrcia oblongata" "Myrcia palustris" "Myrcia splendes" 
##  [7] "Myrcia oblongata" "Myrcia palustris" "Myrcia splendes" 
## [10] "Myrcia oblongata" "Myrcia palustris" "Myrcia splendes"
rep(especie, each=4)
##  [1] "Myrcia oblongata" "Myrcia oblongata" "Myrcia oblongata"
##  [4] "Myrcia oblongata" "Myrcia palustris" "Myrcia palustris"
##  [7] "Myrcia palustris" "Myrcia palustris" "Myrcia splendes" 
## [10] "Myrcia splendes"  "Myrcia splendes"  "Myrcia splendes"

Operadores aritméticos

1+2 #adição
## [1] 3
4-3 #subtração
## [1] 1
5*5 #Multiplicação
## [1] 25
10/2 #Divisão
## [1] 5
5^2 #potência
## [1] 25
(5+5)*2 # O que tiver entre parentêses é calculado primeiro
## [1] 20

Funções matemáticas

log(30) #logarítmo natural
## [1] 3.401197
sqrt(30) #raiz quadrada
## [1] 5.477226
exp(1) # Exponencial
## [1] 2.718282

Funções trigonométricas

sin (30) # O R trabalha com os ângulos em Radiano!
## [1] -0.9880316
sin(30*pi/180) # para transformar radiano em graus.
## [1] 0.5

Operação com vetores

cap<-c(35,160,20,30,50, 141,21,25) 
cap
## [1]  35 160  20  30  50 141  21  25
dap<-cap/pi
dap
## [1] 11.140846 50.929582  6.366198  9.549297 15.915494 44.881694  6.684508
## [8]  7.957747
as<-(pi*dap^2)/40000
as
## [1] 0.009748240 0.203718327 0.003183099 0.007161972 0.019894368 0.158207971
## [7] 0.003509366 0.004973592
sum(as)
## [1] 0.4103969
bifurcacoes<-c(10,15,12)
sqrt(sum(bifurcacoes^2))
## [1] 21.65641
dap.fundido<-sqrt(sum(bifurcacoes^2))
dap.fundido
## [1] 21.65641

Obtendo um valor de um vetor

dap
## [1] 11.140846 50.929582  6.366198  9.549297 15.915494 44.881694  6.684508
## [8]  7.957747
dap[3]
## [1] 6.366198
dap[c(1,7)]
## [1] 11.140846  6.684508

Obtendo o valor máximo e mínimo de um vetor

max(dap)
## [1] 50.92958
min(dap)
## [1] 6.366198

Obtendo a estatística descritiva de um vetor ou tabela

summary(dap)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   6.366   7.639  10.345  19.178  23.157  50.930

Operadores lógicos

Operador Resultado
x == y Retorna TRUE se x for igual a y
x != y Retorna TRUE se x for diferente de y
x > y Retorna TRUE se x for maior do que y
x >= y Retorna TRUE se x for maior ou igual a y
x < y Retorna TRUE se x for menor do que y
x <= y Retorna TRUE se x for menor ou igual a y
dap
## [1] 11.140846 50.929582  6.366198  9.549297 15.915494 44.881694  6.684508
## [8]  7.957747
dap>10
## [1]  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE
which(dap>10)
## [1] 1 2 5 6

Criando funções

area.sec <- function(x){
 dap <- x/pi
  as <- (pi*dap^2)/40000
 return(list(areas.seccionais =as,soma.as=sum(as)))
}
area.sec(cap)
## $areas.seccionais
## [1] 0.009748240 0.203718327 0.003183099 0.007161972 0.019894368 0.158207971
## [7] 0.003509366 0.004973592
## 
## $soma.as
## [1] 0.4103969

Importando dados do excel

dados<-read.table("dados/vegetation_data.csv", header=T, 
                  sep=";", dec=",")
amb<-read.table("dados/environmental_data.csv",header=T, 
                sep=";", dec=",", row.names=1)
#dados<-read.table(file.choose(), header=T, sep=";", dec=",")
#amb<-read.table(file.choose(),header=T, sep=";", dec=",", 
#row.names=1)
head(dados)
##   parc   Exp      Family                spp       dap
## 1    1 Norte PRIMULACEAE  Myrsine umbellata 12.732395
## 2    1 Norte SAPINDACEAE  Allophylus edulis  8.594367
## 3    1 Norte PRIMULACEAE  Myrsine umbellata  7.002817
## 4    1 Norte PRIMULACEAE  Myrsine umbellata  7.639437
## 5    1 Norte PRIMULACEAE  Myrsine umbellata  6.684508
## 6    1 Norte   MYRTACEAE Eugenia pluriflora  5.252113
head(amb)
##   arg  ph   P   K Na  MO  hal   Al   Ca  Mg   CTCph7    CTCef         V
## 1  31 3.9 2.0  54  0 4.2 24.4 11.2  0.8 0.5 25.83846 37.03846  5.567133
## 2  27 4.2 1.7  95  0 7.3 19.4  6.1  2.8 1.2 23.64359 29.74359 17.948162
## 3  24 4.8 5.6 125  0 9.1  9.7  1.6  9.2 1.8 21.02051 22.62051 53.854599
## 4  28 3.8 1.3  88  0 6.5 27.4  9.4  2.7 1.0 31.32564 40.72564 12.531718
## 5  22 4.5 2.5 188  0 9.5 13.8  2.8  6.0 1.4 21.68205 24.48205 36.352886
## 6  21 4.9 6.6 202  4 9.6  9.7  1.1 11.1 2.1 23.43534 24.53534 58.609519
##          SB    cd cotmedia desmax decmed
## 1  1.438462 94.28  1000.25      4      8
## 2  4.243590 94.54  1009.25      5      9
## 3 11.320513 93.24  1014.50      4      9
## 4  3.925641 94.80  1019.50      2      5
## 5  7.882051 92.72  1022.75      3      6
## 6 13.735340 91.68  1028.75      3      6
str(dados)
## 'data.frame':    1843 obs. of  5 variables:
##  $ parc  : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ Exp   : Factor w/ 2 levels "Norte","Sul": 1 1 1 1 1 1 1 1 1 1 ...
##  $ Family: Factor w/ 36 levels "ANACARDIACEAE",..: 23 31 23 23 23 20 32 22 31 6 ...
##  $ spp   : Factor w/ 90 levels "Acca sellowiana",..: 62 2 62 62 62 27 83 72 45 31 ...
##  $ dap   : num  12.73 8.59 7 7.64 6.68 ...
summary(amb)
##       arg              ph              P                K        
##  Min.   :14.00   Min.   :3.800   Min.   : 0.500   Min.   : 38.0  
##  1st Qu.:22.25   1st Qu.:4.500   1st Qu.: 3.225   1st Qu.: 91.5  
##  Median :27.00   Median :4.750   Median : 5.300   Median :122.0  
##  Mean   :26.68   Mean   :4.870   Mean   : 6.052   Mean   :135.8  
##  3rd Qu.:30.00   3rd Qu.:5.275   3rd Qu.: 8.350   3rd Qu.:150.0  
##  Max.   :40.00   Max.   :6.300   Max.   :28.200   Max.   :609.0  
##        Na              MO              hal              Al        
##  Min.   : 0.00   Min.   : 0.500   Min.   : 3.10   Min.   : 0.000  
##  1st Qu.: 0.00   1st Qu.: 6.825   1st Qu.: 8.70   1st Qu.: 0.500  
##  Median : 0.00   Median : 8.200   Median :10.90   Median : 1.100  
##  Mean   : 2.24   Mean   : 8.108   Mean   :12.32   Mean   : 2.068  
##  3rd Qu.: 4.00   3rd Qu.: 9.600   3rd Qu.:15.40   3rd Qu.: 2.575  
##  Max.   :12.00   Max.   :12.000   Max.   :27.40   Max.   :11.200  
##        Ca               Mg            CTCph7          CTCef      
##  Min.   : 0.800   Min.   :0.100   Min.   :14.03   Min.   :15.42  
##  1st Qu.: 5.350   1st Qu.:1.000   1st Qu.:18.97   1st Qu.:19.84  
##  Median : 7.450   Median :1.700   Median :21.59   Median :23.10  
##  Mean   : 6.992   Mean   :1.916   Mean   :21.59   Mean   :23.66  
##  3rd Qu.: 9.000   3rd Qu.:2.675   3rd Qu.:24.17   3rd Qu.:26.33  
##  Max.   :14.400   Max.   :4.500   Max.   :33.51   Max.   :40.73  
##        V                SB               cd           cotmedia     
##  Min.   : 5.567   Min.   : 1.438   Min.   :67.76   Min.   : 900.7  
##  1st Qu.:31.455   1st Qu.: 7.329   1st Qu.:82.45   1st Qu.: 978.9  
##  Median :43.716   Median : 9.484   Median :88.82   Median :1001.1  
##  Mean   :44.605   Mean   : 9.266   Mean   :87.20   Mean   :1000.5  
##  3rd Qu.:58.498   3rd Qu.:11.587   3rd Qu.:92.53   3rd Qu.:1023.5  
##  Max.   :82.061   Max.   :19.393   Max.   :95.32   Max.   :1113.4  
##      desmax          decmed     
##  Min.   : 1.00   Min.   : 2.00  
##  1st Qu.: 3.25   1st Qu.: 6.00  
##  Median : 5.00   Median : 9.00  
##  Mean   : 6.18   Mean   :11.86  
##  3rd Qu.: 8.00   3rd Qu.:16.75  
##  Max.   :18.00   Max.   :38.00

Obtendo informações de um objeto

names(dados)
## [1] "parc"   "Exp"    "Family" "spp"    "dap"
names(amb)
##  [1] "arg"      "ph"       "P"        "K"        "Na"       "MO"      
##  [7] "hal"      "Al"       "Ca"       "Mg"       "CTCph7"   "CTCef"   
## [13] "V"        "SB"       "cd"       "cotmedia" "desmax"   "decmed"
dim(dados)
## [1] 1843    5
dim(amb)
## [1] 50 18

Selecionando variáveis de uma tabela

dados$dap
dados[,5]

Selecionando linhas

dados[1,]
##   parc   Exp      Family               spp     dap
## 1    1 Norte PRIMULACEAE Myrsine umbellata 12.7324
cas.dec<-dados[dados$spp=="Casearia decandra", ]
cas.dec
##      parc   Exp     Family               spp       dap
## 13      1 Norte SALICACEAE Casearia decandra  5.000000
## 24      1 Norte SALICACEAE Casearia decandra  8.350464
## 28      1 Norte SALICACEAE Casearia decandra  8.276057
## 30      1 Norte SALICACEAE Casearia decandra  6.684508
## 32      1 Norte SALICACEAE Casearia decandra  5.825071
## 38      1 Norte SALICACEAE Casearia decandra  8.244226
## 73      2 Norte SALICACEAE Casearia decandra  6.589015
## 99      3 Norte SALICACEAE Casearia decandra 10.185916
## 156     4 Norte SALICACEAE Casearia decandra  5.029296
## 166     5 Norte SALICACEAE Casearia decandra  9.969250
## 169     5 Norte SALICACEAE Casearia decandra 11.140846
## 171     5 Norte SALICACEAE Casearia decandra  5.220282
## 175     5 Norte SALICACEAE Casearia decandra  9.135494
## 182     5 Norte SALICACEAE Casearia decandra  5.411268
## 201     5 Norte SALICACEAE Casearia decandra 10.603590
## 202     5 Norte SALICACEAE Casearia decandra 11.974926
## 217     5 Norte SALICACEAE Casearia decandra  7.289296
## 220     6 Norte SALICACEAE Casearia decandra  9.167325
## 223     6 Norte SALICACEAE Casearia decandra  5.411268
## 226     6 Norte SALICACEAE Casearia decandra  6.461691
## 233     6 Norte SALICACEAE Casearia decandra  5.729578
## 235     6 Norte SALICACEAE Casearia decandra 20.991517
## 246     7 Norte SALICACEAE Casearia decandra  5.506761
## 255     7 Norte SALICACEAE Casearia decandra 13.655494
## 256     7 Norte SALICACEAE Casearia decandra  5.283944
## 268     7 Norte SALICACEAE Casearia decandra  7.760105
## 279     7 Norte SALICACEAE Casearia decandra  6.875494
## 282     8 Norte SALICACEAE Casearia decandra  7.257465
## 303     8 Norte SALICACEAE Casearia decandra  6.079719
## 310     8 Norte SALICACEAE Casearia decandra  5.888733
## 322     9 Norte SALICACEAE Casearia decandra  5.029296
## 330     9 Norte SALICACEAE Casearia decandra  5.411268
## 336     9 Norte SALICACEAE Casearia decandra  6.047888
## 339     9 Norte SALICACEAE Casearia decandra  6.810716
## 340     9 Norte SALICACEAE Casearia decandra  5.474930
## 351     9 Norte SALICACEAE Casearia decandra  6.652677
## 353    10 Norte SALICACEAE Casearia decandra  8.021409
## 359    10 Norte SALICACEAE Casearia decandra  5.920564
## 360    10 Norte SALICACEAE Casearia decandra  6.589015
## 363    10 Norte SALICACEAE Casearia decandra  7.575775
## 383    10 Norte SALICACEAE Casearia decandra 17.411551
## 393    11 Norte SALICACEAE Casearia decandra 11.331832
## 395    11 Norte SALICACEAE Casearia decandra 10.918029
## 417    11 Norte SALICACEAE Casearia decandra 10.026761
## 422    11 Norte SALICACEAE Casearia decandra  8.689860
## 438    12 Norte SALICACEAE Casearia decandra 16.376263
## 442    12 Norte SALICACEAE Casearia decandra 11.236339
## 456    12 Norte SALICACEAE Casearia decandra  8.116902
## 461    12 Norte SALICACEAE Casearia decandra  8.276057
## 534    14 Norte SALICACEAE Casearia decandra  5.793240
## 547    14 Norte SALICACEAE Casearia decandra  5.570423
## 549    14 Norte SALICACEAE Casearia decandra  5.856902
## 571    15 Norte SALICACEAE Casearia decandra  7.352958
## 572    15 Norte SALICACEAE Casearia decandra  5.252113
## 581    15 Norte SALICACEAE Casearia decandra 15.830885
## 582    15 Norte SALICACEAE Casearia decandra  6.079719
## 622    16 Norte SALICACEAE Casearia decandra  7.689342
## 624    16 Norte SALICACEAE Casearia decandra  5.952395
## 642    16 Norte SALICACEAE Casearia decandra  7.607606
## 663    16 Norte SALICACEAE Casearia decandra  6.759721
## 664    16 Norte SALICACEAE Casearia decandra  6.366198
## 667    16 Norte SALICACEAE Casearia decandra  7.260606
## 673    16 Norte SALICACEAE Casearia decandra 20.053523
## 674    16 Norte SALICACEAE Casearia decandra  6.047888
## 728    17 Norte SALICACEAE Casearia decandra  6.366198
## 739    17 Norte SALICACEAE Casearia decandra  5.156620
## 746    17 Norte SALICACEAE Casearia decandra 13.878311
## 756    17 Norte SALICACEAE Casearia decandra  5.220282
## 764    18   Sul SALICACEAE Casearia decandra  6.398029
## 774    18   Sul SALICACEAE Casearia decandra  7.970215
## 777    18   Sul SALICACEAE Casearia decandra  6.436238
## 795    19   Sul SALICACEAE Casearia decandra  5.283944
## 797    19   Sul SALICACEAE Casearia decandra  5.729578
## 804    19   Sul SALICACEAE Casearia decandra  5.665916
## 807    19   Sul SALICACEAE Casearia decandra  6.654504
## 849    20   Sul SALICACEAE Casearia decandra  9.899437
## 890    21   Sul SALICACEAE Casearia decandra  6.366198
## 892    21   Sul SALICACEAE Casearia decandra  8.530705
## 896    21   Sul SALICACEAE Casearia decandra  7.766761
## 897    21   Sul SALICACEAE Casearia decandra 11.045353
## 900    21   Sul SALICACEAE Casearia decandra  6.079719
## 903    21   Sul SALICACEAE Casearia decandra  5.474930
## 927    22   Sul SALICACEAE Casearia decandra  5.665916
## 931    22   Sul SALICACEAE Casearia decandra 33.079136
## 941    23   Sul SALICACEAE Casearia decandra 17.130692
## 954    23   Sul SALICACEAE Casearia decandra  7.174623
## 956    23   Sul SALICACEAE Casearia decandra 11.395494
## 963    24   Sul SALICACEAE Casearia decandra  6.047637
## 986    24   Sul SALICACEAE Casearia decandra  9.294649
## 988    24   Sul SALICACEAE Casearia decandra  5.570423
## 1000   25   Sul SALICACEAE Casearia decandra 10.414183
## 1008   25   Sul SALICACEAE Casearia decandra 12.127607
## 1010   25   Sul SALICACEAE Casearia decandra  7.512113
## 1021   25   Sul SALICACEAE Casearia decandra  7.507324
## 1024   25   Sul SALICACEAE Casearia decandra  7.766761
## 1025   26   Sul SALICACEAE Casearia decandra  9.660325
## 1037   26   Sul SALICACEAE Casearia decandra  9.199156
## 1047   26   Sul SALICACEAE Casearia decandra  8.435212
## 1049   26   Sul SALICACEAE Casearia decandra  7.384789
## 1056   26   Sul SALICACEAE Casearia decandra  5.315775
## 1065   27   Sul SALICACEAE Casearia decandra  6.716339
## 1070   27   Sul SALICACEAE Casearia decandra  8.276057
## 1075   27   Sul SALICACEAE Casearia decandra  5.156620
## 1087   27   Sul SALICACEAE Casearia decandra  5.156620
## 1100   28   Sul SALICACEAE Casearia decandra  5.220282
## 1112   28   Sul SALICACEAE Casearia decandra  6.620846
## 1126   29   Sul SALICACEAE Casearia decandra  6.493522
## 1127   29   Sul SALICACEAE Casearia decandra  6.212346
## 1143   29   Sul SALICACEAE Casearia decandra  5.538592
## 1145   30   Sul SALICACEAE Casearia decandra 10.122254
## 1151   30   Sul SALICACEAE Casearia decandra  5.920564
## 1162   30   Sul SALICACEAE Casearia decandra 11.363663
## 1163   30   Sul SALICACEAE Casearia decandra  8.785353
## 1179   30   Sul SALICACEAE Casearia decandra  6.557184
## 1191   31   Sul SALICACEAE Casearia decandra  7.734930
## 1201   31   Sul SALICACEAE Casearia decandra  8.530705
## 1205   31   Sul SALICACEAE Casearia decandra  6.461691
## 1220   31   Sul SALICACEAE Casearia decandra  8.296233
## 1252   32   Sul SALICACEAE Casearia decandra  5.347606
## 1256   32   Sul SALICACEAE Casearia decandra  5.825071
## 1260   33   Sul SALICACEAE Casearia decandra  7.639437
## 1264   33   Sul SALICACEAE Casearia decandra  9.326480
## 1266   33   Sul SALICACEAE Casearia decandra  6.493522
## 1272   33   Sul SALICACEAE Casearia decandra  8.880846
## 1274   33   Sul SALICACEAE Casearia decandra  8.594367
## 1278   33   Sul SALICACEAE Casearia decandra 11.745635
## 1295   34   Sul SALICACEAE Casearia decandra  7.766761
## 1302   34   Sul SALICACEAE Casearia decandra  9.517466
## 1306   35   Sul SALICACEAE Casearia decandra  5.284328
## 1308   35   Sul SALICACEAE Casearia decandra  5.793240
## 1327   35   Sul SALICACEAE Casearia decandra  7.384789
## 1331   35   Sul SALICACEAE Casearia decandra  6.334367
## 1332   35   Sul SALICACEAE Casearia decandra  7.098310
## 1347   36   Sul SALICACEAE Casearia decandra  7.512113
## 1355   36   Sul SALICACEAE Casearia decandra  8.562536
## 1380   37   Sul SALICACEAE Casearia decandra 15.314047
## 1402   37   Sul SALICACEAE Casearia decandra  9.820930
## 1436   38   Sul SALICACEAE Casearia decandra 58.569019
## 1438   38   Sul SALICACEAE Casearia decandra  6.780001
## 1499   40   Sul SALICACEAE Casearia decandra  5.634085
## 1515   40   Sul SALICACEAE Casearia decandra  5.856902
## 1539   41   Sul SALICACEAE Casearia decandra  8.689860
## 1559   42   Sul SALICACEAE Casearia decandra  5.729578
## 1574   43   Sul SALICACEAE Casearia decandra  5.156620
## 1584   43   Sul SALICACEAE Casearia decandra  7.034648
## 1588   43   Sul SALICACEAE Casearia decandra 10.631550
## 1660   45   Sul SALICACEAE Casearia decandra  9.071832
## 1724   46   Sul SALICACEAE Casearia decandra  7.480282
## 1725   46   Sul SALICACEAE Casearia decandra 12.824610
summary(cas.dec$dap)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   5.000   5.889   7.261   8.482   9.135  58.569
mean(cas.dec$dap)
## [1] 8.482273
sd(cas.dec$dap)
## [1] 5.472392

Plotando um histograma de frequência

hist(cas.dec$dap)

Plotando um gráfico de dispersão

cap<-c(37,52,18,21,75)
h<-c(21, 24, 10, 12, 30)
dap<-cap/pi
plot(dap, h, pch=20, xlab="DAP (cm) ", ylab="Altura (m)")

Salvando resultados

jpeg(file="resultados/plot1.jpg")
plot(dap, h, pch=20, xlab="DAP (cm) ", ylab="Altura (m)")
dev.off()
## quartz_off_screen 
##                 2

Aplicações práticas

Descritores Fitossociológicos

names(dados)
## [1] "parc"   "Exp"    "Family" "spp"    "dap"
source("R/fitoR.R")
fitoR(dados, 200, "resultados/fitossociologia")
##                              N   AB  DA   DR  DoA   DoR FA   FR   VI
## Araucaria angustifolia     125 5.27 125 6.78 5.27 14.35 68 4.05 8.40
## Lithraea brasiliensis      101 3.94 101 5.48 3.94 10.72 80 4.77 6.99
## Casearia decandra          149 1.19 149 8.08 1.19  3.24 86 5.13 5.48
## Jacaranda puberula         172 1.54 172 9.33 1.54  4.20 46 2.74 5.43
## Matayba elaeagnoides        84 2.21  84 4.56 2.21  6.01 38 2.26 4.28
## Podocarpus lambertii        69 1.48  69 3.74 1.48  4.03 64 3.81 3.86
## Sapium glandulosum          66 1.26  66 3.58 1.26  3.42 40 2.38 3.13
## Ocotea pulchella            34 1.60  34 1.84 1.60  4.36 52 3.10 3.10
## Myrsine umbellata           69 0.70  69 3.74 0.70  1.92 56 3.34 3.00
## Lamanonia ternata           37 1.67  37 2.01 1.67  4.55 40 2.38 2.98
## Casearia obliqua            55 0.92  55 2.98 0.92  2.49 48 2.86 2.78
## Cupania vernalis            55 0.69  55 2.98 0.69  1.87 56 3.34 2.73
## Dicksonia sellowiana        38 1.53  38 2.06 1.53  4.18 22 1.31 2.52
## Duranta vestita             51 0.32  51 2.77 0.32  0.88 56 3.34 2.33
## Dasyphyllum tomentosum      26 1.27  26 1.41 1.27  3.46 34 2.03 2.30
## Vernonanthura discolor      21 1.02  21 1.14 1.02  2.78 22 1.31 1.74
## Prunus myrtifolia           22 0.68  22 1.19 0.68  1.85 36 2.15 1.73
## Zanthoxylum rhoifolium      28 0.34  28 1.52 0.34  0.91 32 1.91 1.45
## Allophylus guaraniticus     32 0.22  32 1.74 0.22  0.60 30 1.79 1.37
## Solanum sanctaecatharinae   22 0.37  22 1.19 0.37  1.01 30 1.79 1.33
## Zanthoxylum kleinii         28 0.47  28 1.52 0.47  1.27 20 1.19 1.33
## Ilex theezans               21 0.38  21 1.14 0.38  1.04 28 1.67 1.28
## Cinnamomum amoenum          12 0.68  12 0.65 0.68  1.85 20 1.19 1.23
## Banara tomentosa            24 0.11  24 1.30 0.11  0.31 34 2.03 1.21
## Eugenia pluriflora          23 0.20  23 1.25 0.20  0.55 30 1.79 1.20
## Drimys brasiliensis         22 0.12  22 1.19 0.12  0.32 34 2.03 1.18
## Myrcia guianensis           23 0.20  23 1.25 0.20  0.55 28 1.67 1.15
## Calyptranthes concinna      30 0.22  30 1.63 0.22  0.60 20 1.19 1.14
## Myrsine coriacea            16 0.35  16 0.87 0.35  0.94 26 1.55 1.12
## Machaerium paraguariense    18 0.35  18 0.98 0.35  0.95 22 1.31 1.08
## Xylosma ciliatifolia        22 0.16  22 1.19 0.16  0.44 26 1.55 1.06
## Myrcia hatschbachii         18 0.28  18 0.98 0.28  0.75 20 1.19 0.97
## Blepharocalyx salicifolius  19 0.14  19 1.03 0.14  0.38 24 1.43 0.95
## Dasyphyllum spinescens       8 0.51   8 0.43 0.51  1.40 14 0.83 0.89
## Annona rugulosa             17 0.11  17 0.92 0.11  0.31 24 1.43 0.89
## Gochnatia polymorpha        11 0.38  11 0.60 0.38  1.02 14 0.83 0.82
## Roupala montana             14 0.22  14 0.76 0.22  0.61 18 1.07 0.81
## Myrcia palustris            16 0.12  16 0.87 0.12  0.34 20 1.19 0.80
## Sebastiania commersoniana   17 0.27  17 0.92 0.27  0.74 10 0.60 0.75
## Symplocos uniflora          12 0.15  12 0.65 0.15  0.42 18 1.07 0.71
## Schinus terebinthifolius    20 0.15  20 1.09 0.15  0.42  8 0.48 0.66
## Campomanesia xanthocarpa     8 0.21   8 0.43 0.21  0.58 14 0.83 0.62
## Dalbergia frutescens        11 0.11  11 0.60 0.11  0.31 14 0.83 0.58
## Oreopanax fulvus            10 0.10  10 0.54 0.10  0.27 14 0.83 0.55
## Nectandra megapotamica       7 0.15   7 0.38 0.15  0.41 14 0.83 0.54
## Celtis iguanaea             12 0.11  12 0.65 0.11  0.30 10 0.60 0.52
## Scutia buxifolia             8 0.14   8 0.43 0.14  0.37 12 0.72 0.51
## Inga sessilis               14 0.19  14 0.76 0.19  0.51  4 0.24 0.50
## Styrax leprosus              8 0.13   8 0.43 0.13  0.36 12 0.72 0.50
## Ocotea puberula              4 0.26   4 0.22 0.26  0.70  8 0.48 0.46
## Myrcia laruotteana           7 0.06   7 0.38 0.06  0.17 14 0.83 0.46
## Cedrela fissilis             9 0.15   9 0.49 0.15  0.41  8 0.48 0.46
## Allophylus edulis            7 0.05   7 0.38 0.05  0.13 12 0.72 0.41
## Sebastiania brasiliensis     9 0.07   9 0.49 0.07  0.19  8 0.48 0.39
## Clethra scabra               6 0.11   6 0.33 0.11  0.29  8 0.48 0.37
## Coutarea hexandra            5 0.07   5 0.27 0.07  0.18 10 0.60 0.35
## Eugenia pyriformis           5 0.06   5 0.27 0.06  0.17 10 0.60 0.35
## Erythroxylum deciduum        5 0.10   5 0.27 0.10  0.27  8 0.48 0.34
## Ilex dumosa                  6 0.04   6 0.33 0.04  0.12  8 0.48 0.31
## Escallonia bifida            6 0.08   6 0.33 0.08  0.23  6 0.36 0.30
## Maytenus dasyclada           4 0.06   4 0.22 0.06  0.16  8 0.48 0.28
## Ilex brevicuspis             5 0.11   5 0.27 0.11  0.30  4 0.24 0.27
## Xylosma tweediana            4 0.01   4 0.22 0.01  0.03  8 0.48 0.24
## Myrrhinium atropurpureum     3 0.03   3 0.16 0.03  0.09  6 0.36 0.20
## Solanum pabstii              3 0.02   3 0.16 0.02  0.04  6 0.36 0.19
## Nectandra lanceolata         2 0.06   2 0.11 0.06  0.16  4 0.24 0.17
## NI                           3 0.04   3 0.16 0.04  0.11  4 0.24 0.17
## Ilex microdonta              2 0.03   2 0.11 0.03  0.09  4 0.24 0.15
## Eugenia uniflora             2 0.03   2 0.11 0.03  0.08  4 0.24 0.14
## Myrcia multiflora            1 0.08   1 0.05 0.08  0.21  2 0.12 0.13
## Mimosa scabrella             1 0.06   1 0.05 0.06  0.17  2 0.12 0.11
## Handroanthus albus           1 0.03   1 0.05 0.03  0.09  2 0.12 0.09
## Machaerium stipitatum        1 0.03   1 0.05 0.03  0.09  2 0.12 0.09
## Ocotea diospyrifolia         1 0.03   1 0.05 0.03  0.08  2 0.12 0.08
## Lauraceae 1                  1 0.03   1 0.05 0.03  0.07  2 0.12 0.08
## Piptocarpha angustifolia     1 0.02   1 0.05 0.02  0.06  2 0.12 0.08
## Maytenus boaria              1 0.01   1 0.05 0.01  0.03  2 0.12 0.07
## Myrtaceae sp.                1 0.01   1 0.05 0.01  0.02  2 0.12 0.06
## Myrsine sp.                  1 0.01   1 0.05 0.01  0.02  2 0.12 0.06
## Myrceugenia myrcioides       1 0.01   1 0.05 0.01  0.02  2 0.12 0.06
## Quillaja brasiliensis        1 0.00   1 0.05 0.00  0.01  2 0.12 0.06
## Citronella paniculata        1 0.00   1 0.05 0.00  0.01  2 0.12 0.06
## Ilex paraguariensis          1 0.00   1 0.05 0.00  0.01  2 0.12 0.06
## Acca sellowiana              1 0.00   1 0.05 0.00  0.01  2 0.12 0.06
## Myrceugenia euosma           1 0.00   1 0.05 0.00  0.01  2 0.12 0.06
## Myrciaria                    1 0.00   1 0.05 0.00  0.01  2 0.12 0.06
## Myrceugenia oxysepala        1 0.00   1 0.05 0.00  0.01  2 0.12 0.06
## Eugenia uruguayensis         1 0.00   1 0.05 0.00  0.01  2 0.12 0.06
## Rhamnus sphaerosperma        1 0.00   1 0.05 0.00  0.01  2 0.12 0.06
## Myrcianthes gigantea         1 0.00   1 0.05 0.00  0.01  2 0.12 0.06
## Densidade total por área =  1843 ± 616.61 ind/ha
## Área basal total por área =  36.72 ± 12.86 m2/ha
## Riqueza =  90 esp.
## Índice de Shannon-Wiener (H') =  3.744051
## Equabilidade de Pielou (J) =  0.8320464

https://higuchip.shinyapps.io/FitoCom/

Dinâmica florestal

https://github.com/higuchip/forest.din

source("https://bit.ly/2Eytboh")
dados.din<-read.table("https://bit.ly/2XzHBNH", header=T,
                      dec=",", sep=";")
head(dados.din)
##   Parcela n                                                   Especie
## 1       1 1                                   Myrsine umbellata Mart.
## 2       1 2 Allophylus edulis (A.St.-Hil., Cambess. & A.Juss.) Radlk.
## 3       1 3                                   Myrsine umbellata Mart.
## 4       1 4                                   Myrsine umbellata Mart.
## 5       1 5                                   Myrsine umbellata Mart.
## 6       1 6                                    Eugenia pluriflora DC.
##        DAP1      DAP2
## 1 12.732395 13.050705
## 2  8.594367  8.753522
## 3  7.002817  7.671268
## 4  7.639437  8.021409
## 5  6.684508        NA
## 6  5.252113  5.729578
dinamica<-forest.din(dados.din, 5)
## $n.parc
##   N0 sob mort recr N1 TX.MORT TX.RECR TX.NC TURN
## 1 46  42    4    3 45    1.80    1.37 -0.44 1.59
## 2 35  34    1    1 35    0.58    0.58  0.00 0.58
## 
## $n.spp
##                                                           N0 sob mort recr
## Allophylus edulis (A.St.-Hil., Cambess. & A.Juss.) Radlk.  1   1    0    0
## Araucaria angustifolia (Bertol.) Kuntze                    3   3    0    1
## Calyptranthes concinna DC.                                 4   4    0    0
## Casearia decandra Jacq.                                    7   4    3    2
## Casearia obliqua Spreng.                                   1   1    0    0
## Cupania vernalis Cambess.                                  4   4    0    1
## Dasyphyllum spinescens (Less.) Cabrera                     1   1    0    0
## Drimys brasiliensis Miers                                  1   1    0    0
## Duranta vestita Cham.                                      2   2    0    0
## Erythroxylum deciduum A.St.-Hil.                           1   1    0    0
## Eugenia pluriflora DC.                                     5   5    0    0
## Ilex theezans Mart. ex Reissek                             1   1    0    0
## Jacaranda puberula Cham.                                  13  12    1    0
## Lamanonia ternata Vell.                                    1   1    0    0
## Lithraea brasiliensis Marchand                             5   5    0    0
## Matayba elaeagnoides Radlk.                                3   3    0    0
## Maytenus dasyclada Mart.                                   1   1    0    0
## Moquiniastrum polymorphum (Less.) G. Sancho                4   4    0    0
## Myrcia laruotteana Cambess.                                1   1    0    0
## Myrsine umbellata Mart.                                    6   5    1    0
## Ocotea pulchella Mart.                                     3   3    0    0
## Podocarpus lambertii Klotzsch ex Endl.                     7   7    0    0
## Scutia buxifolia Reissek                                   1   1    0    0
## Solanum sanctaecatharinae Dunal                            3   3    0    0
## Zanthoxylum kleinii (R.S.Cowan) P.G.Waterman               2   2    0    0
##                                                           N1 TX.MORT
## Allophylus edulis (A.St.-Hil., Cambess. & A.Juss.) Radlk.  1    0.00
## Araucaria angustifolia (Bertol.) Kuntze                    4    0.00
## Calyptranthes concinna DC.                                 4    0.00
## Casearia decandra Jacq.                                    6   10.59
## Casearia obliqua Spreng.                                   1    0.00
## Cupania vernalis Cambess.                                  5    0.00
## Dasyphyllum spinescens (Less.) Cabrera                     1    0.00
## Drimys brasiliensis Miers                                  1    0.00
## Duranta vestita Cham.                                      2    0.00
## Erythroxylum deciduum A.St.-Hil.                           1    0.00
## Eugenia pluriflora DC.                                     5    0.00
## Ilex theezans Mart. ex Reissek                             1    0.00
## Jacaranda puberula Cham.                                  12    1.59
## Lamanonia ternata Vell.                                    1    0.00
## Lithraea brasiliensis Marchand                             5    0.00
## Matayba elaeagnoides Radlk.                                3    0.00
## Maytenus dasyclada Mart.                                   1    0.00
## Moquiniastrum polymorphum (Less.) G. Sancho                4    0.00
## Myrcia laruotteana Cambess.                                1    0.00
## Myrsine umbellata Mart.                                    5    3.58
## Ocotea pulchella Mart.                                     3    0.00
## Podocarpus lambertii Klotzsch ex Endl.                     7    0.00
## Scutia buxifolia Reissek                                   1    0.00
## Solanum sanctaecatharinae Dunal                            3    0.00
## Zanthoxylum kleinii (R.S.Cowan) P.G.Waterman               2    0.00
##                                                           TX.RECR TX.NC
## Allophylus edulis (A.St.-Hil., Cambess. & A.Juss.) Radlk.    0.00  0.00
## Araucaria angustifolia (Bertol.) Kuntze                      5.59  5.92
## Calyptranthes concinna DC.                                   0.00  0.00
## Casearia decandra Jacq.                                      7.79 -3.04
## Casearia obliqua Spreng.                                     0.00  0.00
## Cupania vernalis Cambess.                                    4.36  4.56
## Dasyphyllum spinescens (Less.) Cabrera                       0.00  0.00
## Drimys brasiliensis Miers                                    0.00  0.00
## Duranta vestita Cham.                                        0.00  0.00
## Erythroxylum deciduum A.St.-Hil.                             0.00  0.00
## Eugenia pluriflora DC.                                       0.00  0.00
## Ilex theezans Mart. ex Reissek                               0.00  0.00
## Jacaranda puberula Cham.                                     0.00 -1.59
## Lamanonia ternata Vell.                                      0.00  0.00
## Lithraea brasiliensis Marchand                               0.00  0.00
## Matayba elaeagnoides Radlk.                                  0.00  0.00
## Maytenus dasyclada Mart.                                     0.00  0.00
## Moquiniastrum polymorphum (Less.) G. Sancho                  0.00  0.00
## Myrcia laruotteana Cambess.                                  0.00  0.00
## Myrsine umbellata Mart.                                      0.00 -3.58
## Ocotea pulchella Mart.                                       0.00  0.00
## Podocarpus lambertii Klotzsch ex Endl.                       0.00  0.00
## Scutia buxifolia Reissek                                     0.00  0.00
## Solanum sanctaecatharinae Dunal                              0.00  0.00
## Zanthoxylum kleinii (R.S.Cowan) P.G.Waterman                 0.00  0.00
##                                                           TURN
## Allophylus edulis (A.St.-Hil., Cambess. & A.Juss.) Radlk. 0.00
## Araucaria angustifolia (Bertol.) Kuntze                   2.80
## Calyptranthes concinna DC.                                0.00
## Casearia decandra Jacq.                                   9.19
## Casearia obliqua Spreng.                                  0.00
## Cupania vernalis Cambess.                                 2.18
## Dasyphyllum spinescens (Less.) Cabrera                    0.00
## Drimys brasiliensis Miers                                 0.00
## Duranta vestita Cham.                                     0.00
## Erythroxylum deciduum A.St.-Hil.                          0.00
## Eugenia pluriflora DC.                                    0.00
## Ilex theezans Mart. ex Reissek                            0.00
## Jacaranda puberula Cham.                                  0.79
## Lamanonia ternata Vell.                                   0.00
## Lithraea brasiliensis Marchand                            0.00
## Matayba elaeagnoides Radlk.                               0.00
## Maytenus dasyclada Mart.                                  0.00
## Moquiniastrum polymorphum (Less.) G. Sancho               0.00
## Myrcia laruotteana Cambess.                               0.00
## Myrsine umbellata Mart.                                   1.79
## Ocotea pulchella Mart.                                    0.00
## Podocarpus lambertii Klotzsch ex Endl.                    0.00
## Scutia buxifolia Reissek                                  0.00
## Solanum sanctaecatharinae Dunal                           0.00
## Zanthoxylum kleinii (R.S.Cowan) P.G.Waterman              0.00
## 
## $ab.parc
##      AB0  G.sob   P.sob   AB.m   AB.r    AB1 Tx.perda.AB Tx.ganho.AB
## 1 0.7342 0.0763 -0.0200 0.0169 0.0066 0.7802      1.0266      2.2227
## 2 1.1205 0.1658 -0.0038 0.0031 0.0020 1.2815      0.1222      2.7691
##   Tx.nc.AB Turn.AB
## 1   1.2232  1.6247
## 2   2.7223  1.4456
## 
## $ab.spp
##                                                              AB0  G.sob
## Allophylus edulis (A.St.-Hil., Cambess. & A.Juss.) Radlk. 0.0058 0.0002
## Araucaria angustifolia (Bertol.) Kuntze                   0.1542 0.0381
## Calyptranthes concinna DC.                                0.0191 0.0016
## Casearia decandra Jacq.                                   0.0276 0.0032
## Casearia obliqua Spreng.                                  0.0040 0.0010
## Cupania vernalis Cambess.                                 0.1103 0.0218
## Dasyphyllum spinescens (Less.) Cabrera                    0.3151 0.0392
## Drimys brasiliensis Miers                                 0.0050 0.0000
## Duranta vestita Cham.                                     0.0092 0.0014
## Erythroxylum deciduum A.St.-Hil.                          0.0466 0.0069
## Eugenia pluriflora DC.                                    0.0276 0.0020
## Ilex theezans Mart. ex Reissek                            0.0069 0.0000
## Jacaranda puberula Cham.                                  0.1012 0.0189
## Lamanonia ternata Vell.                                   0.0021 0.0000
## Lithraea brasiliensis Marchand                            0.1775 0.0274
## Matayba elaeagnoides Radlk.                               0.0733 0.0047
## Maytenus dasyclada Mart.                                  0.0100 0.0000
## Moquiniastrum polymorphum (Less.) G. Sancho               0.2310 0.0140
## Myrcia laruotteana Cambess.                               0.0200 0.0000
## Myrsine umbellata Mart.                                   0.0660 0.0065
## Ocotea pulchella Mart.                                    0.2639 0.0333
## Podocarpus lambertii Klotzsch ex Endl.                    0.1295 0.0115
## Scutia buxifolia Reissek                                  0.0077 0.0010
## Solanum sanctaecatharinae Dunal                           0.0368 0.0093
## Zanthoxylum kleinii (R.S.Cowan) P.G.Waterman              0.0044 0.0001
##                                                             P.sob   AB.m
## Allophylus edulis (A.St.-Hil., Cambess. & A.Juss.) Radlk.  0.0000 0.0000
## Araucaria angustifolia (Bertol.) Kuntze                    0.0000 0.0000
## Calyptranthes concinna DC.                                -0.0019 0.0000
## Casearia decandra Jacq.                                    0.0000 0.0134
## Casearia obliqua Spreng.                                   0.0000 0.0000
## Cupania vernalis Cambess.                                 -0.0011 0.0000
## Dasyphyllum spinescens (Less.) Cabrera                     0.0000 0.0000
## Drimys brasiliensis Miers                                 -0.0007 0.0000
## Duranta vestita Cham.                                      0.0000 0.0000
## Erythroxylum deciduum A.St.-Hil.                           0.0000 0.0000
## Eugenia pluriflora DC.                                     0.0000 0.0000
## Ilex theezans Mart. ex Reissek                            -0.0007 0.0000
## Jacaranda puberula Cham.                                   0.0000 0.0031
## Lamanonia ternata Vell.                                    0.0000 0.0000
## Lithraea brasiliensis Marchand                            -0.0003 0.0000
## Matayba elaeagnoides Radlk.                               -0.0066 0.0000
## Maytenus dasyclada Mart.                                  -0.0054 0.0000
## Moquiniastrum polymorphum (Less.) G. Sancho               -0.0068 0.0000
## Myrcia laruotteana Cambess.                               -0.0002 0.0000
## Myrsine umbellata Mart.                                    0.0000 0.0035
## Ocotea pulchella Mart.                                     0.0000 0.0000
## Podocarpus lambertii Klotzsch ex Endl.                    -0.0001 0.0000
## Scutia buxifolia Reissek                                   0.0000 0.0000
## Solanum sanctaecatharinae Dunal                            0.0000 0.0000
## Zanthoxylum kleinii (R.S.Cowan) P.G.Waterman               0.0000 0.0000
##                                                             AB.r    AB1
## Allophylus edulis (A.St.-Hil., Cambess. & A.Juss.) Radlk. 0.0000 0.0060
## Araucaria angustifolia (Bertol.) Kuntze                   0.0020 0.1943
## Calyptranthes concinna DC.                                0.0000 0.0187
## Casearia decandra Jacq.                                   0.0045 0.0218
## Casearia obliqua Spreng.                                  0.0000 0.0051
## Cupania vernalis Cambess.                                 0.0021 0.1332
## Dasyphyllum spinescens (Less.) Cabrera                    0.0000 0.3543
## Drimys brasiliensis Miers                                 0.0000 0.0042
## Duranta vestita Cham.                                     0.0000 0.0106
## Erythroxylum deciduum A.St.-Hil.                          0.0000 0.0535
## Eugenia pluriflora DC.                                    0.0000 0.0296
## Ilex theezans Mart. ex Reissek                            0.0000 0.0062
## Jacaranda puberula Cham.                                  0.0000 0.1170
## Lamanonia ternata Vell.                                   0.0000 0.0021
## Lithraea brasiliensis Marchand                            0.0000 0.2047
## Matayba elaeagnoides Radlk.                               0.0000 0.0713
## Maytenus dasyclada Mart.                                  0.0000 0.0046
## Moquiniastrum polymorphum (Less.) G. Sancho               0.0000 0.2383
## Myrcia laruotteana Cambess.                               0.0000 0.0198
## Myrsine umbellata Mart.                                   0.0000 0.0691
## Ocotea pulchella Mart.                                    0.0000 0.2972
## Podocarpus lambertii Klotzsch ex Endl.                    0.0000 0.1409
## Scutia buxifolia Reissek                                  0.0000 0.0087
## Solanum sanctaecatharinae Dunal                           0.0000 0.0462
## Zanthoxylum kleinii (R.S.Cowan) P.G.Waterman              0.0000 0.0045
##                                                           Tx.perda.AB
## Allophylus edulis (A.St.-Hil., Cambess. & A.Juss.) Radlk.      0.0000
## Araucaria angustifolia (Bertol.) Kuntze                        0.0000
## Calyptranthes concinna DC.                                     2.1347
## Casearia decandra Jacq.                                       12.4432
## Casearia obliqua Spreng.                                       0.0000
## Cupania vernalis Cambess.                                      0.1935
## Dasyphyllum spinescens (Less.) Cabrera                         0.0000
## Drimys brasiliensis Miers                                      3.1123
## Duranta vestita Cham.                                          0.0000
## Erythroxylum deciduum A.St.-Hil.                               0.0000
## Eugenia pluriflora DC.                                         0.0000
## Ilex theezans Mart. ex Reissek                                 2.0658
## Jacaranda puberula Cham.                                       0.6117
## Lamanonia ternata Vell.                                        0.3028
## Lithraea brasiliensis Marchand                                 0.0295
## Matayba elaeagnoides Radlk.                                    1.8669
## Maytenus dasyclada Mart.                                      14.3771
## Moquiniastrum polymorphum (Less.) G. Sancho                    0.5951
## Myrcia laruotteana Cambess.                                    0.1871
## Myrsine umbellata Mart.                                        1.0861
## Ocotea pulchella Mart.                                         0.0000
## Podocarpus lambertii Klotzsch ex Endl.                         0.0218
## Scutia buxifolia Reissek                                       0.0000
## Solanum sanctaecatharinae Dunal                                0.0000
## Zanthoxylum kleinii (R.S.Cowan) P.G.Waterman                   0.0000
##                                                           Tx.ganho.AB
## Allophylus edulis (A.St.-Hil., Cambess. & A.Juss.) Radlk.      0.7313
## Araucaria angustifolia (Bertol.) Kuntze                        4.5256
## Calyptranthes concinna DC.                                     1.7506
## Casearia decandra Jacq.                                        8.2574
## Casearia obliqua Spreng.                                       4.4319
## Cupania vernalis Cambess.                                      3.8875
## Dasyphyllum spinescens (Less.) Cabrera                         2.3149
## Drimys brasiliensis Miers                                      0.0000
## Duranta vestita Cham.                                          2.7850
## Erythroxylum deciduum A.St.-Hil.                               2.7389
## Eugenia pluriflora DC.                                         1.3638
## Ilex theezans Mart. ex Reissek                                 0.0000
## Jacaranda puberula Cham.                                       3.4610
## Lamanonia ternata Vell.                                        0.0000
## Lithraea brasiliensis Marchand                                 2.8368
## Matayba elaeagnoides Radlk.                                    1.3405
## Maytenus dasyclada Mart.                                       0.0000
## Moquiniastrum polymorphum (Less.) G. Sancho                    1.2070
## Myrcia laruotteana Cambess.                                    0.0000
## Myrsine umbellata Mart.                                        1.9650
## Ocotea pulchella Mart.                                         2.3462
## Podocarpus lambertii Klotzsch ex Endl.                         1.6906
## Scutia buxifolia Reissek                                       2.4622
## Solanum sanctaecatharinae Dunal                                4.4114
## Zanthoxylum kleinii (R.S.Cowan) P.G.Waterman                   0.5954
##                                                           Tx.nc.AB Turn.AB
## Allophylus edulis (A.St.-Hil., Cambess. & A.Juss.) Radlk.   0.7367  0.3656
## Araucaria angustifolia (Bertol.) Kuntze                     4.7401  2.2628
## Calyptranthes concinna DC.                                 -0.3909  1.9426
## Casearia decandra Jacq.                                    -4.5625 10.3503
## Casearia obliqua Spreng.                                    4.6375  2.2160
## Cupania vernalis Cambess.                                   3.8434  2.0405
## Dasyphyllum spinescens (Less.) Cabrera                      2.3698  1.1575
## Drimys brasiliensis Miers                                  -3.1123  1.5561
## Duranta vestita Cham.                                       2.8647  1.3925
## Erythroxylum deciduum A.St.-Hil.                            2.8161  1.3695
## Eugenia pluriflora DC.                                      1.3826  0.6819
## Ilex theezans Mart. ex Reissek                             -2.0658  1.0329
## Jacaranda puberula Cham.                                    2.9514  2.0363
## Lamanonia ternata Vell.                                    -0.3028  0.1514
## Lithraea brasiliensis Marchand                              2.8893  1.4332
## Matayba elaeagnoides Radlk.                                -0.5335  1.6037
## Maytenus dasyclada Mart.                                  -14.3771  7.1885
## Moquiniastrum polymorphum (Less.) G. Sancho                 0.6194  0.9010
## Myrcia laruotteana Cambess.                                -0.1871  0.0935
## Myrsine umbellata Mart.                                     0.8965  1.5255
## Ocotea pulchella Mart.                                      2.4026  1.1731
## Podocarpus lambertii Klotzsch ex Endl.                      1.6974  0.8562
## Scutia buxifolia Reissek                                    2.5244  1.2311
## Solanum sanctaecatharinae Dunal                             4.6150  2.2057
## Zanthoxylum kleinii (R.S.Cowan) P.G.Waterman                0.5989  0.2977
## 
## DINAMICA DA COMUNIDADE TOTAL
## Riqueza ano 1 =  25 especies
## Riqueza ano 2 =  25 especies
## Abundancia ano 1 =  81 +/- 7.78 ind
## Abundancia ano 2 =  80 +/- 7.07 ind
## Taxa de Mortalidade =  1.27 %.ano-1
## Taxa de Recrutamento =  1.02 %.ano-1
## Taxa de Mudança Líquida em n =  -0.25 %.ano-1
## Taxa de Rotatividade Líquida em n =  1.14 %.ano-1
## Area basal ano 1 =  1.85 +/- 0.27 m2
## Area basal ano 2 =  2.06 +/- 0.35 m2
## Taxa de Perda em AB =  0.48 %.ano-1
## Taxa de Ganho em AB =  2.56 %.ano-1
## Taxa de Mudança Líquida em AB =  2.14 %.ano-1
## Taxa de Rotatividade Líquida em AB =  1.52 %.ano-1
# 5 representa o tempo entre intervalo

Análise da riqueza e diversidade

Instalando pacotes

install.packages("vegan", repos = "https://cloud.r-project.org")
## 
## The downloaded binary packages are in
##  /var/folders/_8/fv7tchz12mx1nvk8k86mnr680000gn/T//Rtmp7w5Z10/downloaded_packages
install.packages("iNEXT", repos = "https://cloud.r-project.org")
## 
## The downloaded binary packages are in
##  /var/folders/_8/fv7tchz12mx1nvk8k86mnr680000gn/T//Rtmp7w5Z10/downloaded_packages

Carregando pacotes

library(vegan)
## Warning: package 'vegan' was built under R version 3.4.4
## Loading required package: permute
## Loading required package: lattice
## Warning: package 'lattice' was built under R version 3.4.4
## This is vegan 2.5-4
library(iNEXT)
## Warning: package 'iNEXT' was built under R version 3.4.4

Curva de interpolação e extrapolação da riqueza (parcelas)

matriz<-as.data.frame.matrix(table(dados$spp, dados$parc)) #matriz de abundância
matriz.bin<-matriz
matriz.bin[matriz.bin>0] <-1
curva_plots<-iNEXT(matriz.bin, q=0, datatype="incidence_raw")
ggiNEXT(curva_plots, type = 1)

curva_plots
## Compare 1 assemblages with Hill number order q = 0.
## $class: iNEXT
## 
## $DataInfo: basic data information
##     site  T   U S.obs     SC Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
## 1 site.1 50 839    90 0.9753 21  6  3  9  4  3  7  0  2   5
## 
## $iNextEst: diversity estimates with rarefied and extrapolated samples.
##      t       method order      qD qD.LCL  qD.UCL    SC SC.LCL SC.UCL
## 1    1 interpolated     0  16.780 15.919  17.641 0.365  0.344  0.387
## 10  25 interpolated     0  77.013 72.080  81.946 0.958  0.948  0.969
## 20  50     observed     0  90.000 81.597  98.403 0.975  0.965  0.985
## 30  74 extrapolated     0  98.748 87.005 110.491 0.981  0.970  0.992
## 40 100 extrapolated     0 105.845 90.223 121.466 0.986  0.975  0.997
## 
## $AsyEst: asymptotic diversity estimates along with related statistics.
##                   Observed Estimator Est_s.e. 95% Lower 95% Upper
## Species Richness    90.000   126.015   22.344   101.769   200.209
## Shannon diversity   57.181    61.191    1.868    57.530    64.852
## Simpson diversity   44.397    45.906    1.391    44.397    48.631
## 
## NOTE: Only show five estimates, call iNEXT.object$iNextEst. to show complete output.

Curva de interpolação e extrapolação da riqueza (indivíduos)

spp_freq<-(apply(matriz,1, sum)) #frequencia das espécies
curva_individuos<-iNEXT(spp_freq, q=0, datatype="abundance") 
ggiNEXT(curva_individuos, type=1)

Curva de interpolação e extrapolação da riqueza (indivíduos)

curva_individuos
## Compare 1 assemblages with Hill number order q = 0.
## $class: iNEXT
## 
## $DataInfo: basic data information
##     site    n S.obs     SC f1 f2 f3 f4 f5 f6 f7 f8 f9 f10
## 1 site.1 1843    90 0.9886 21  3  3  3  4  3  3  4  2   1
## 
## $iNextEst: diversity estimates with rarefied and extrapolated samples.
##       m       method order      qD qD.LCL  qD.UCL    SC SC.LCL SC.UCL
## 1     1 interpolated     0   1.000  1.000   1.000 0.036  0.033  0.039
## 10  921 interpolated     0  77.965 73.110  82.820 0.984  0.979  0.988
## 20 1843     observed     0  90.000 81.707  98.293 0.989  0.985  0.993
## 30 2716 extrapolated     0  99.303 88.243 110.363 0.990  0.986  0.994
## 40 3686 extrapolated     0 108.264 94.166 122.362 0.991  0.987  0.996
## 
## $AsyEst: asymptotic diversity estimates along with related statistics.
##                   Observed Estimator Est_s.e. 95% Lower 95% Upper
## Species Richness    90.000   163.460   53.853   110.315   355.639
## Shannon diversity   42.269    43.978    1.280    42.269    46.487
## Simpson diversity   27.319    27.715    1.049    27.319    29.771
## 
## NOTE: Only show five estimates, call iNEXT.object$iNextEst. to show complete output.
  • Riqueza por parcela
    • Função specnumber
matriz.parc<-table(dados$parc, dados$spp)
specnumber(matriz.parc, MARGIN=1)
##  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 
## 20 17 16 16 17 13 18 19 15 22 18 16 17 22 24 20 20 11 19 15 15 10 14 21 18 
## 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 
## 11 19 17 12 17 16 17 18 12 15 14 27 18 15 25 25 11 15 11 16 16 15 12 20 12
  • Riqueza por setor de exposição
matriz.setor<-table(dados$Exp, dados$spp)
specnumber(matriz.setor, MARGIN=1)
## Norte   Sul 
##    64    80
  • Podemos fazer uma comparação direta da riqueza entre setores?

  • Verificar a intensidade amostral dos setores

apply(matriz.setor,1, sum) # numero de indivíduos por setor 
## Norte   Sul 
##   758  1085
  • Necessidade de rarefação (rarefy)
rarefy(matriz.setor,758, se=TRUE) 
##     
##      Norte       Sul
##   S     64 74.457655
##   se     0  2.000529
## attr(,"Subsample")
## [1] 758
  • Curva de rarefação por setor
rarecurve (matriz.setor, sample = 758, cex = 0.6) 

Índices de Shannon e Pielou por setor

  • Usando a função diversity (?diversity para a documentação da função)
    • Shannon por setor
H<-diversity(matriz.setor, index="shannon")
H
##    Norte      Sul 
## 3.312685 3.773019

Índices de Shannon e Pielou por setor

  • Pielou por setor
J.norte <-H[1]/log(64)
J.norte
J.sul <-H[2]/log(80)
J.sul
##     Norte 
## 0.7965323 
##       Sul 
## 0.8610216

Análise de distrbuição espacial

Utilizando o Índice de Morisita

  • Remoção de espécies com menos do que 10 indivíduos - passo a passo
    • Verificar a abundância das espécies
apply(matriz.parc, 2, sum) 
##            Acca sellowiana          Allophylus edulis 
##                          1                          7 
##    Allophylus guaraniticus            Annona rugulosa 
##                         32                         17 
##     Araucaria angustifolia           Banara tomentosa 
##                        125                         24 
## Blepharocalyx salicifolius     Calyptranthes concinna 
##                         19                         30 
##   Campomanesia xanthocarpa          Casearia decandra 
##                          8                        149 
##           Casearia obliqua           Cedrela fissilis 
##                         55                          9 
##            Celtis iguanaea         Cinnamomum amoenum 
##                         12                         12 
##      Citronella paniculata             Clethra scabra 
##                          1                          6 
##          Coutarea hexandra           Cupania vernalis 
##                          5                         55 
##       Dalbergia frutescens     Dasyphyllum spinescens 
##                         11                          8 
##     Dasyphyllum tomentosum       Dicksonia sellowiana 
##                         26                         38 
##        Drimys brasiliensis            Duranta vestita 
##                         22                         51 
##      Erythroxylum deciduum          Escallonia bifida 
##                          5                          6 
##         Eugenia pluriflora         Eugenia pyriformis 
##                         23                          5 
##           Eugenia uniflora       Eugenia uruguayensis 
##                          2                          1 
##       Gochnatia polymorpha         Handroanthus albus 
##                         11                          1 
##           Ilex brevicuspis                Ilex dumosa 
##                          5                          6 
##            Ilex microdonta        Ilex paraguariensis 
##                          2                          1 
##              Ilex theezans              Inga sessilis 
##                         21                         14 
##         Jacaranda puberula          Lamanonia ternata 
##                        172                         37 
##                Lauraceae 1      Lithraea brasiliensis 
##                          1                        101 
##   Machaerium paraguariense      Machaerium stipitatum 
##                         18                          1 
##       Matayba elaeagnoides            Maytenus boaria 
##                         84                          1 
##         Maytenus dasyclada           Mimosa scabrella 
##                          4                          1 
##         Myrceugenia euosma     Myrceugenia myrcioides 
##                          1                          1 
##      Myrceugenia oxysepala          Myrcia guianensis 
##                          1                         23 
##        Myrcia hatschbachii         Myrcia laruotteana 
##                         18                          7 
##          Myrcia multiflora           Myrcia palustris 
##                          1                         16 
##       Myrcianthes gigantea                 Myrciaria  
##                          1                          1 
##   Myrrhinium atropurpureum           Myrsine coriacea 
##                          3                         16 
##                Myrsine sp.          Myrsine umbellata 
##                          1                         69 
##              Myrtaceae sp.       Nectandra lanceolata 
##                          1                          2 
##     Nectandra megapotamica                        NI  
##                          7                          3 
##       Ocotea diospyrifolia            Ocotea puberula 
##                          1                          4 
##           Ocotea pulchella           Oreopanax fulvus 
##                         34                         10 
##   Piptocarpha angustifolia       Podocarpus lambertii 
##                          1                         69 
##          Prunus myrtifolia      Quillaja brasiliensis 
##                         22                          1 
##      Rhamnus sphaerosperma            Roupala montana 
##                          1                         14 
##         Sapium glandulosum   Schinus terebinthifolius 
##                         66                         20 
##           Scutia buxifolia   Sebastiania brasiliensis 
##                          8                          9 
##  Sebastiania commersoniana            Solanum pabstii 
##                         17                          3 
##  Solanum sanctaecatharinae            Styrax leprosus 
##                         22                          8 
##         Symplocos uniflora     Vernonanthura discolor 
##                         12                         21 
##       Xylosma ciliatifolia          Xylosma tweediana 
##                         22                          4 
##        Zanthoxylum kleinii     Zanthoxylum rhoifolium 
##                         28                         28
  • Remoção de espécies com menos do que 10 indivíduos - passo a passo
    • Quem tem mais do que 10 indivíduos?
apply(matriz.parc, 2, sum)>10
##            Acca sellowiana          Allophylus edulis 
##                      FALSE                      FALSE 
##    Allophylus guaraniticus            Annona rugulosa 
##                       TRUE                       TRUE 
##     Araucaria angustifolia           Banara tomentosa 
##                       TRUE                       TRUE 
## Blepharocalyx salicifolius     Calyptranthes concinna 
##                       TRUE                       TRUE 
##   Campomanesia xanthocarpa          Casearia decandra 
##                      FALSE                       TRUE 
##           Casearia obliqua           Cedrela fissilis 
##                       TRUE                      FALSE 
##            Celtis iguanaea         Cinnamomum amoenum 
##                       TRUE                       TRUE 
##      Citronella paniculata             Clethra scabra 
##                      FALSE                      FALSE 
##          Coutarea hexandra           Cupania vernalis 
##                      FALSE                       TRUE 
##       Dalbergia frutescens     Dasyphyllum spinescens 
##                       TRUE                      FALSE 
##     Dasyphyllum tomentosum       Dicksonia sellowiana 
##                       TRUE                       TRUE 
##        Drimys brasiliensis            Duranta vestita 
##                       TRUE                       TRUE 
##      Erythroxylum deciduum          Escallonia bifida 
##                      FALSE                      FALSE 
##         Eugenia pluriflora         Eugenia pyriformis 
##                       TRUE                      FALSE 
##           Eugenia uniflora       Eugenia uruguayensis 
##                      FALSE                      FALSE 
##       Gochnatia polymorpha         Handroanthus albus 
##                       TRUE                      FALSE 
##           Ilex brevicuspis                Ilex dumosa 
##                      FALSE                      FALSE 
##            Ilex microdonta        Ilex paraguariensis 
##                      FALSE                      FALSE 
##              Ilex theezans              Inga sessilis 
##                       TRUE                       TRUE 
##         Jacaranda puberula          Lamanonia ternata 
##                       TRUE                       TRUE 
##                Lauraceae 1      Lithraea brasiliensis 
##                      FALSE                       TRUE 
##   Machaerium paraguariense      Machaerium stipitatum 
##                       TRUE                      FALSE 
##       Matayba elaeagnoides            Maytenus boaria 
##                       TRUE                      FALSE 
##         Maytenus dasyclada           Mimosa scabrella 
##                      FALSE                      FALSE 
##         Myrceugenia euosma     Myrceugenia myrcioides 
##                      FALSE                      FALSE 
##      Myrceugenia oxysepala          Myrcia guianensis 
##                      FALSE                       TRUE 
##        Myrcia hatschbachii         Myrcia laruotteana 
##                       TRUE                      FALSE 
##          Myrcia multiflora           Myrcia palustris 
##                      FALSE                       TRUE 
##       Myrcianthes gigantea                 Myrciaria  
##                      FALSE                      FALSE 
##   Myrrhinium atropurpureum           Myrsine coriacea 
##                      FALSE                       TRUE 
##                Myrsine sp.          Myrsine umbellata 
##                      FALSE                       TRUE 
##              Myrtaceae sp.       Nectandra lanceolata 
##                      FALSE                      FALSE 
##     Nectandra megapotamica                        NI  
##                      FALSE                      FALSE 
##       Ocotea diospyrifolia            Ocotea puberula 
##                      FALSE                      FALSE 
##           Ocotea pulchella           Oreopanax fulvus 
##                       TRUE                      FALSE 
##   Piptocarpha angustifolia       Podocarpus lambertii 
##                      FALSE                       TRUE 
##          Prunus myrtifolia      Quillaja brasiliensis 
##                       TRUE                      FALSE 
##      Rhamnus sphaerosperma            Roupala montana 
##                      FALSE                       TRUE 
##         Sapium glandulosum   Schinus terebinthifolius 
##                       TRUE                       TRUE 
##           Scutia buxifolia   Sebastiania brasiliensis 
##                      FALSE                      FALSE 
##  Sebastiania commersoniana            Solanum pabstii 
##                       TRUE                      FALSE 
##  Solanum sanctaecatharinae            Styrax leprosus 
##                       TRUE                      FALSE 
##         Symplocos uniflora     Vernonanthura discolor 
##                       TRUE                       TRUE 
##       Xylosma ciliatifolia          Xylosma tweediana 
##                       TRUE                      FALSE 
##        Zanthoxylum kleinii     Zanthoxylum rhoifolium 
##                       TRUE                       TRUE
  • Remoção de espécies com menos do que 10 indivíduos - passo a passo
    • Matriz com as espécies com mais do que 10 indvíduos
matriz.parc.10<-matriz.parc[,apply(matriz.parc, 2, sum)>10]
y <- dispindmorisita(matriz.parc.10, unique.rm = TRUE)
y
##                                  imor     mclu        muni        imst
## Allophylus guaraniticus     2.8225806 1.684594  0.43725537  0.51177664
## Annona rugulosa             2.9411765 2.326401 -0.09031772  0.50644776
## Araucaria angustifolia      1.9870968 1.171148  0.85931384  0.50835519
## Banara tomentosa            1.6304348 1.922714  0.24151811  0.34161996
## Blepharocalyx salicifolius  3.2163743 2.179023  0.03082869  0.51084620
## Calyptranthes concinna      6.4367816 1.731807  0.39844540  0.54873783
## Casearia decandra           1.1699619 1.143395  0.88212781  0.50027189
## Casearia obliqua            3.0976431 1.393008  0.67694290  0.51753488
## Celtis iguanaea            16.6666667 2.929310 -0.58591669  0.64592262
## Cinnamomum amoenum          1.5151515 2.929310 -0.58591669  0.13350665
## Cupania vernalis            2.4915825 1.393008  0.67694290  0.51130058
## Dalbergia frutescens        6.3636364 3.122241 -0.74450835  0.53457285
## Dasyphyllum tomentosum      2.1538462 1.848897  0.30219666  0.50316659
## Dicksonia sellowiana        7.3968706 1.573579  0.52851126  0.56012515
## Drimys brasiliensis         1.2987013 2.010591  0.16928174  0.14778544
## Duranta vestita             1.7647059 1.424448  0.65109833  0.50350235
## Eugenia pluriflora          2.3715415 1.964655  0.20704166  0.50423528
## Gochnatia polymorpha        4.5454545 3.122241 -0.74450835  0.51518005
## Ilex theezans               2.6190476 2.061121  0.12774582  0.50581915
## Inga sessilis              28.0219780 2.632493 -0.34192950  0.76800529
## Jacaranda puberula          4.7905617 1.124108  0.89798197  0.53750780
## Lamanonia ternata           2.4774775 1.589511  0.51541435  0.50917121
## Lithraea brasiliensis       1.5346535 1.212224  0.82554916  0.50330441
## Machaerium paraguariense    5.5555556 2.248377 -0.02618138  0.53462896
## Matayba elaeagnoides        4.2885829 1.255692  0.78981827  0.53111021
## Myrcia guianensis           2.7667984 1.964655  0.20704166  0.50834951
## Myrcia hatschbachii         3.9215686 2.248377 -0.02618138  0.51751973
## Myrcia palustris            3.3333333 2.414828 -0.16300557  0.50965118
## Myrsine coriacea            1.6666667 2.414828 -0.16300557  0.23559997
## Myrsine umbellata           2.0460358 1.312094  0.74345465  0.50753721
## Ocotea pulchella            0.9803922 1.643103  0.47136110 -0.01854559
## Podocarpus lambertii        1.4705882 1.312094  0.74345465  0.50162765
## Prunus myrtifolia           1.5151515 2.010591  0.16928174  0.25487633
## Roupala montana             3.2967033 2.632493 -0.34192950  0.50701124
## Sapium glandulosum          3.1934732 1.326499  0.73161410  0.51917855
## Schinus terebinthifolius   35.7894737 2.116969  0.08183771  0.85161208
## Sebastiania commersoniana  18.0147059 2.326401 -0.09031772  0.66453871
## Solanum sanctaecatharinae   2.1645022 2.010591  0.16928174  0.50160359
## Symplocos uniflora          2.2727273 2.929310 -0.58591669  0.32983996
## Vernonanthura discolor      3.5714286 2.061121  0.12774582  0.51575243
## Xylosma ciliatifolia        2.5974026 2.010591  0.16928174  0.50611397
## Zanthoxylum kleinii         5.1587302 1.786015  0.35388579  0.53497652
## Zanthoxylum rhoifolium      2.3809524 1.786015  0.35388579  0.50616976
##                                   pchisq
## Allophylus guaraniticus     5.109267e-06
## Annona rugulosa             3.357340e-03
## Araucaria angustifolia      1.747199e-15
## Banara tomentosa            7.973246e-02
## Blepharocalyx salicifolius  4.247673e-04
## Calyptranthes concinna      2.935773e-21
## Casearia decandra           1.167383e-02
## Casearia obliqua            4.728755e-14
## Celtis iguanaea             9.429680e-24
## Cinnamomum amoenum          2.681175e-01
## Cupania vernalis            3.366007e-09
## Dalbergia frutescens        1.143292e-05
## Dasyphyllum tomentosum      5.429438e-03
## Dicksonia sellowiana        3.807201e-35
## Drimys brasiliensis         2.497814e-01
## Duranta vestita             6.369685e-04
## Eugenia pluriflora          4.076704e-03
## Gochnatia polymorpha        1.234802e-03
## Ilex theezans               2.500485e-03
## Inga sessilis               1.300579e-56
## Jacaranda puberula         1.915754e-115
## Lamanonia ternata           1.294590e-05
## Lithraea brasiliensis       1.199004e-05
## Machaerium paraguariense    9.097079e-09
## Matayba elaeagnoides        8.231758e-42
## Myrcia guianensis           5.460601e-04
## Myrcia hatschbachii         3.395690e-05
## Myrcia palustris            1.373030e-03
## Myrsine coriacea            1.550663e-01
## Myrsine umbellata           6.605116e-08
## Ocotea pulchella            4.992701e-01
## Podocarpus lambertii        2.723578e-03
## Prunus myrtifolia           1.383804e-01
## Roupala montana             4.367426e-03
## Sapium glandulosum          9.564804e-19
## Schinus terebinthifolius   4.843279e-118
## Sebastiania commersoniana   1.118438e-41
## Solanum sanctaecatharinae   1.342437e-02
## Symplocos uniflora          8.624581e-02
## Vernonanthura discolor      2.103234e-05
## Xylosma ciliatifolia        1.920311e-03
## Zanthoxylum kleinii         6.727342e-14
## Zanthoxylum rhoifolium      8.004724e-04

Análise de padrões de similaridade

Medidas de dissmimilaridade

  • Função vegdist
    • Acessar a documentação da função
?vegdist
  • Atentar para os argumentos method e binary

  • Bray-Curtis

vegdist(matriz.setor, method="bray", binary=F)
##         Norte
## Sul 0.4313619
  • Sorensen
vegdist(matriz.setor, method="bray", binary=T)
##     Norte
## Sul  0.25
  • Jaccard
vegdist(matriz.setor, method="jaccard", binary=T)
##     Norte
## Sul   0.4
  • Distância Euclideâna
vegdist(matriz.setor, method="euclidean", binary=F)
##        Norte
## Sul 152.4041

Análise de padrões de similaridade

Análise de agrupamento

  • Representação gráfica das medidas de dissmilaridade
  • Além da definição da medida de distância, é necessário escolher um método de ligação

  • UPGMA - Distância não-euclideâna (Maximização da correlação cofenética)

dist.bray<-vegdist(matriz.parc, method="bray", binary=F)
agrupamento<-hclust(dist.bray, method="average")
plot(agrupamento, hang=-1)

  • Ward - Distância euclideâna
dist.ward<-vegdist(matriz.parc, method="euclidean", binary=F)
agrupamento<-hclust(dist.ward, method="ward.D2")
plot(agrupamento, hang=-1)

Ordenações multivariadas

dim (amb)
names(amb)
summary(amb)

Análise de Componentes Principais (PCA)

amb.pca<-rda(amb, scale=T) 
summary(amb.pca)
## 
## Call:
## rda(X = amb, scale = T) 
## 
## Partitioning of correlations:
##               Inertia Proportion
## Total              18          1
## Unconstrained      18          1
## 
## Eigenvalues, and their contribution to the correlations 
## 
## Importance of components:
##                          PC1    PC2     PC3     PC4     PC5     PC6
## Eigenvalue            8.8268 2.1053 1.47089 1.21485 1.13823 0.79450
## Proportion Explained  0.4904 0.1170 0.08172 0.06749 0.06323 0.04414
## Cumulative Proportion 0.4904 0.6073 0.68905 0.75654 0.81978 0.86392
##                           PC7     PC8     PC9    PC10    PC11     PC12
## Eigenvalue            0.69897 0.48973 0.42928 0.30179 0.23173 0.164537
## Proportion Explained  0.03883 0.02721 0.02385 0.01677 0.01287 0.009141
## Cumulative Proportion 0.90275 0.92996 0.95381 0.97057 0.98345 0.992587
##                           PC13     PC14      PC15
## Eigenvalue            0.080657 0.043958 0.0088237
## Proportion Explained  0.004481 0.002442 0.0004902
## Cumulative Proportion 0.997068 0.999510 1.0000000
## 
## Scaling 2 for species and site scores
## * Species are scaled proportional to eigenvalues
## * Sites are unscaled: weighted dispersion equal on all dimensions
## * General scaling constant of scores:  5.449632 
## 
## 
## Species scores
## 
##              PC1       PC2      PC3      PC4      PC5      PC6
## arg      -0.2415 -0.243726 -0.61642 -0.93366 -0.23462  0.27546
## ph        1.2063  0.120044 -0.13306 -0.08120  0.06712 -0.10549
## P         0.6868 -0.534307 -0.23192 -0.14070 -0.05421  0.62402
## K         0.6857  0.370407 -0.05829 -0.05568  0.72755  0.33868
## Na        0.8050 -0.249722  0.21765 -0.36965 -0.05084 -0.68786
## MO        0.6819 -0.659944  0.14244  0.12477 -0.63611  0.06970
## hal      -1.1726 -0.357639 -0.14457 -0.01769  0.24199 -0.04616
## Al       -1.0782 -0.130639 -0.32686  0.02056  0.05770 -0.25638
## Ca        1.0194 -0.387144  0.48975  0.17053  0.26978  0.13673
## Mg        0.9150 -0.515201 -0.24395 -0.22580 -0.17668 -0.21666
## CTCph7   -0.6621 -0.929702  0.05363  0.01849  0.52453 -0.02264
## CTCef    -0.9615 -0.722142 -0.11014  0.02252  0.40017 -0.13252
## V         1.2511 -0.026752  0.13824  0.01822  0.06677  0.01076
## SB        1.1238 -0.445070  0.28497  0.04778  0.18798  0.04795
## cd       -0.8865  0.168676  0.02078  0.31602 -0.25107  0.19016
## cotmedia -0.5742 -0.546073  0.17972  0.52136 -0.39358  0.15143
## desmax    0.7781 -0.086668 -0.80883  0.52985 -0.02268 -0.08816
## decmed    0.8180 -0.008116 -0.82156  0.46291  0.13976 -0.14450
## 
## 
## Site scores (weighted sums of species scores)
## 
##         PC1      PC2      PC3      PC4       PC5      PC6
## 1  -1.66327 -0.02792 -1.16446 -0.37252  0.646962 -1.02249
## 2  -0.99424  0.09757 -0.47235  0.17616 -0.041248 -0.48256
## 3   0.05129 -0.01909  0.77335  0.47820 -0.288871  0.64742
## 4  -1.62041 -0.93054 -0.34880 -0.10487  1.066213 -0.83574
## 5  -0.37980  0.20392  0.71619  0.49832 -0.123916  0.29290
## 6   0.26439 -0.51989  1.44843  0.42491  0.315730  0.35409
## 7   0.31237 -0.44804  1.31383  0.48432  0.235213  0.09818
## 8  -0.14761  0.15368  1.17712  0.59626 -0.082255 -0.78996
## 9  -1.06982  0.42656 -0.08967 -0.19907 -0.483676 -0.26290
## 10 -1.25665  0.36500 -0.76810 -1.19561 -0.349475 -0.20276
## 11 -0.34678  1.19636 -0.33424 -0.23672 -1.702831  0.27325
## 12 -0.24617  0.25802 -0.59060  0.99324 -0.688886 -0.19331
## 13 -0.14335  0.80187 -0.11434 -0.49371 -0.160703 -0.03167
## 14 -0.24758 -0.72102  0.10229 -0.54485  0.603770  0.05286
## 15 -0.36821  1.00738 -0.43001 -0.12467 -1.262976  0.57496
## 16 -0.94017 -0.27270 -0.66430 -0.03402  0.455160 -0.52404
## 17  0.24792  0.16699  0.51345  0.37312  0.137440  0.89975
## 18 -0.82473 -0.85432  0.44519 -0.06820 -0.700002  0.99987
## 19 -0.29982 -1.18314  0.35188  2.18371 -0.385066 -0.22783
## 20 -1.40695 -0.38943 -0.85724  0.96718  0.143737 -0.81069
## 21 -0.16251  0.39539  0.44913  1.51047 -0.939136  0.15812
## 22  0.71013 -1.19488 -0.03408  0.46999 -0.530523  0.54304
## 23  1.44978 -1.61758  0.47697 -0.15304  0.515726 -0.91473
## 24  0.33532 -0.68049  0.27773 -0.56959 -0.406943 -0.21474
## 25  0.35509 -1.17601  0.28517 -1.30899 -0.041913  0.75309
## 26 -0.47814 -0.26489  0.30354 -0.69511 -0.242876  0.80441
## 27 -0.07808 -0.40963  0.29224 -0.83906 -0.312402  1.28881
## 28 -0.49828  1.04624 -0.15756 -0.64334 -0.537544  0.71116
## 29 -0.94661 -1.01113 -0.77776 -0.87573  1.197117  0.74488
## 30  0.36259  1.11508  1.51742  0.63519 -0.198276 -0.62042
## 31 -0.11946  0.49193  0.61354  0.37228  0.272812  0.45660
## 32 -0.36848 -0.08644  0.36849 -0.05599  0.549167 -0.37684
## 33  0.39074  0.36672 -0.15212  0.85963  0.193988  0.44118
## 34 -0.22190  0.28937  0.93321 -0.08953  0.485077  0.28442
## 35 -0.22047  0.07618  1.23439  0.26175  1.035379  0.71099
## 36  0.61179 -0.41057  1.35380 -1.15807  0.156673 -1.95644
## 37 -0.22773 -0.40510 -0.58103  0.41236  0.635637  0.62514
## 38  0.13306 -0.65749 -0.15206 -0.82289  0.415861 -0.22236
## 39 -0.08562  0.42294  0.17896 -0.19334 -0.027633  0.48715
## 40  0.78941  1.15205 -0.19569 -0.36869  0.122711  0.29602
## 41  0.68842  1.19852 -0.46326  0.16470  0.135935 -1.23881
## 42  0.88612  2.28423 -0.39509  0.09470  3.488473  0.77132
## 43  0.24762  1.07609 -0.16870 -0.45954 -1.140394  0.60782
## 44  0.74628  0.42047  0.09715 -1.61812 -1.008378 -1.06608
## 45  1.64164 -0.08347 -0.96451 -0.62084  0.411489 -0.46992
## 46  1.25118 -0.57012 -1.19730  0.11311 -0.078978 -0.31414
## 47  1.50923 -1.05080 -1.97550  0.11948 -0.407121  2.04597
## 48  0.72591  0.06633 -1.72614  2.24212 -0.009111 -0.95500
## 49  0.83529 -0.25668 -0.20708  0.04120 -0.467749 -0.64277
## 50  0.81723  0.16246 -0.24147 -0.62630 -0.601388 -1.54721

Análise de Componentes Principais (PCA)

Verificar quantos componentes principais explicam de forma significativa a variação total dos dados

screeplot(amb.pca, bstick = TRUE, type = "lines")

Análise de Componentes Principais (PCA)

Plotagem da PCA

biplot(amb.pca, display="species",
scalling=3, col="black", xlim=c(-2,2), ylim=c(-2,2))
exposicao<-c(rep("Norte", 17), rep("Sul", 33))
points(amb.pca, "sites", pch=19, cex=1.2, col="black", bg="black", 
       select=exposicao=="Norte")
points(amb.pca, "sites", pch=1, col="black", bg="black",cex=1.2, 
       select=exposicao=="Sul")
legend(x = "topleft", 
       legend = c("Norte", "Sul"), 
       pch = c(19,1))

Análise de Componentes Principais (PCA)

Plotagem da PCA

Análise de Componentes Principais (PCA)

  • Os setores diferem em relação ao gradiente definido pelo Eixo 1?
eixosPCA<-scores(amb.pca, choices = 1:2, display = "sites")
PCA1<-eixosPCA[,1]
PCA1
##           1           2           3           4           5           6 
## -1.66327341 -0.99423747  0.05129339 -1.62040732 -0.37979635  0.26439320 
##           7           8           9          10          11          12 
##  0.31236821 -0.14760607 -1.06981556 -1.25664504 -0.34677992 -0.24616890 
##          13          14          15          16          17          18 
## -0.14335041 -0.24758077 -0.36821037 -0.94017340  0.24792304 -0.82472726 
##          19          20          21          22          23          24 
## -0.29982374 -1.40695375 -0.16250645  0.71012951  1.44978386  0.33532329 
##          25          26          27          28          29          30 
##  0.35509079 -0.47814414 -0.07807768 -0.49828137 -0.94661166  0.36259261 
##          31          32          33          34          35          36 
## -0.11946132 -0.36847863  0.39074326 -0.22189503 -0.22047406  0.61178897 
##          37          38          39          40          41          42 
## -0.22773481  0.13305563 -0.08561953  0.78941248  0.68842171  0.88612350 
##          43          44          45          46          47          48 
##  0.24762083  0.74627960  1.64164452  1.25118444  1.50922594  0.72591183 
##          49          50 
##  0.83529205  0.81723176

Análise de Componentes Principais (PCA)

  • Os setores diferem em relação ao gradiente definido pelo Eixo 1?
shapiro.test(PCA1)
## 
##  Shapiro-Wilk normality test
## 
## data:  PCA1
## W = 0.98054, p-value = 0.575

Análise de Componentes Principais (PCA)

  • Os setores diferem em relação ao gradiente definido pelo Eixo 1?
t.test(PCA1 ~ exposicao)
## 
##  Welch Two Sample t-test
## 
## data:  PCA1 by exposicao
## t = -3.8256, df = 36.281, p-value = 0.0004957
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -1.1656423 -0.3580773
## sample estimates:
## mean in group Norte   mean in group Sul 
##          -0.5028275           0.2590323

Escalonamento Multidimensional Não-Métrico (NMDS)

ordNMDS<-metaMDS(as.data.frame.matrix(matriz.parc), k=4)
fig <-ordiplot(ordNMDS, type = "none")
points(fig, "sites", pch=19,select=exposicao=="Norte")
points(fig, "sites", pch=1, select=exposicao=="Sul")
sp.names <- make.cepnames(colnames(matriz.parc))
stems <- colSums(matriz.parc)
orditorp(ordNMDS, "sp", label = sp.names,
         priority=stems, pch="+", pcol="grey")
legend(x = "topleft", legend = c("Norte", "Sul"), pch = c(19,1))

  • Como o ambiente explica a organização da vegetação?
fig <-ordiplot(ordNMDS, type = "none")
points(fig, "sites", pch=19,select=exposicao=="Norte")
points(fig, "sites", pch=1, select=exposicao=="Sul")
sp.names <- make.cepnames(colnames(matriz.parc))
stems <- colSums(matriz.parc)
orditorp(ordNMDS, "sp", label = sp.names, 
         priority=stems, pch="+", pcol="grey")
legend(x = "topleft", legend = c("Norte", "Sul"), pch = c(19,1))
ordisurf(ordNMDS ~ PCA1, col = "blue", add = TRUE)

Ecologia Funcional

install.packages("FD", repos="https://cloud.r-project.org")
## 
## The downloaded binary packages are in
##  /var/folders/_8/fv7tchz12mx1nvk8k86mnr680000gn/T//Rtmp7w5Z10/downloaded_packages
install.packages("ade4", repos= "https://cloud.r-project.org")
## 
## The downloaded binary packages are in
##  /var/folders/_8/fv7tchz12mx1nvk8k86mnr680000gn/T//Rtmp7w5Z10/downloaded_packages
library(FD)
library(ade4)
traits<-read.table("dados/traits.csv", header=T, 
                   dec=",", sep=";", 
                   row.names = 1)

com<-read.table("dados/com.csv", header=T,
                dec=",", sep=";")

Ordenação das espécies em função de suas caraacterísticas funcionais e exigência lumínica

  • PCoA - Análise de Coordenadas Principais
traits.dist<-gowdis(traits) # distância de gower, para variáveis categóricas
traits.dist.eucl<-cailliez(traits.dist) #transformação para distância euclideâna
traits.pcoa<-dudi.pco(traits.dist.eucl, scannf = FALSE, nf = 2)
summary(traits.pcoa)
scatter(traits.pcoa)
  • PCoA - Análise de Coordenadas Principais

  • PCA Hill-Smith
traits.hs<-dudi.hillsmith(traits, scannf = FALSE, nf = 2)
summary(traits.hs)
scatter(traits.hs)
  • PCA Hill-Smith

CÁLCULO DIVERSIDADE FUNCIONAL E CWM

*CWM = Community Weight Mean

div.func <- dbFD(traits, com, 
                 corr = "cailliez", 
                 w.abun=T)
div.func
div.func$RaoQ
summary(div.func$RaoQ)
hist(div.func$RaoQ)
div.func$CWM
summary(div.func$CWM)
## Species x species distance matrix was not Euclidean. Cailliez correction was applied. 
## FRic: Dimensionality reduction was required. The last 12 PCoA axes (out of 17 in total) were removed. 
## FRic: Quality of the reduced-space representation (based on corrected distance matrix) = 0.7096153 
## $nbsp
##  [1]  6  6  9 11 15 13  8  7  6 11 15 16 15 15 10  8  8  8  8 11 13  9 16
## [24] 11 12
## 
## $sing.sp
##  [1]  6  6  9 11 15 13  8  7  6 11 15 16 15 15 10  8  8  8  8 11 13  9 16
## [24] 11 12
## 
## $FRic
##  [1] 1.701374e-06 4.469394e-06 5.696701e-05 7.617572e-05 4.638981e-04
##  [6] 6.232094e-04 8.225095e-05 1.647947e-05 1.043393e-06 1.367686e-04
## [11] 1.060210e-03 1.064993e-03 9.216791e-04 7.149760e-04 1.088182e-04
## [16] 2.704459e-05 1.809452e-05 9.931395e-06 2.739250e-06 2.282601e-04
## [21] 3.871523e-04 1.670447e-05 6.020594e-04 1.455325e-04 1.672048e-04
## 
## $qual.FRic
## [1] 0.7096153
## 
## $FEve
##  [1] 0.6934175 0.3779311 0.5068645 0.6648568 0.7808703 0.7085845 0.3915754
##  [8] 0.4255295 0.4890798 0.6895451 0.7326684 0.7747733 0.7241348 0.6194890
## [15] 0.5640070 0.6350105 0.6890385 0.6776917 0.5675089 0.5544553 0.6363097
## [22] 0.7274673 0.8415437 0.6884759 0.6671649
## 
## $FDiv
##  [1] 0.6554344 0.6619238 0.6895003 0.6592815 0.7296117 0.7537305 0.6510742
##  [8] 0.7984487 0.7273462 0.6833119 0.7806063 0.7383027 0.7457102 0.7474127
## [15] 0.7379384 0.7246758 0.7800939 0.7453293 0.8072460 0.6059265 0.6678749
## [22] 0.6387584 0.8126102 0.6886366 0.4911008
## 
## $FDis
##  [1] 0.10476612 0.12619316 0.14371986 0.13496758 0.15350596 0.16433762
##  [7] 0.13725767 0.13210059 0.13838472 0.14077595 0.19907212 0.18892989
## [13] 0.18174223 0.16649213 0.15541988 0.15876572 0.14721591 0.13432604
## [19] 0.09944852 0.09832454 0.14675669 0.10223861 0.19878610 0.12425234
## [25] 0.08481834
## 
## $RaoQ
##  [1] 0.01443958 0.01754580 0.02328394 0.02249951 0.02907238 0.03162781
##  [7] 0.02200716 0.01838782 0.02076295 0.02641487 0.04561279 0.04228302
## [13] 0.03976211 0.03346936 0.02985990 0.02848246 0.02299939 0.02279779
## [19] 0.01392420 0.01603954 0.02643244 0.01365353 0.04373526 0.02314626
## [25] 0.01391159
## 
## $CWM
##          AF       AFE        DM     Hmax Dec  SD
## 1  5.436928 101.68757 0.5834526 12.81429   P Zoo
## 2  6.167338  99.45863 0.5869952 13.68333   P Zoo
## 3  6.656722  97.69237 0.6101795 14.14286   P Zoo
## 4  6.580093 102.76838 0.5778983 13.49091   P Zoo
## 5  6.718199 104.41190 0.5361976 12.75758   P Zoo
## 6  7.618422 102.62757 0.5219977 12.66279   P Zoo
## 7  6.960145  99.74801 0.5902900 13.23729   P Zoo
## 8  6.596034  97.91516 0.5991982 14.10294   P Zoo
## 9  6.661597  96.96368 0.6062242 14.35821   P Zoo
## 10 6.216049 106.24836 0.5598673 12.38000   P Zoo
## 11 8.426278 101.72864 0.5632224 13.19149   P Zoo
## 12 8.050706 102.83395 0.5578318 13.29412   P Zoo
## 13 7.444659 103.08833 0.5332741 13.57692   P Zoo
## 14 8.085461 105.79385 0.5343582 13.40000   P Zoo
## 15 5.770036 103.80049 0.5906381 12.93220   P Zoo
## 16 7.081918  99.60127 0.5777860 13.32432   P Zoo
## 17 6.004974  97.86701 0.5924458 13.97872   P Zoo
## 18 6.763918 105.76747 0.5447421 11.93182   P Zoo
## 19 4.769351 103.76283 0.5790798 12.55814   P Zoo
## 20 4.701606 104.23365 0.5742980 12.33824   P Zoo
## 21 7.479661 101.89468 0.5876119 13.55319   P Zoo
## 22 5.840690 102.88049 0.5629431 13.45714   P Zoo
## 23 8.501410  99.15315 0.5744437 12.86486   P Zoo
## 24 6.563005 107.59737 0.5496543 11.77273   P Zoo
## 25 5.435446 108.12279 0.5640417 12.05263   P Zoo
## 
##  [1] 0.01443958 0.01754580 0.02328394 0.02249951 0.02907238 0.03162781
##  [7] 0.02200716 0.01838782 0.02076295 0.02641487 0.04561279 0.04228302
## [13] 0.03976211 0.03346936 0.02985990 0.02848246 0.02299939 0.02279779
## [19] 0.01392420 0.01603954 0.02643244 0.01365353 0.04373526 0.02314626
## [25] 0.01391159
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.01365 0.01839 0.02315 0.02569 0.02986 0.04561 
##          AF       AFE        DM     Hmax Dec  SD
## 1  5.436928 101.68757 0.5834526 12.81429   P Zoo
## 2  6.167338  99.45863 0.5869952 13.68333   P Zoo
## 3  6.656722  97.69237 0.6101795 14.14286   P Zoo
## 4  6.580093 102.76838 0.5778983 13.49091   P Zoo
## 5  6.718199 104.41190 0.5361976 12.75758   P Zoo
## 6  7.618422 102.62757 0.5219977 12.66279   P Zoo
## 7  6.960145  99.74801 0.5902900 13.23729   P Zoo
## 8  6.596034  97.91516 0.5991982 14.10294   P Zoo
## 9  6.661597  96.96368 0.6062242 14.35821   P Zoo
## 10 6.216049 106.24836 0.5598673 12.38000   P Zoo
## 11 8.426278 101.72864 0.5632224 13.19149   P Zoo
## 12 8.050706 102.83395 0.5578318 13.29412   P Zoo
## 13 7.444659 103.08833 0.5332741 13.57692   P Zoo
## 14 8.085461 105.79385 0.5343582 13.40000   P Zoo
## 15 5.770036 103.80049 0.5906381 12.93220   P Zoo
## 16 7.081918  99.60127 0.5777860 13.32432   P Zoo
## 17 6.004974  97.86701 0.5924458 13.97872   P Zoo
## 18 6.763918 105.76747 0.5447421 11.93182   P Zoo
## 19 4.769351 103.76283 0.5790798 12.55814   P Zoo
## 20 4.701606 104.23365 0.5742980 12.33824   P Zoo
## 21 7.479661 101.89468 0.5876119 13.55319   P Zoo
## 22 5.840690 102.88049 0.5629431 13.45714   P Zoo
## 23 8.501410  99.15315 0.5744437 12.86486   P Zoo
## 24 6.563005 107.59737 0.5496543 11.77273   P Zoo
## 25 5.435446 108.12279 0.5640417 12.05263   P Zoo
##        AF             AFE               DM              Hmax       Dec   
##  Min.   :4.702   Min.   : 96.96   Min.   :0.5220   Min.   :11.77   P:25  
##  1st Qu.:6.005   1st Qu.: 99.60   1st Qu.:0.5578   1st Qu.:12.66         
##  Median :6.657   Median :102.77   Median :0.5744   Median :13.24         
##  Mean   :6.661   Mean   :102.31   Mean   :0.5703   Mean   :13.11         
##  3rd Qu.:7.445   3rd Qu.:104.23   3rd Qu.:0.5876   3rd Qu.:13.55         
##  Max.   :8.501   Max.   :108.12   Max.   :0.6102   Max.   :14.36         
##    SD    
##  Zoo:25  
##          
##          
##          
##          
## 

Considerações finais

Referências

Contato