Análises estatísticas dos dados:

Carregamento de pacotes e dados. Leitura e resumo dos dados.

setwd("C:/R/Lia")
dados<-read.table("dados_hormonios.txt", header = TRUE, row.names = 1 ) 
attach(dados) 
summary(dados) 
##       ano       estagio       temp          precipit            UR       
##  Min.   :2014   coty:6   Min.   :14.85   Min.   : 600.6   Min.   :83.64  
##  1st Qu.:2014   II  :6   1st Qu.:15.41   1st Qu.: 630.6   1st Qu.:84.32  
##  Median :2014   III :6   Median :15.65   Median : 919.3   Median :84.75  
##  Mean   :2014   IV  :6   Mean   :15.80   Mean   :1075.0   Mean   :84.76  
##  3rd Qu.:2015            3rd Qu.:16.28   3rd Qu.:1456.5   3rd Qu.:85.41  
##  Max.   :2015            Max.   :16.80   Max.   :1910.2   Max.   :85.54  
##      Gaeixo          ABAeixo         S.Aeixo         IAAeixo      
##  Min.   :  0.00   Min.   :    0   Min.   :162.3   Min.   : 0.000  
##  1st Qu.: 10.46   1st Qu.: 1156   1st Qu.:388.1   1st Qu.: 5.145  
##  Median : 19.58   Median : 2812   Median :465.8   Median : 8.665  
##  Mean   : 39.73   Mean   : 4322   Mean   :505.2   Mean   : 8.209  
##  3rd Qu.: 48.75   3rd Qu.: 6420   3rd Qu.:633.4   3rd Qu.:11.238  
##  Max.   :128.46   Max.   :15016   Max.   :889.4   Max.   :21.430  
##      Gacot            ABAcot          S.Acot          IAAcot      
##  Min.   :  5.09   Min.   : 7.08   Min.   :130.5   Min.   : 0.000  
##  1st Qu.: 11.34   1st Qu.:17.66   1st Qu.:165.4   1st Qu.: 3.090  
##  Median : 29.50   Median :26.48   Median :181.8   Median : 7.205  
##  Mean   : 47.00   Mean   :27.04   Mean   :192.6   Mean   : 8.394  
##  3rd Qu.: 57.70   3rd Qu.:31.98   3rd Qu.:222.4   3rd Qu.:14.027  
##  Max.   :151.34   Max.   :58.89   Max.   :373.9   Max.   :24.330  
##       Germ              TZ              IVG               CE        
##  Min.   : 12.00   Min.   : 84.00   Min.   :0.0400   Min.   : 34.64  
##  1st Qu.: 72.50   1st Qu.: 91.92   1st Qu.:0.2412   1st Qu.: 58.40  
##  Median : 83.67   Median : 94.00   Median :0.4179   Median : 66.54  
##  Mean   : 74.64   Mean   : 93.88   Mean   :0.4117   Mean   : 77.45  
##  3rd Qu.: 88.50   3rd Qu.:100.00   3rd Qu.:0.5563   3rd Qu.: 89.11  
##  Max.   :100.00   Max.   :100.00   Max.   :0.7900   Max.   :162.08  
##        MS       
##  Min.   :2.246  
##  1st Qu.:3.720  
##  Median :4.503  
##  Mean   :4.276  
##  3rd Qu.:4.926  
##  Max.   :5.911
str(dados) 
## 'data.frame':    24 obs. of  18 variables:
##  $ ano     : int  2014 2014 2014 2014 2014 2014 2014 2014 2014 2014 ...
##  $ estagio : Factor w/ 4 levels "coty","II","III",..: 1 1 1 2 2 2 3 3 3 4 ...
##  $ temp    : num  15.6 15.6 15.6 15.5 15.5 ...
##  $ precipit: num  1202 1202 1202 1416 1416 ...
##  $ UR      : num  83.6 83.6 83.6 84.4 84.4 ...
##  $ Gaeixo  : num  9.14 10.9 13.04 7 7.66 ...
##  $ ABAeixo : num  1567 2218 2011 3166 3221 ...
##  $ S.Aeixo : num  402 371 507 266 413 ...
##  $ IAAeixo : num  5.43 5.84 7.71 0 3.54 ...
##  $ Gacot   : num  26.7 19.7 25.2 32.3 32.7 ...
##  $ ABAcot  : num  25.6 54.9 28.6 40.3 29.2 ...
##  $ S.Acot  : num  191 374 180 144 169 ...
##  $ IAAcot  : num  6.89 15.17 7.52 4.12 5.91 ...
##  $ Germ    : num  12 12 30 87.5 87.5 ...
##  $ TZ      : num  100 100 100 100 92 ...
##  $ IVG     : num  0.04 0.05 0.225 0.2 0.35 0.35 0.67 0.79 0.745 0.5 ...
##  $ CE      : num  81.2 71.7 87 58.6 56.8 ...
##  $ MS      : num  2.48 2.25 2.75 3.88 4.55 ...
library(vegan)
## Loading required package: permute
## Loading required package: lattice
## This is vegan 2.5-2
library(permute)
library(lattice)

Análise estatística multivariada:

Parte 1: Análise de variáveis fisiologicas+hormonais nos diferentes estagios

Etapas:

UA: Repetições das variáveis estágio e ano.

1 -> Montagem de matriz de distância dos dados Fisiológicos (Germ, TZ, IVG, CE, MS), Hormônios (Gaeixo, ABAeixo, S.Aeixo, IAAeixo, Gacot, ABAcot, S.Acot, IAAcot) através do método euclidiano.

2 -> Padronização dos dados referentes de hormônios e fisiológicos.

3 -> Montagem de matriz de distância dos dados Ambientais (temp, precipit, UR) através do método euclidiano.

4 -> Padronização dos dados referentes do ambiente.

5 -> Para comparar as duas matrizes (Fisiologicos+Hormonios x Ambiente) se fez o teste de Mantel, onde se aplica teste estatístico para comparar as matrizes através de 10000 permutações destas matrizes (statistic r: 0.3519, Significance: 0.00039996). Ou seja os agrupamentos formados através das variáveis fisiológicas e hormonais de estágio+ano+R apresentam significância estatística, esse agrupamentos formados no PCA não se formaram ao acaso.

6 -> Representação da matriz de distâncias das variáveis Fisiologicas+Hormonios através da PCA. Verificamos os agrupamentos por estagio.

7 -> Testamos os agrupamentos formados pelo estagio (coty, II, III, IV) na PCA através de uma Permanova. Verificamos se padrão da matriz de distâncias dentro dos estagios (coty, II, III, IV) é menor que entre os mesmo estagios. Essa verificação é feita através permutação de 10000 vezes a matriz da distãncias. De fato existiu uma associação dos estágios com a matriz de distâncias (Pr(>F): 0.019, R2: 0.37902).

#hormonios+fisiologicos com ambiente
total<-dados[,6:18]
total.pad<-decostand(total, method = "standardize")
dist.total<-dist(total, method="euclid")
ambiente<-dados[,3:5]
ambiente.pad<-decostand(ambiente, method = "standardize")
dist.amb<-vegdist(ambiente.pad, method="euclid")
mantel(dist.amb, dist.total, permutations = 10000) #mantel
## 
## Mantel statistic based on Pearson's product-moment correlation 
## 
## Call:
## mantel(xdis = dist.amb, ydis = dist.total, permutations = 10000) 
## 
## Mantel statistic r: 0.3519 
##       Significance: 0.00019998 
## 
## Upper quantiles of permutations (null model):
##    90%    95%  97.5%    99% 
## 0.0908 0.1235 0.1538 0.1903 
## Permutation: free
## Number of permutations: 10000
resultado<-rda(total<-dados[,6:18], scale = TRUE)
summary(resultado)
## 
## Call:
## rda(X = total <- dados[, 6:18], scale = TRUE) 
## 
## Partitioning of correlations:
##               Inertia Proportion
## Total              13          1
## Unconstrained      13          1
## 
## Eigenvalues, and their contribution to the correlations 
## 
## Importance of components:
##                          PC1    PC2    PC3    PC4     PC5     PC6     PC7
## Eigenvalue            4.6824 2.8626 1.7994 1.1844 0.79789 0.57133 0.52691
## Proportion Explained  0.3602 0.2202 0.1384 0.0911 0.06138 0.04395 0.04053
## Cumulative Proportion 0.3602 0.5804 0.7188 0.8099 0.87128 0.91523 0.95576
##                           PC8      PC9     PC10     PC11     PC12     PC13
## Eigenvalue            0.22162 0.129128 0.091142 0.070134 0.047302 0.015745
## Proportion Explained  0.01705 0.009933 0.007011 0.005395 0.003639 0.001211
## Cumulative Proportion 0.97281 0.982744 0.989755 0.995150 0.998789 1.000000
## 
## Scaling 2 for species and site scores
## * Species are scaled proportional to eigenvalues
## * Sites are unscaled: weighted dispersion equal on all dimensions
## * General scaling constant of scores:  4.158319 
## 
## 
## Species scores
## 
##               PC1      PC2      PC3       PC4      PC5      PC6
## Gaeixo   0.867709 -0.55239  0.04954 -0.265166  0.37262 -0.02950
## ABAeixo  0.827909 -0.63709 -0.26571  0.062008 -0.10927 -0.31327
## S.Aeixo -0.850574 -0.30018 -0.07211 -0.389642  0.44765 -0.07754
## IAAeixo -0.569030 -0.44996 -0.58634  0.330127  0.24924  0.17600
## Gacot    0.878551 -0.57383 -0.12072 -0.159370  0.11664 -0.36253
## ABAcot  -0.604390  0.38060 -0.66384 -0.542772 -0.13621 -0.03272
## S.Acot   0.434616  0.48198 -0.61879 -0.146189  0.54633  0.10788
## IAAcot   0.002029 -0.05471 -0.83984  0.684305 -0.12490 -0.12087
## Germ    -0.537389 -0.83843  0.30027 -0.145488 -0.05213  0.04359
## TZ      -0.773731  0.52638 -0.08111 -0.226284 -0.05529 -0.58090
## IVG     -0.894659 -0.63952  0.03382  0.082335  0.17723  0.10078
## CE      -0.449527  0.33969  0.54520  0.592925  0.46246 -0.31453
## MS      -0.725631 -0.76826 -0.18115  0.005196 -0.22518 -0.12948
## 
## 
## Site scores (weighted sums of species scores)
## 
##                   PC1        PC2      PC3       PC4       PC5      PC6
## A2014.coty-1  0.42239  1.7246189  0.10583  0.140787 -0.380223 -0.48731
## A2014.coty-2  0.52866  2.3847287 -1.91883 -0.489751  0.925734 -0.03659
## A2014.coty-3  0.05621  1.2504767  0.07311  0.120392 -0.037476 -0.49491
## A2014.II-1    0.02407  0.6828327  0.51857 -0.860075 -2.151052 -0.59816
## A2014.II-2   -0.02571  0.0745331  0.34589 -0.356232 -1.304879  0.58490
## A2014.II-3   -0.02263 -0.1850858  0.86442 -0.404983 -1.171975  0.38479
## A2014.III-1  -1.34018 -0.1632617 -0.81328 -1.577055 -0.067162  0.05567
## A2014.III-2  -1.18293 -0.6970607 -0.30448 -0.142922 -0.115030  0.84231
## A2014.III-3  -1.46906 -0.5153870 -0.59840 -1.144266  0.687094  1.08901
## A2014.IV-1   -0.49639  0.5124067  0.62325 -0.482294 -0.154064 -0.43329
## A2014.IV-2   -0.78314  0.1073292  0.95945 -0.164408  0.189890 -0.64443
## A2014.IV-3   -0.77381 -0.3287031  0.89322 -0.415949  1.168469  0.74714
## A2015.coty-1  1.65371 -0.0006629  0.82148 -0.348432  0.483306  0.45753
## A2015.coty-2  1.41340 -0.0194390  0.85506 -0.700923  1.077683  0.82083
## A2015.coty-3  1.24776 -0.3288681  0.48380 -0.005112  1.101347  1.11337
## A2015.II-1    1.01025 -1.5822055 -0.61711 -0.245248 -0.255723 -1.49550
## A2015.II-2    0.52122 -1.0452721 -1.36929 -0.126499  0.575712 -1.27437
## A2015.II-3    0.55650 -1.1013287  0.23377 -0.654576 -0.005967 -1.50474
## A2015.III-1   0.54049 -0.4025974 -0.58659  1.138200 -1.315773  0.91045
## A2015.III-2  -0.06864 -0.4031266 -1.68665  1.167881 -0.462274  0.63636
## A2015.III-3   0.32565 -0.3204738 -0.77420  1.057548 -0.378099  1.06710
## A2015.IV-1   -0.54278  0.0698345  0.92396  1.446362  0.084140 -0.34064
## A2015.IV-2   -1.07674  0.2126718  0.18489  1.293198  1.220131 -1.46942
## A2015.IV-3   -0.51827  0.0740403  0.78213  1.754355  0.286190  0.06989
resultado.env<-envfit(resultado, dados[,3:5])

plot(resultado, type="t")
#type = "t", insere os nomes das UA
ordihull(resultado, groups=estagio, show="coty", col="green4")
ordihull(resultado, groups=estagio, show="II", col="red")
ordihull(resultado, groups=estagio, show="III", col="blue")
ordihull(resultado, groups=estagio, show="IV", col="purple")
plot(resultado.env)

adonis(dist.total~estagio) #permanova
## 
## Call:
## adonis(formula = dist.total ~ estagio) 
## 
## Permutation: free
## Number of permutations: 999
## 
## Terms added sequentially (first to last)
## 
##           Df SumsOfSqs  MeanSqs F.Model      R2 Pr(>F)  
## estagio    3 152366227 50788742   4.069 0.37902  0.019 *
## Residuals 20 249634407 12481720         0.62098         
## Total     23 402000634                  1.00000         
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Parte2:

#hormonios com ambiente
hormonios<-dados[,6:13]
hormonios
##              Gaeixo  ABAeixo S.Aeixo IAAeixo  Gacot ABAcot S.Acot IAAcot
## A2014.coty-1   9.14  1567.38  401.52    5.43  26.72  25.63 190.91   6.89
## A2014.coty-2  10.90  2218.46  370.79    5.84  19.69  54.88 373.90  15.17
## A2014.coty-3  13.04  2011.29  507.44    7.71  25.19  28.64 179.81   7.52
## A2014.II-1     7.00  3166.13  265.86    0.00  32.29  40.34 144.19   4.12
## A2014.II-2     7.66  3220.68  412.83    3.54  32.70  29.22 168.90   5.91
## A2014.II-3    13.66  4811.51  476.55    4.29  32.97  20.86 142.97   0.00
## A2014.III-1   17.82    42.42  889.38    9.27   5.51  58.89 194.31   8.01
## A2014.III-2   16.11    33.51  704.40   14.34   8.23  33.18 165.70   9.88
## A2014.III-3   13.47     0.00  848.90   21.43   5.09  49.49 183.75   0.00
## A2014.IV-1    21.34   382.54  489.81    0.00   7.46  32.43 210.88   5.80
## A2014.IV-2    31.09   599.95  708.12    5.96  11.43  27.33 130.46   5.14
## A2014.IV-3    34.74   594.07  873.04   11.04  11.06  21.33 164.67   0.00
## A2015.coty-1 116.53  6183.97  162.30    0.00 132.76  11.05 238.59   0.00
## A2015.coty-2 127.99  7746.92  425.57    0.00  81.49  13.08 234.91   0.00
## A2015.coty-3 117.97  6372.94  394.90    7.72  94.64   7.08 224.88   4.25
## A2015.II-1   128.46 15015.67  495.21    8.57 151.34  15.76 169.47  14.68
## A2015.II-2    85.88 10797.30  614.04   12.15 149.38  31.83 228.61  18.73
## A2015.II-3    78.06 12083.43  493.54    8.76 136.93  18.30 179.16   0.00
## A2015.III-1   38.98  8590.33  302.25   12.09  49.77  25.40 141.30  16.95
## A2015.III-2   28.88  6243.15  377.18   17.85  37.49  30.52 222.81  24.33
## A2015.III-3   30.79  6560.83  391.80    9.25  38.68  20.44 222.32  19.95
## A2015.IV-1     0.00  2458.40  455.05    9.89  13.71  11.59 145.56   8.56
## A2015.IV-2     0.00  1685.60  691.58   11.83  14.34  29.03 193.39  13.81
## A2015.IV-3     4.07  1341.73  373.31   10.06   9.08  12.68 171.82  11.75
dist.hormonios<-dist(hormonios, method="euclid")
head(dados)
##               ano estagio     temp precipit       UR Gaeixo ABAeixo
## A2014.coty-1 2014    coty 15.55991   1202.4 83.64242   9.14 1567.38
## A2014.coty-2 2014    coty 15.55991   1202.4 83.64242  10.90 2218.46
## A2014.coty-3 2014    coty 15.55991   1202.4 83.64242  13.04 2011.29
## A2014.II-1   2014      II 15.49403   1416.4 84.38547   7.00 3166.13
## A2014.II-2   2014      II 15.49403   1416.4 84.38547   7.66 3220.68
## A2014.II-3   2014      II 15.49403   1416.4 84.38547  13.66 4811.51
##              S.Aeixo IAAeixo Gacot ABAcot S.Acot IAAcot   Germ        TZ
## A2014.coty-1  401.52    5.43 26.72  25.63 190.91   6.89 12.000 100.00000
## A2014.coty-2  370.79    5.84 19.69  54.88 373.90  15.17 12.000 100.00000
## A2014.coty-3  507.44    7.71 25.19  28.64 179.81   7.52 30.000 100.00000
## A2014.II-1    265.86    0.00 32.29  40.34 144.19   4.12 87.500 100.00000
## A2014.II-2    412.83    3.54 32.70  29.22 168.90   5.91 87.500  92.00000
## A2014.II-3    476.55    4.29 32.97  20.86 142.97   0.00 83.335  91.66667
##                IVG       CE       MS
## A2014.coty-1 0.040 81.21835 2.478667
## A2014.coty-2 0.050 71.70465 2.246000
## A2014.coty-3 0.225 87.01970 2.753167
## A2014.II-1   0.200 58.59177 3.883333
## A2014.II-2   0.350 56.84594 4.551667
## A2014.II-3   0.350 63.64590 4.912167
ambiente<-dados[,3:5]
ambiente.pad<-decostand(ambiente, method = "standardize")
#criação de matriz de distância euclidiana para ambiente
dist.amb<-vegdist(ambiente.pad, method="euclid")
mantel(dist.amb, dist.hormonios, permutations = 10000)
## 
## Mantel statistic based on Pearson's product-moment correlation 
## 
## Call:
## mantel(xdis = dist.amb, ydis = dist.hormonios, permutations = 10000) 
## 
## Mantel statistic r: 0.3517 
##       Significance: 9.999e-05 
## 
## Upper quantiles of permutations (null model):
##   90%   95% 97.5%   99% 
## 0.086 0.118 0.145 0.188 
## Permutation: free
## Number of permutations: 10000
adonis(dist.hormonios~estagio)
## 
## Call:
## adonis(formula = dist.hormonios ~ estagio) 
## 
## Permutation: free
## Number of permutations: 999
## 
## Terms added sequentially (first to last)
## 
##           Df SumsOfSqs  MeanSqs F.Model      R2 Pr(>F)  
## estagio    3 152341799 50780600  4.0686 0.37899  0.024 *
## Residuals 20 249623598 12481180         0.62101         
## Total     23 401965397                  1.00000         
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#fisiologico com ambiente
fisiologico<-dados[,14:18]
fisiologico
##                 Germ        TZ       IVG        CE       MS
## A2014.coty-1  12.000 100.00000 0.0400000  81.21835 2.478667
## A2014.coty-2  12.000 100.00000 0.0500000  71.70465 2.246000
## A2014.coty-3  30.000 100.00000 0.2250000  87.01970 2.753167
## A2014.II-1    87.500 100.00000 0.2000000  58.59177 3.883333
## A2014.II-2    87.500  92.00000 0.3500000  56.84594 4.551667
## A2014.II-3    83.335  91.66667 0.3500000  63.64590 4.912167
## A2014.III-1   92.000 100.00000 0.6700000  55.84640 5.911000
## A2014.III-2  100.000  96.00000 0.7900000  62.29745 5.837333
## A2014.III-3   96.000  98.00000 0.7450000  61.65296 5.462833
## A2014.IV-1    95.000 100.00000 0.5000000  95.37459 4.515667
## A2014.IV-2    90.000 100.00000 0.5500000 106.92730 4.154000
## A2014.IV-3    97.500  93.33333 0.5750000  95.85765 4.275667
## A2015.coty-1  60.000  84.00000 0.1900000  72.07415 3.230333
## A2015.coty-2  68.000  84.00000 0.2300000  70.24636 2.495000
## A2015.coty-3  74.000  84.00000 0.2450000  66.38112 2.752500
## A2015.II-1    85.000  92.00000 0.4387173  34.64286 4.767333
## A2015.II-2    85.000  92.00000 0.3931897  57.61576 4.878667
## A2015.II-3    82.500  94.00000 0.3969930  66.69559 5.402667
## A2015.III-1   56.000  84.00000 0.3062510  57.82364 4.439000
## A2015.III-2   76.000  92.00000 0.4650619  51.83301 4.967000
## A2015.III-3   74.000  86.00000 0.4502928  59.98399 4.541167
## A2015.IV-1    76.000  96.00000 0.5792822 127.70194 4.490000
## A2015.IV-2    84.000 100.00000 0.5453912 162.08019 5.239667
## A2015.IV-3    88.000  94.00000 0.5957545 134.67286 4.445667
fisiologico.pad<-decostand(fisiologico, method = "standardize")
dist.fisiologico<-dist(fisiologico.pad, method="euclid")
head(dados)
##               ano estagio     temp precipit       UR Gaeixo ABAeixo
## A2014.coty-1 2014    coty 15.55991   1202.4 83.64242   9.14 1567.38
## A2014.coty-2 2014    coty 15.55991   1202.4 83.64242  10.90 2218.46
## A2014.coty-3 2014    coty 15.55991   1202.4 83.64242  13.04 2011.29
## A2014.II-1   2014      II 15.49403   1416.4 84.38547   7.00 3166.13
## A2014.II-2   2014      II 15.49403   1416.4 84.38547   7.66 3220.68
## A2014.II-3   2014      II 15.49403   1416.4 84.38547  13.66 4811.51
##              S.Aeixo IAAeixo Gacot ABAcot S.Acot IAAcot   Germ        TZ
## A2014.coty-1  401.52    5.43 26.72  25.63 190.91   6.89 12.000 100.00000
## A2014.coty-2  370.79    5.84 19.69  54.88 373.90  15.17 12.000 100.00000
## A2014.coty-3  507.44    7.71 25.19  28.64 179.81   7.52 30.000 100.00000
## A2014.II-1    265.86    0.00 32.29  40.34 144.19   4.12 87.500 100.00000
## A2014.II-2    412.83    3.54 32.70  29.22 168.90   5.91 87.500  92.00000
## A2014.II-3    476.55    4.29 32.97  20.86 142.97   0.00 83.335  91.66667
##                IVG       CE       MS
## A2014.coty-1 0.040 81.21835 2.478667
## A2014.coty-2 0.050 71.70465 2.246000
## A2014.coty-3 0.225 87.01970 2.753167
## A2014.II-1   0.200 58.59177 3.883333
## A2014.II-2   0.350 56.84594 4.551667
## A2014.II-3   0.350 63.64590 4.912167
ambiente<-dados[,3:5]
ambiente.pad<-decostand(ambiente, method = "standardize")
#criação de matriz de distância euclidiana para ambiente
dist.amb<-vegdist(ambiente.pad, method="euclid")
mantel(dist.amb, dist.fisiologico, permutations = 10000)
## 
## Mantel statistic based on Pearson's product-moment correlation 
## 
## Call:
## mantel(xdis = dist.amb, ydis = dist.fisiologico, permutations = 10000) 
## 
## Mantel statistic r: 0.3754 
##       Significance: 9.999e-05 
## 
## Upper quantiles of permutations (null model):
##    90%    95%  97.5%    99% 
## 0.0872 0.1179 0.1478 0.1800 
## Permutation: free
## Number of permutations: 10000
adonis(dist.fisiologico~estagio)
## 
## Call:
## adonis(formula = dist.fisiologico ~ estagio) 
## 
## Permutation: free
## Number of permutations: 999
## 
## Terms added sequentially (first to last)
## 
##           Df SumsOfSqs MeanSqs F.Model      R2 Pr(>F)    
## estagio    3    69.987 23.3291  10.366 0.60859  0.001 ***
## Residuals 20    45.013  2.2506         0.39141           
## Total     23   115.000                 1.00000           
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#fisiologicos com hormonios
mantel(dist.hormonios, dist.fisiologico, permutations = 10000)
## 
## Mantel statistic based on Pearson's product-moment correlation 
## 
## Call:
## mantel(xdis = dist.hormonios, ydis = dist.fisiologico, permutations = 10000) 
## 
## Mantel statistic r: 0.05081 
##       Significance: 0.28127 
## 
## Upper quantiles of permutations (null model):
##   90%   95% 97.5%   99% 
## 0.143 0.191 0.242 0.298 
## Permutation: free
## Number of permutations: 10000
adonis(dist.fisiologico~estagio)
## 
## Call:
## adonis(formula = dist.fisiologico ~ estagio) 
## 
## Permutation: free
## Number of permutations: 999
## 
## Terms added sequentially (first to last)
## 
##           Df SumsOfSqs MeanSqs F.Model      R2 Pr(>F)    
## estagio    3    69.987 23.3291  10.366 0.60859  0.001 ***
## Residuals 20    45.013  2.2506         0.39141           
## Total     23   115.000                 1.00000           
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1