(a) Explain how k-fold cross-validation is implemented
The k-fold cross validation is implemented by taking the n observations and by randomly splitting it into k non-overlapping groups of length of (approximately) n/k. These groups acts as a validation set, and the remainder (of length n???n/k) acts as a training set.
(b) What are the advantages and disadvantages of k-fold crossvalidation relative to:
i. The validation set approach?
The validation set approach has two main drawbacks compared to k-fold cross-validation. First, the validation estimate of the test error rate can be highly variable depending on precisely which observations are included in the training and validation set. Second, only a subset of the observations are used to fit the model.
ii. LOOCV?
LOOCV is the most computationally intense method since the model must be fit n times and it may give approximately unbiased estimates of the test error, since each training set contains n???1 observations. The LOOCV approach has higher variance than k-fold cross-validation
(a) Fit a logistic regression model that uses income and balance to predict default.
library(ISLR)
summary(Default)
## default student balance income
## No :9667 No :7056 Min. : 0.0 Min. : 772
## Yes: 333 Yes:2944 1st Qu.: 481.7 1st Qu.:21340
## Median : 823.6 Median :34553
## Mean : 835.4 Mean :33517
## 3rd Qu.:1166.3 3rd Qu.:43808
## Max. :2654.3 Max. :73554
attach(Default)
set.seed(1)
glm.fit = glm(default ~ income + balance, data = Default, family = binomial)
(b) Using the validation set approach, estimate the test error of this model. In order to do this, you must perform the following steps:
i. Split the sample set into a training set and a validation set.
train <- sample(dim(Default)[1], dim(Default)[1] / 2)
ii. Fit a multiple logistic regression model using only the training observations.
fit.glm <- glm(default ~ income + balance, data = Default, family = "binomial", subset = train)
summary(fit.glm)
##
## Call:
## glm(formula = default ~ income + balance, family = "binomial",
## data = Default, subset = train)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.3583 -0.1268 -0.0475 -0.0165 3.8116
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.208e+01 6.658e-01 -18.148 <2e-16 ***
## income 1.858e-05 7.573e-06 2.454 0.0141 *
## balance 6.053e-03 3.467e-04 17.457 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1457.0 on 4999 degrees of freedom
## Residual deviance: 734.4 on 4997 degrees of freedom
## AIC: 740.4
##
## Number of Fisher Scoring iterations: 8
iii. Obtain a prediction of default status for each individual in the validation set by computing the posterior probability of default for that individual, and classifying the individual to the default category if the posterior probability is greater than 0.5.
probs <- predict(fit.glm, newdata = Default[-train, ], type = "response")
pred.glm <- rep("No", length(probs))
pred.glm[probs > 0.5] <- "Yes"
iv. Compute the validation set error, which is the fraction of the observations in the validation set that are misclassified.
mean(pred.glm != Default[-train, ]$default)
## [1] 0.0286
There is a 2.86% test error rate with the validation set approach.
(c) Repeat the process in (b) three times, using three different splits of the observations into a training set and a validation set. Comment on the results obtained.
train <- sample(dim(Default)[1], dim(Default)[1] / 2)
fit.glm <- glm(default ~ income + balance, data = Default, family = "binomial", subset = train)
probs <- predict(fit.glm, newdata = Default[-train, ], type = "response")
pred.glm <- rep("No", length(probs))
pred.glm[probs > 0.5] <- "Yes"
mean(pred.glm != Default[-train, ]$default)
## [1] 0.0236
train <- sample(dim(Default)[1], dim(Default)[1] / 2)
fit.glm <- glm(default ~ income + balance, data = Default, family = "binomial", subset = train)
probs <- predict(fit.glm, newdata = Default[-train, ], type = "response")
pred.glm <- rep("No", length(probs))
pred.glm[probs > 0.5] <- "Yes"
mean(pred.glm != Default[-train, ]$default)
## [1] 0.028
train <- sample(dim(Default)[1], dim(Default)[1] / 2)
fit.glm <- glm(default ~ income + balance, data = Default, family = "binomial", subset = train)
probs <- predict(fit.glm, newdata = Default[-train, ], type = "response")
pred.glm <- rep("No", length(probs))
pred.glm[probs > 0.5] <- "Yes"
mean(pred.glm != Default[-train, ]$default)
## [1] 0.0268
There appears to be an average around 2.6% test error rate.
(d) Now consider a logistic regression model that predicts the probability of default using income, balance, and a dummy variable for student. Estimate the test error for this model using the validation set approach. Comment on whether or not including a dummy variable for student leads to a reduction in the test error rate
train <- sample(dim(Default)[1], dim(Default)[1] / 2)
fit.glm <- glm(default ~ income + balance + student, data = Default, family = "binomial", subset = train)
pred.glm <- rep("No", length(probs))
probs <- predict(fit.glm, newdata = Default[-train, ], type = "response")
pred.glm[probs > 0.5] <- "Yes"
mean(pred.glm != Default[-train, ]$default)
## [1] 0.0264
Adding the “student” dummy variable does not reduce the validation set estimate of the test error rate.
(a) Using the summary() and glm() functions, determine the estimated standard errors for the coefficients associated with income and balance in a multiple logistic regression model that uses both predictors.
set.seed(1)
glm.fit = glm(default ~ income + balance, data = Default, family = binomial)
summary(glm.fit)
##
## Call:
## glm(formula = default ~ income + balance, family = binomial,
## data = Default)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.4725 -0.1444 -0.0574 -0.0211 3.7245
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.154e+01 4.348e-01 -26.545 < 2e-16 ***
## income 2.081e-05 4.985e-06 4.174 2.99e-05 ***
## balance 5.647e-03 2.274e-04 24.836 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 2920.6 on 9999 degrees of freedom
## Residual deviance: 1579.0 on 9997 degrees of freedom
## AIC: 1585
##
## Number of Fisher Scoring iterations: 8
(b) Write a function, boot.fn(), that takes as input the Default data set as well as an index of the observations, and that outputs the coefficient estimates for income and balance in the multiple logistic regression model.
boot.fn <- function(data, index) {
fit <- glm(default ~ income + balance, data = data, family = "binomial", subset = index)
return (coef(fit))
}
(c) Use the boot() function together with your boot.fn() function to estimate the standard errors of the logistic regression coefficients for income and balance.
library(boot)
boot(Default, boot.fn, 1000)
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = Default, statistic = boot.fn, R = 1000)
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* -1.154047e+01 -8.008379e-03 4.239273e-01
## t2* 2.080898e-05 5.870933e-08 4.582525e-06
## t3* 5.647103e-03 2.299970e-06 2.267955e-04
(d) Comment on the estimated standard errors obtained using the glm() function and using your bootstrap function
It seems that the estimated standard errors obtained by the two methods are pretty similar.
(a) Based on this data set, provide an estimate for the population mean of medv. Call this estimate ^??.
library(MASS)
summary(Boston)
## crim zn indus chas
## Min. : 0.00632 Min. : 0.00 Min. : 0.46 Min. :0.00000
## 1st Qu.: 0.08204 1st Qu.: 0.00 1st Qu.: 5.19 1st Qu.:0.00000
## Median : 0.25651 Median : 0.00 Median : 9.69 Median :0.00000
## Mean : 3.61352 Mean : 11.36 Mean :11.14 Mean :0.06917
## 3rd Qu.: 3.67708 3rd Qu.: 12.50 3rd Qu.:18.10 3rd Qu.:0.00000
## Max. :88.97620 Max. :100.00 Max. :27.74 Max. :1.00000
## nox rm age dis
## Min. :0.3850 Min. :3.561 Min. : 2.90 Min. : 1.130
## 1st Qu.:0.4490 1st Qu.:5.886 1st Qu.: 45.02 1st Qu.: 2.100
## Median :0.5380 Median :6.208 Median : 77.50 Median : 3.207
## Mean :0.5547 Mean :6.285 Mean : 68.57 Mean : 3.795
## 3rd Qu.:0.6240 3rd Qu.:6.623 3rd Qu.: 94.08 3rd Qu.: 5.188
## Max. :0.8710 Max. :8.780 Max. :100.00 Max. :12.127
## rad tax ptratio black
## Min. : 1.000 Min. :187.0 Min. :12.60 Min. : 0.32
## 1st Qu.: 4.000 1st Qu.:279.0 1st Qu.:17.40 1st Qu.:375.38
## Median : 5.000 Median :330.0 Median :19.05 Median :391.44
## Mean : 9.549 Mean :408.2 Mean :18.46 Mean :356.67
## 3rd Qu.:24.000 3rd Qu.:666.0 3rd Qu.:20.20 3rd Qu.:396.23
## Max. :24.000 Max. :711.0 Max. :22.00 Max. :396.90
## lstat medv
## Min. : 1.73 Min. : 5.00
## 1st Qu.: 6.95 1st Qu.:17.02
## Median :11.36 Median :21.20
## Mean :12.65 Mean :22.53
## 3rd Qu.:16.95 3rd Qu.:25.00
## Max. :37.97 Max. :50.00
set.seed(1)
attach(Boston)
medv.mean = mean(medv)
medv.mean
## [1] 22.53281
(b) Provide an estimate of the standard error of ^??. Interpret this result.
medv.err = sd(medv)/sqrt(length(medv))
medv.err
## [1] 0.4088611
(c) Now estimate the standard error of ^?? using the bootstrap. How does this compare to your answer from (b)?
boot.fn = function(data, index) return(mean(data[index]))
library(boot)
bstrap = boot(medv, boot.fn, 1000)
bstrap
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = medv, statistic = boot.fn, R = 1000)
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* 22.53281 0.008517589 0.4119374
The bootstrap estimated standard error of ??^ = 0.4119 is very similar to the estimate found in (b) of 0.4089.
(d) Based on your bootstrap estimate from (c), provide a 95 % confidence interval for the mean of medv. Compare it to the results obtained using t.test(Boston$medv)
t.test(medv)
##
## One Sample t-test
##
## data: medv
## t = 55.111, df = 505, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 21.72953 23.33608
## sample estimates:
## mean of x
## 22.53281
c(bstrap$t0 - 2 * 0.4119, bstrap$t0 + 2 * 0.4119)
## [1] 21.70901 23.35661
(e) Based on this data set, provide an estimate, ^??med, for the median value of medv in the population
medv.med = median(medv)
medv.med
## [1] 21.2
(f) We now would like to estimate the standard error of ^??med. Unfortunately, there is no simple formula for computing the standard error of the median. Instead, estimate the standard error of the median using the bootstrap. Comment on your findings.
boot.fn = function(data, index) return(median(data[index]))
boot(medv, boot.fn, 1000)
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = medv, statistic = boot.fn, R = 1000)
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* 21.2 -0.0098 0.3874004
The estimated median value is 21.2 which is equal to the value obtained in (e), with a standard error of 0.3874 which is small compared to median value.
(g) Based on this data set, provide an estimate for the tenth percentile of medv in Boston suburbs. Call this quantity ^??0.1. (You can use the quantile() function.)
medv.tenth = quantile(medv, c(0.1))
medv.tenth
## 10%
## 12.75
(h) Use the bootstrap to estimate the standard error of ^??0.1. Comment on your findings.
boot.fn = function(data, index) return(quantile(data[index], c(0.1)))
boot(medv, boot.fn, 1000)
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = medv, statistic = boot.fn, R = 1000)
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* 12.75 0.00515 0.5113487
The estimated tenth percentile value is 12.75 which is equal to the value obtained in (g), with a standard error of 0.5113 which is small compared to percentile value.