VoterData <- read_csv("VoterData2017(1).csv")
## Parsed with column specification:
## cols(
## .default = col_double(),
## redovote2016_t_2017 = col_character(),
## job_title_t_2017 = col_character(),
## izip_2016 = col_character(),
## presvote16post_t_2016 = col_character(),
## second_chance_t_2016 = col_character(),
## race_other_2016 = col_character(),
## healthcov_t_2016 = col_character(),
## employ_t_2016 = col_character(),
## pid3_t_2016 = col_character(),
## religpew_t_2016 = col_character(),
## votemeth16_rnd_2016 = col_character(),
## presvote16post_rnd_2016 = col_character(),
## vote2016_cand2_rnd_2016 = col_character(),
## Clinton_Rubio_rnd_2016 = col_character(),
## Clinton_Cruz_rnd_2016 = col_character(),
## Sanders_Trump_rnd_2016 = col_character(),
## Sanders_Rubio_rnd_2016 = col_character(),
## second_chance_rnd_2016 = col_character(),
## obamaapp_rnd_2016 = col_character(),
## fav_grid_row_rnd_2016 = col_character()
## # ... with 121 more columns
## )
## See spec(...) for full column specifications.
## Warning: 13 parsing failures.
## row col expected actual file
## 1418 religpew_muslim_baseline 1/0/T/F/TRUE/FALSE 90 'VoterData2017(1).csv'
## 1531 child_age7_1_baseline 1/0/T/F/TRUE/FALSE 6 'VoterData2017(1).csv'
## 1531 child_age8_1_baseline 1/0/T/F/TRUE/FALSE 4 'VoterData2017(1).csv'
## 1531 child_age9_1_baseline 1/0/T/F/TRUE/FALSE 2 'VoterData2017(1).csv'
## 2947 religpew_muslim_baseline 1/0/T/F/TRUE/FALSE 2 'VoterData2017(1).csv'
## .... ........................ .................. ...... ......................
## See problems(...) for more details.
NewVoterData<- VoterData%>%
select(ft_muslim_2017, ft_black_2017, ft_hisp_2017, ideo5_2017)
head(NewVoterData)
## # A tibble: 6 x 4
## ft_muslim_2017 ft_black_2017 ft_hisp_2017 ideo5_2017
## <dbl> <dbl> <dbl> <dbl>
## 1 50 51 79 3
## 2 61 98 95 4
## 3 49 87 91 3
## 4 NA NA NA NA
## 5 80 90 90 4
## 6 100 100 100 1
Variables Selected and Renamed
NewVoterData <-NewVoterData%>%
rename("Ideology" = ideo5_2017,"FeelingsTowardsMuslims" = ft_muslim_2017, "FeelingsTowardsBlacks" = ft_black_2017, "FeelingsTowardsHispanics" = ft_hisp_2017, "FeelingsTowardsMuslims" = ft_muslim_2017)
head(NewVoterData)
## # A tibble: 6 x 4
## FeelingsTowardsMusli… FeelingsTowardsBlac… FeelingsTowardsHispa… Ideology
## <dbl> <dbl> <dbl> <dbl>
## 1 50 51 79 3
## 2 61 98 95 4
## 3 49 87 91 3
## 4 NA NA NA NA
## 5 80 90 90 4
## 6 100 100 100 1
NewVoterData <- NewVoterData%>%
mutate(Ideology= ifelse(Ideology==1, "Very Liberal",
ifelse(Ideology==2, "Liberal",
ifelse(Ideology==3, "Moderate",
ifelse(Ideology==4, "Conservative",
ifelse(Ideology==5, "Very Conervative",
ifelse(Ideology==6, "Not Sure", NA)))))))
NewVoterData <- NewVoterData%>%
filter(!is.na(Ideology))%>%
group_by(Ideology)%>%
summarize(FeelingsTowardsMuslims = mean(FeelingsTowardsMuslims, na.rm = TRUE),
FeelingsTowardsBlacks = mean(FeelingsTowardsBlacks, na.rm = TRUE),
FeelingsTowardsHispanics = mean(FeelingsTowardsHispanics, na.rm = TRUE))
head(NewVoterData)
## # A tibble: 6 x 4
## Ideology FeelingsTowardsMus… FeelingsTowardsBl… FeelingsTowardsHisp…
## <chr> <dbl> <dbl> <dbl>
## 1 Conservative 55.2 78.6 81.2
## 2 Liberal 79.9 87.3 87.0
## 3 Moderate 79.2 87.8 86.1
## 4 Not Sure 166. 131. 140.
## 5 Very Conerva… 40.0 75.1 81.2
## 6 Very Liberal 87.1 87.2 87.2
Most striking results are the vast difference between Very Conservative and Very Liberal respondents regarding their FeelingsTowardsMuslims.