Consultoria Estatística

dados<- read.table("C:\\Users\\USER\\Desktop\\Nova pasta\\Dados_Aula1.txt", header = T)
dados

O banco de dados presente para análise descritiva desta atividade refere-se aos alunos de um colégio em Campina Grande no qual o pesquisador está interessado em verificar quais variáveis influenciam na obesidade dos alunos desta instituição. Este banco de dados consiste em 525 observações de 13 variáveis, das quais algumas tratam da pressão arterial, da massa corpórea, IMC e a respectiva idade.

attach(dados)
library(fBasics)
## Loading required package: timeDate
## Loading required package: timeSeries
library(psych)
## 
## Attaching package: 'psych'
## The following object is masked from 'package:fBasics':
## 
##     tr
## The following object is masked from 'package:timeSeries':
## 
##     outlier

Após leitura dos dados iremos fazer uma análise descritiva! #Análise Descritiva

describe(dados)

Analisando as variaveis em estudo vêmos que PEMED E PIMED tem media igual à 100.67 e 78.31 respectivamente, como também desvios padrões iguais à 28.07 e 23.84. Uma observação importante é que todas as variaveis tem a média bem próxima da mediana, com excessão da variável TOTAFIS que também tem o maior dos desvios padrão.
#Histogramas

a<-round(basicStats(dados),3)
histPlot(as.timeSeries(PEMED))

histPlot(as.timeSeries(PIMED))

histPlot(as.timeSeries(IDADE))

histPlot(as.timeSeries(IMC))

histPlot(as.timeSeries(HRSEDCAL))

histPlot(as.timeSeries(NMEDPAS))

histPlot(as.timeSeries(NMEDPAD))

histPlot(as.timeSeries(MEDCABDO))

histPlot(as.timeSeries(TOTAFIS))

histPlot(as.timeSeries(HDL))

histPlot(as.timeSeries(TG))

histPlot(as.timeSeries(GLICEMIA))

histPlot(as.timeSeries(ESCMATER))

Com os histogramas percebemos que apenas as variáveis GLICEMIA, NMEDPAS E NMEDPAD aparentam seguir uma normal. Com isso iremos usar o gráfico QQplot para sabermos se as variaveis seguem ou não uma distribuição normal.

library(car)
## Loading required package: carData
## 
## Attaching package: 'car'
## The following object is masked from 'package:psych':
## 
##     logit
## The following object is masked from 'package:fBasics':
## 
##     densityPlot
par(mfrow= c(2,2))
qqPlot(PEMED)
## [1] 337 377
qqPlot(PIMED)
## [1] 305 369
qqPlot(IDADE)
## [1] 282 369
qqPlot(IMC)

## [1] 385 252
qqPlot(HRSEDCAL)
## [1] 364 306
qqPlot(NMEDPAS)
## [1]  64 256
qqPlot(NMEDPAD)
## [1] 379 210
qqPlot(MEDCABDO)

## [1] 75 42
qqPlot(TOTAFIS)
## [1] 486 441
qqPlot(HDL)
## [1]  56 164
qqPlot(TG)
## [1] 213 485
qqPlot(GLICEMIA)

## [1]  74 274
qqPlot(ESCMATER)
## [1] 12 17

Como era esperado apenas as variáveis GLICEMIA, NMEDPAS E NMEDPAD seguem aproximadamente uma distribuição normal. ## O gráfico de Correlação é dado por:

library(corrplot)
## corrplot 0.84 loaded
corrplot(cor(dados), order = "hclust",tl.col = 'black', tl.cex = 0.75)

Após verificarmos a normalidade das variáveis junto a corelção entre elas, iremos em busca de um modelo linear da relação das variáveis de interesse com as demais variáveis.

modelo1<-lm(PEMED~IDADE+IMC+HRSEDCAL+NMEDPAS+NMEDPAD+MEDCABDO+
              TOTAFIS+HDL+TG+GLICEMIA+ESCMATER)

summary(modelo1)
## 
## Call:
## lm(formula = PEMED ~ IDADE + IMC + HRSEDCAL + NMEDPAS + NMEDPAD + 
##     MEDCABDO + TOTAFIS + HDL + TG + GLICEMIA + ESCMATER)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -56.319 -15.392  -3.154  11.919 132.494 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 10.915719  26.835516   0.407 0.684351    
## IDADE       -0.425695   1.106764  -0.385 0.700671    
## IMC         -1.265368   0.699488  -1.809 0.071038 .  
## HRSEDCAL     0.372214   0.627307   0.593 0.553207    
## NMEDPAS      0.957581   0.157876   6.065 2.56e-09 ***
## NMEDPAD     -0.913729   0.210209  -4.347 1.67e-05 ***
## MEDCABDO     0.915734   0.328320   2.789 0.005481 ** 
## TOTAFIS      0.013892   0.003573   3.888 0.000115 ***
## HDL         -0.302855   0.123333  -2.456 0.014396 *  
## TG          -0.051642   0.030733  -1.680 0.093496 .  
## GLICEMIA     0.288259   0.165993   1.737 0.083062 .  
## ESCMATER     0.446438   0.318520   1.402 0.161639    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 25.42 on 513 degrees of freedom
## Multiple R-squared:  0.1969, Adjusted R-squared:  0.1797 
## F-statistic: 11.44 on 11 and 513 DF,  p-value: < 2.2e-16

Retirando a variável IDADE já que foi ela quem teve maior p-valor.

modelo1 <- lm(PEMED~+IMC+HRSEDCAL+NMEDPAS+NMEDPAD+MEDCABDO+TOTAFIS+HDL+TG+GLICEMIA+ESCMATER)
summary(modelo1)
## 
## Call:
## lm(formula = PEMED ~ +IMC + HRSEDCAL + NMEDPAS + NMEDPAD + MEDCABDO + 
##     TOTAFIS + HDL + TG + GLICEMIA + ESCMATER)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -56.007 -15.617  -3.132  12.247 133.238 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.616437  18.958009   0.191 0.848789    
## IMC         -1.264080   0.698900  -1.809 0.071086 .  
## HRSEDCAL     0.381736   0.626298   0.610 0.542454    
## NMEDPAS      0.951391   0.156924   6.063 2.59e-09 ***
## NMEDPAD     -0.905115   0.208839  -4.334 1.76e-05 ***
## MEDCABDO     0.908534   0.327514   2.774 0.005738 ** 
## TOTAFIS      0.013972   0.003564   3.920 0.000101 ***
## HDL         -0.303869   0.123202  -2.466 0.013972 *  
## TG          -0.051071   0.030671  -1.665 0.096502 .  
## GLICEMIA     0.294755   0.164994   1.786 0.074615 .  
## ESCMATER     0.466305   0.314044   1.485 0.138199    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 25.4 on 514 degrees of freedom
## Multiple R-squared:  0.1967, Adjusted R-squared:  0.1811 
## F-statistic: 12.59 on 10 and 514 DF,  p-value: < 2.2e-16

retirando a variável HRSEDCAL

modelo1<-lm(PEMED~IMC+NMEDPAS+NMEDPAD+MEDCABDO+
              TOTAFIS+HDL+TG+GLICEMIA+ESCMATER)
summary(modelo1)
## 
## Call:
## lm(formula = PEMED ~ IMC + NMEDPAS + NMEDPAD + MEDCABDO + TOTAFIS + 
##     HDL + TG + GLICEMIA + ESCMATER)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -56.182 -15.768  -3.251  12.198 132.480 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.819005  18.943526   0.202 0.840309    
## IMC         -1.240335   0.697387  -1.779 0.075904 .  
## NMEDPAS      0.942461   0.156143   6.036 3.03e-09 ***
## NMEDPAD     -0.889417   0.207119  -4.294 2.10e-05 ***
## MEDCABDO     0.907415   0.327309   2.772 0.005767 ** 
## TOTAFIS      0.013925   0.003561   3.910 0.000105 ***
## HDL         -0.302036   0.123091  -2.454 0.014467 *  
## TG          -0.050901   0.030651  -1.661 0.097393 .  
## GLICEMIA     0.299799   0.164686   1.820 0.069274 .  
## ESCMATER     0.471972   0.313714   1.504 0.133075    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 25.38 on 515 degrees of freedom
## Multiple R-squared:  0.1961, Adjusted R-squared:  0.1821 
## F-statistic: 13.96 on 9 and 515 DF,  p-value: < 2.2e-16

retirando a variável ESCMATER

modelo1<-lm(PEMED~IMC+NMEDPAS+NMEDPAD+MEDCABDO+
              TOTAFIS+HDL+TG+GLICEMIA)

summary(modelo1)
## 
## Call:
## lm(formula = PEMED ~ IMC + NMEDPAS + NMEDPAD + MEDCABDO + TOTAFIS + 
##     HDL + TG + GLICEMIA)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -57.931 -15.891  -3.683  12.657 132.266 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  4.862387  18.953989   0.257  0.79764    
## IMC         -1.362617   0.693482  -1.965  0.04996 *  
## NMEDPAS      0.920554   0.155653   5.914 6.08e-09 ***
## NMEDPAD     -0.878236   0.207239  -4.238 2.67e-05 ***
## MEDCABDO     0.973064   0.324784   2.996  0.00287 ** 
## TOTAFIS      0.014203   0.003561   3.989 7.61e-05 ***
## HDL         -0.288495   0.122911  -2.347  0.01929 *  
## TG          -0.050492   0.030688  -1.645  0.10051    
## GLICEMIA     0.326482   0.163929   1.992  0.04694 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 25.41 on 516 degrees of freedom
## Multiple R-squared:  0.1926, Adjusted R-squared:  0.1801 
## F-statistic: 15.38 on 8 and 516 DF,  p-value: < 2.2e-16

retirando a variável TG

modelo1<-lm(PEMED~IMC+NMEDPAS+NMEDPAD+MEDCABDO+
              TOTAFIS+HDL+GLICEMIA)

summary(modelo1)
## 
## Call:
## lm(formula = PEMED ~ IMC + NMEDPAS + NMEDPAD + MEDCABDO + TOTAFIS + 
##     HDL + GLICEMIA)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -57.830 -15.865  -3.662  12.924 132.629 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  6.678006  18.953055   0.352  0.72472    
## IMC         -1.391634   0.694401  -2.004  0.04558 *  
## NMEDPAS      0.935003   0.155661   6.007 3.57e-09 ***
## NMEDPAD     -0.932204   0.204964  -4.548 6.75e-06 ***
## MEDCABDO     0.929307   0.324228   2.866  0.00432 ** 
## TOTAFIS      0.014332   0.003566   4.019 6.71e-05 ***
## HDL         -0.251250   0.121008  -2.076  0.03836 *  
## GLICEMIA     0.302468   0.163547   1.849  0.06497 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 25.46 on 517 degrees of freedom
## Multiple R-squared:  0.1884, Adjusted R-squared:  0.1774 
## F-statistic: 17.14 on 7 and 517 DF,  p-value: < 2.2e-16

retirando a variável glicemia

modelo1<-lm(PEMED~IMC+NMEDPAS+NMEDPAD+MEDCABDO+TOTAFIS+HDL)

summary(modelo1)
## 
## Call:
## lm(formula = PEMED ~ IMC + NMEDPAS + NMEDPAD + MEDCABDO + TOTAFIS + 
##     HDL)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -61.04 -15.70  -3.41  11.69 134.07 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 24.584180  16.331486   1.505 0.132850    
## IMC         -1.458466   0.695079  -2.098 0.036365 *  
## NMEDPAS      0.965939   0.155121   6.227 9.84e-10 ***
## NMEDPAD     -0.956936   0.205005  -4.668 3.88e-06 ***
## MEDCABDO     0.986000   0.323528   3.048 0.002424 ** 
## TOTAFIS      0.013974   0.003569   3.915 0.000102 ***
## HDL         -0.231477   0.120816  -1.916 0.055922 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 25.52 on 518 degrees of freedom
## Multiple R-squared:  0.183,  Adjusted R-squared:  0.1735 
## F-statistic: 19.34 on 6 and 518 DF,  p-value: < 2.2e-16

retirando a variavel HDL

modelo1<-lm(PEMED~IMC+NMEDPAS+NMEDPAD+MEDCABDO+TOTAFIS)

summary(modelo1)
## 
## Call:
## lm(formula = PEMED ~ IMC + NMEDPAS + NMEDPAD + MEDCABDO + TOTAFIS)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -62.592 -15.986  -3.646  11.463 134.977 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  9.74726   14.41573   0.676  0.49924    
## IMC         -1.64006    0.69036  -2.376  0.01788 *  
## NMEDPAS      0.96243    0.15551   6.189 1.23e-09 ***
## NMEDPAD     -0.95586    0.20553  -4.651 4.20e-06 ***
## MEDCABDO     1.11495    0.31726   3.514  0.00048 ***
## TOTAFIS      0.01442    0.00357   4.040 6.15e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 25.58 on 519 degrees of freedom
## Multiple R-squared:  0.1772, Adjusted R-squared:  0.1693 
## F-statistic: 22.35 on 5 and 519 DF,  p-value: < 2.2e-16

Por fim chegamos ao modelo final que descreve a variavel PEMED = 9.7472 - 1.64IMC +0.9624NMEDPAS -0.95586NMEDPAD + 1.1149MEDCABDO +0.01442TOTAFIS

Fazendo o mesmo para a variável PIMED.

modelo2<-lm(PIMED~IDADE+IMC+HRSEDCAL+NMEDPAS+NMEDPAD+MEDCABDO+
              TOTAFIS+HDL+TG+GLICEMIA+ESCMATER)

summary(modelo2)
## 
## Call:
## lm(formula = PIMED ~ IDADE + IMC + HRSEDCAL + NMEDPAS + NMEDPAD + 
##     MEDCABDO + TOTAFIS + HDL + TG + GLICEMIA + ESCMATER)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -58.083 -14.768  -0.931  12.424  86.327 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -17.466041  22.279458  -0.784 0.433430    
## IDADE        -0.924230   0.918861  -1.006 0.314965    
## IMC          -0.706403   0.580731  -1.216 0.224390    
## HRSEDCAL     -0.531781   0.520804  -1.021 0.307699    
## NMEDPAS       0.917379   0.131073   6.999 8.10e-12 ***
## NMEDPAD      -0.686498   0.174520  -3.934 9.52e-05 ***
## MEDCABDO      0.697984   0.272579   2.561 0.010732 *  
## TOTAFIS       0.010167   0.002967   3.427 0.000659 ***
## HDL          -0.204687   0.102394  -1.999 0.046133 *  
## TG           -0.036578   0.025515  -1.434 0.152296    
## GLICEMIA      0.446816   0.137811   3.242 0.001263 ** 
## ESCMATER     -0.254201   0.264443  -0.961 0.336868    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 21.1 on 513 degrees of freedom
## Multiple R-squared:  0.2325, Adjusted R-squared:  0.216 
## F-statistic: 14.13 on 11 and 513 DF,  p-value: < 2.2e-16

Retirando a variavel IDADE

modelo2<-lm(PIMED~IMC+HRSEDCAL+NMEDPAS+NMEDPAD+MEDCABDO+
              TOTAFIS+HDL+TG+GLICEMIA+ESCMATER)

summary(modelo2)
## 
## Call:
## lm(formula = PIMED ~ IMC + HRSEDCAL + NMEDPAS + NMEDPAD + MEDCABDO + 
##     TOTAFIS + HDL + TG + GLICEMIA + ESCMATER)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -58.468 -14.576  -0.973  12.562  87.402 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -33.313593  15.752613  -2.115 0.034928 *  
## IMC          -0.703607   0.580731  -1.212 0.226226    
## HRSEDCAL     -0.511107   0.520404  -0.982 0.326496    
## NMEDPAS       0.903941   0.130391   6.933 1.24e-11 ***
## NMEDPAD      -0.667796   0.173529  -3.848 0.000134 ***
## MEDCABDO      0.682353   0.272139   2.507 0.012470 *  
## TOTAFIS       0.010340   0.002962   3.491 0.000522 ***
## HDL          -0.206891   0.102372  -2.021 0.043800 *  
## TG           -0.035338   0.025486  -1.387 0.166163    
## GLICEMIA      0.460919   0.137097   3.362 0.000831 ***
## ESCMATER     -0.211069   0.260945  -0.809 0.418969    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 21.1 on 514 degrees of freedom
## Multiple R-squared:  0.231,  Adjusted R-squared:  0.216 
## F-statistic: 15.44 on 10 and 514 DF,  p-value: < 2.2e-16

Retirando a variável ESCMATER

modelo2<-lm(PIMED~IMC+HRSEDCAL+NMEDPAS+NMEDPAD+MEDCABDO+
              TOTAFIS+HDL+TG+GLICEMIA)

summary(modelo2)
## 
## Call:
## lm(formula = PIMED ~ IMC + HRSEDCAL + NMEDPAS + NMEDPAD + MEDCABDO + 
##     TOTAFIS + HDL + TG + GLICEMIA)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -57.187 -15.149  -1.309  12.452  87.543 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -33.773178  15.737078  -2.146 0.032332 *  
## IMC          -0.648195   0.576482  -1.124 0.261369    
## HRSEDCAL     -0.523568   0.520002  -1.007 0.314476    
## NMEDPAS       0.913437   0.129818   7.036 6.32e-12 ***
## NMEDPAD      -0.672279   0.173382  -3.877 0.000119 ***
## MEDCABDO      0.652984   0.269615   2.422 0.015783 *  
## TOTAFIS       0.010215   0.002957   3.455 0.000596 ***
## HDL          -0.212881   0.102069  -2.086 0.037501 *  
## TG           -0.035516   0.025476  -1.394 0.163895    
## GLICEMIA      0.449161   0.136279   3.296 0.001049 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 21.1 on 515 degrees of freedom
## Multiple R-squared:   0.23,  Adjusted R-squared:  0.2165 
## F-statistic: 17.09 on 9 and 515 DF,  p-value: < 2.2e-16

Retirando a variavel HRSEDCAL

modelo2<-lm(PIMED~IMC+NMEDPAS+NMEDPAD+MEDCABDO+
              TOTAFIS+HDL+TG+GLICEMIA)

summary(modelo2)
## 
## Call:
## lm(formula = PIMED ~ IMC + NMEDPAS + NMEDPAD + MEDCABDO + TOTAFIS + 
##     HDL + TG + GLICEMIA)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -58.194 -14.877  -1.359  12.524  86.811 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -34.068190  15.734560  -2.165 0.030831 *  
## IMC          -0.678748   0.575691  -1.179 0.238936    
## NMEDPAS       0.926047   0.129214   7.167 2.67e-12 ***
## NMEDPAD      -0.693993   0.172038  -4.034 6.31e-05 ***
## MEDCABDO      0.653438   0.269618   2.424 0.015712 *  
## TOTAFIS       0.010275   0.002956   3.476 0.000552 ***
## HDL          -0.215619   0.102034  -2.113 0.035063 *  
## TG           -0.035755   0.025475  -1.404 0.161061    
## GLICEMIA      0.441803   0.136084   3.247 0.001244 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 21.1 on 516 degrees of freedom
## Multiple R-squared:  0.2285, Adjusted R-squared:  0.2165 
## F-statistic:  19.1 on 8 and 516 DF,  p-value: < 2.2e-16

Retirando a variavel IMC

modelo2<-lm(PIMED~NMEDPAS+NMEDPAD+MEDCABDO+
              TOTAFIS+HDL+TG+GLICEMIA)

summary(modelo2)
## 
## Call:
## lm(formula = PIMED ~ NMEDPAS + NMEDPAD + MEDCABDO + TOTAFIS + 
##     HDL + TG + GLICEMIA)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -56.286 -14.936  -1.156  12.322  87.195 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -29.255726  15.201637  -1.925 0.054839 .  
## NMEDPAS       0.947570   0.127966   7.405 5.37e-13 ***
## NMEDPAD      -0.715083   0.171170  -4.178 3.46e-05 ***
## MEDCABDO      0.369939   0.122011   3.032 0.002551 ** 
## TOTAFIS       0.010184   0.002956   3.445 0.000617 ***
## HDL          -0.232759   0.101031  -2.304 0.021628 *  
## TG           -0.036519   0.025477  -1.433 0.152339    
## GLICEMIA      0.450480   0.135937   3.314 0.000985 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 21.11 on 517 degrees of freedom
## Multiple R-squared:  0.2264, Adjusted R-squared:  0.2159 
## F-statistic: 21.61 on 7 and 517 DF,  p-value: < 2.2e-16

retiramos a variavel TG

modelo2<-lm(PIMED~NMEDPAS+NMEDPAD+MEDCABDO+
              TOTAFIS+HDL+GLICEMIA)

summary(modelo2)
## 
## Call:
## lm(formula = PIMED ~ NMEDPAS + NMEDPAD + MEDCABDO + TOTAFIS + 
##     HDL + GLICEMIA)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -55.516 -14.716  -1.275  12.215  86.441 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -27.792813  15.182774  -1.831 0.067742 .  
## NMEDPAS       0.958693   0.127861   7.498 2.83e-13 ***
## NMEDPAD      -0.754794   0.169085  -4.464 9.88e-06 ***
## MEDCABDO      0.329498   0.118825   2.773 0.005755 ** 
## TOTAFIS       0.010275   0.002958   3.473 0.000557 ***
## HDL          -0.206334   0.099436  -2.075 0.038476 *  
## GLICEMIA      0.433368   0.135549   3.197 0.001473 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 21.13 on 518 degrees of freedom
## Multiple R-squared:  0.2233, Adjusted R-squared:  0.2143 
## F-statistic: 24.82 on 6 and 518 DF,  p-value: < 2.2e-16

Assim ficou o modelo PIMED= -27.792 +0.9586NMEPAS - 0.7579NMEPAD + 0.3294MEDCABDO + 0.0102TOTAFIS - 0.2063HDL+ 0.4333GLICEMIA

Por fim fizemos a analise dos resíduos de cada modelo Análise de Residíuos

par(mfrow= c(1,1))
plot(modelo1)

plot(modelo2)