dados<- read.table("C:\\Users\\USER\\Desktop\\Nova pasta\\Dados_Aula1.txt", header = T)
dados
O banco de dados presente para análise descritiva desta atividade refere-se aos alunos de um colégio em Campina Grande no qual o pesquisador está interessado em verificar quais variáveis influenciam na obesidade dos alunos desta instituição. Este banco de dados consiste em 525 observações de 13 variáveis, das quais algumas tratam da pressão arterial, da massa corpórea, IMC e a respectiva idade.
attach(dados)
library(fBasics)
## Loading required package: timeDate
## Loading required package: timeSeries
library(psych)
##
## Attaching package: 'psych'
## The following object is masked from 'package:fBasics':
##
## tr
## The following object is masked from 'package:timeSeries':
##
## outlier
Após leitura dos dados iremos fazer uma análise descritiva! #Análise Descritiva
describe(dados)
Analisando as variaveis em estudo vêmos que PEMED E PIMED tem media igual à 100.67 e 78.31 respectivamente, como também desvios padrões iguais à 28.07 e 23.84. Uma observação importante é que todas as variaveis tem a média bem próxima da mediana, com excessão da variável TOTAFIS que também tem o maior dos desvios padrão.
#Histogramas
a<-round(basicStats(dados),3)
histPlot(as.timeSeries(PEMED))
histPlot(as.timeSeries(PIMED))
histPlot(as.timeSeries(IDADE))
histPlot(as.timeSeries(IMC))
histPlot(as.timeSeries(HRSEDCAL))
histPlot(as.timeSeries(NMEDPAS))
histPlot(as.timeSeries(NMEDPAD))
histPlot(as.timeSeries(MEDCABDO))
histPlot(as.timeSeries(TOTAFIS))
histPlot(as.timeSeries(HDL))
histPlot(as.timeSeries(TG))
histPlot(as.timeSeries(GLICEMIA))
histPlot(as.timeSeries(ESCMATER))
Com os histogramas percebemos que apenas as variáveis GLICEMIA, NMEDPAS E NMEDPAD aparentam seguir uma normal. Com isso iremos usar o gráfico QQplot para sabermos se as variaveis seguem ou não uma distribuição normal.
library(car)
## Loading required package: carData
##
## Attaching package: 'car'
## The following object is masked from 'package:psych':
##
## logit
## The following object is masked from 'package:fBasics':
##
## densityPlot
par(mfrow= c(2,2))
qqPlot(PEMED)
## [1] 337 377
qqPlot(PIMED)
## [1] 305 369
qqPlot(IDADE)
## [1] 282 369
qqPlot(IMC)
## [1] 385 252
qqPlot(HRSEDCAL)
## [1] 364 306
qqPlot(NMEDPAS)
## [1] 64 256
qqPlot(NMEDPAD)
## [1] 379 210
qqPlot(MEDCABDO)
## [1] 75 42
qqPlot(TOTAFIS)
## [1] 486 441
qqPlot(HDL)
## [1] 56 164
qqPlot(TG)
## [1] 213 485
qqPlot(GLICEMIA)
## [1] 74 274
qqPlot(ESCMATER)
## [1] 12 17
Como era esperado apenas as variáveis GLICEMIA, NMEDPAS E NMEDPAD seguem aproximadamente uma distribuição normal. ## O gráfico de Correlação é dado por:
library(corrplot)
## corrplot 0.84 loaded
corrplot(cor(dados), order = "hclust",tl.col = 'black', tl.cex = 0.75)
Após verificarmos a normalidade das variáveis junto a corelção entre elas, iremos em busca de um modelo linear da relação das variáveis de interesse com as demais variáveis.
modelo1<-lm(PEMED~IDADE+IMC+HRSEDCAL+NMEDPAS+NMEDPAD+MEDCABDO+
TOTAFIS+HDL+TG+GLICEMIA+ESCMATER)
summary(modelo1)
##
## Call:
## lm(formula = PEMED ~ IDADE + IMC + HRSEDCAL + NMEDPAS + NMEDPAD +
## MEDCABDO + TOTAFIS + HDL + TG + GLICEMIA + ESCMATER)
##
## Residuals:
## Min 1Q Median 3Q Max
## -56.319 -15.392 -3.154 11.919 132.494
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.915719 26.835516 0.407 0.684351
## IDADE -0.425695 1.106764 -0.385 0.700671
## IMC -1.265368 0.699488 -1.809 0.071038 .
## HRSEDCAL 0.372214 0.627307 0.593 0.553207
## NMEDPAS 0.957581 0.157876 6.065 2.56e-09 ***
## NMEDPAD -0.913729 0.210209 -4.347 1.67e-05 ***
## MEDCABDO 0.915734 0.328320 2.789 0.005481 **
## TOTAFIS 0.013892 0.003573 3.888 0.000115 ***
## HDL -0.302855 0.123333 -2.456 0.014396 *
## TG -0.051642 0.030733 -1.680 0.093496 .
## GLICEMIA 0.288259 0.165993 1.737 0.083062 .
## ESCMATER 0.446438 0.318520 1.402 0.161639
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 25.42 on 513 degrees of freedom
## Multiple R-squared: 0.1969, Adjusted R-squared: 0.1797
## F-statistic: 11.44 on 11 and 513 DF, p-value: < 2.2e-16
Retirando a variável IDADE já que foi ela quem teve maior p-valor.
modelo1 <- lm(PEMED~+IMC+HRSEDCAL+NMEDPAS+NMEDPAD+MEDCABDO+TOTAFIS+HDL+TG+GLICEMIA+ESCMATER)
summary(modelo1)
##
## Call:
## lm(formula = PEMED ~ +IMC + HRSEDCAL + NMEDPAS + NMEDPAD + MEDCABDO +
## TOTAFIS + HDL + TG + GLICEMIA + ESCMATER)
##
## Residuals:
## Min 1Q Median 3Q Max
## -56.007 -15.617 -3.132 12.247 133.238
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.616437 18.958009 0.191 0.848789
## IMC -1.264080 0.698900 -1.809 0.071086 .
## HRSEDCAL 0.381736 0.626298 0.610 0.542454
## NMEDPAS 0.951391 0.156924 6.063 2.59e-09 ***
## NMEDPAD -0.905115 0.208839 -4.334 1.76e-05 ***
## MEDCABDO 0.908534 0.327514 2.774 0.005738 **
## TOTAFIS 0.013972 0.003564 3.920 0.000101 ***
## HDL -0.303869 0.123202 -2.466 0.013972 *
## TG -0.051071 0.030671 -1.665 0.096502 .
## GLICEMIA 0.294755 0.164994 1.786 0.074615 .
## ESCMATER 0.466305 0.314044 1.485 0.138199
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 25.4 on 514 degrees of freedom
## Multiple R-squared: 0.1967, Adjusted R-squared: 0.1811
## F-statistic: 12.59 on 10 and 514 DF, p-value: < 2.2e-16
retirando a variável HRSEDCAL
modelo1<-lm(PEMED~IMC+NMEDPAS+NMEDPAD+MEDCABDO+
TOTAFIS+HDL+TG+GLICEMIA+ESCMATER)
summary(modelo1)
##
## Call:
## lm(formula = PEMED ~ IMC + NMEDPAS + NMEDPAD + MEDCABDO + TOTAFIS +
## HDL + TG + GLICEMIA + ESCMATER)
##
## Residuals:
## Min 1Q Median 3Q Max
## -56.182 -15.768 -3.251 12.198 132.480
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.819005 18.943526 0.202 0.840309
## IMC -1.240335 0.697387 -1.779 0.075904 .
## NMEDPAS 0.942461 0.156143 6.036 3.03e-09 ***
## NMEDPAD -0.889417 0.207119 -4.294 2.10e-05 ***
## MEDCABDO 0.907415 0.327309 2.772 0.005767 **
## TOTAFIS 0.013925 0.003561 3.910 0.000105 ***
## HDL -0.302036 0.123091 -2.454 0.014467 *
## TG -0.050901 0.030651 -1.661 0.097393 .
## GLICEMIA 0.299799 0.164686 1.820 0.069274 .
## ESCMATER 0.471972 0.313714 1.504 0.133075
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 25.38 on 515 degrees of freedom
## Multiple R-squared: 0.1961, Adjusted R-squared: 0.1821
## F-statistic: 13.96 on 9 and 515 DF, p-value: < 2.2e-16
retirando a variável ESCMATER
modelo1<-lm(PEMED~IMC+NMEDPAS+NMEDPAD+MEDCABDO+
TOTAFIS+HDL+TG+GLICEMIA)
summary(modelo1)
##
## Call:
## lm(formula = PEMED ~ IMC + NMEDPAS + NMEDPAD + MEDCABDO + TOTAFIS +
## HDL + TG + GLICEMIA)
##
## Residuals:
## Min 1Q Median 3Q Max
## -57.931 -15.891 -3.683 12.657 132.266
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.862387 18.953989 0.257 0.79764
## IMC -1.362617 0.693482 -1.965 0.04996 *
## NMEDPAS 0.920554 0.155653 5.914 6.08e-09 ***
## NMEDPAD -0.878236 0.207239 -4.238 2.67e-05 ***
## MEDCABDO 0.973064 0.324784 2.996 0.00287 **
## TOTAFIS 0.014203 0.003561 3.989 7.61e-05 ***
## HDL -0.288495 0.122911 -2.347 0.01929 *
## TG -0.050492 0.030688 -1.645 0.10051
## GLICEMIA 0.326482 0.163929 1.992 0.04694 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 25.41 on 516 degrees of freedom
## Multiple R-squared: 0.1926, Adjusted R-squared: 0.1801
## F-statistic: 15.38 on 8 and 516 DF, p-value: < 2.2e-16
retirando a variável TG
modelo1<-lm(PEMED~IMC+NMEDPAS+NMEDPAD+MEDCABDO+
TOTAFIS+HDL+GLICEMIA)
summary(modelo1)
##
## Call:
## lm(formula = PEMED ~ IMC + NMEDPAS + NMEDPAD + MEDCABDO + TOTAFIS +
## HDL + GLICEMIA)
##
## Residuals:
## Min 1Q Median 3Q Max
## -57.830 -15.865 -3.662 12.924 132.629
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.678006 18.953055 0.352 0.72472
## IMC -1.391634 0.694401 -2.004 0.04558 *
## NMEDPAS 0.935003 0.155661 6.007 3.57e-09 ***
## NMEDPAD -0.932204 0.204964 -4.548 6.75e-06 ***
## MEDCABDO 0.929307 0.324228 2.866 0.00432 **
## TOTAFIS 0.014332 0.003566 4.019 6.71e-05 ***
## HDL -0.251250 0.121008 -2.076 0.03836 *
## GLICEMIA 0.302468 0.163547 1.849 0.06497 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 25.46 on 517 degrees of freedom
## Multiple R-squared: 0.1884, Adjusted R-squared: 0.1774
## F-statistic: 17.14 on 7 and 517 DF, p-value: < 2.2e-16
retirando a variável glicemia
modelo1<-lm(PEMED~IMC+NMEDPAS+NMEDPAD+MEDCABDO+TOTAFIS+HDL)
summary(modelo1)
##
## Call:
## lm(formula = PEMED ~ IMC + NMEDPAS + NMEDPAD + MEDCABDO + TOTAFIS +
## HDL)
##
## Residuals:
## Min 1Q Median 3Q Max
## -61.04 -15.70 -3.41 11.69 134.07
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 24.584180 16.331486 1.505 0.132850
## IMC -1.458466 0.695079 -2.098 0.036365 *
## NMEDPAS 0.965939 0.155121 6.227 9.84e-10 ***
## NMEDPAD -0.956936 0.205005 -4.668 3.88e-06 ***
## MEDCABDO 0.986000 0.323528 3.048 0.002424 **
## TOTAFIS 0.013974 0.003569 3.915 0.000102 ***
## HDL -0.231477 0.120816 -1.916 0.055922 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 25.52 on 518 degrees of freedom
## Multiple R-squared: 0.183, Adjusted R-squared: 0.1735
## F-statistic: 19.34 on 6 and 518 DF, p-value: < 2.2e-16
retirando a variavel HDL
modelo1<-lm(PEMED~IMC+NMEDPAS+NMEDPAD+MEDCABDO+TOTAFIS)
summary(modelo1)
##
## Call:
## lm(formula = PEMED ~ IMC + NMEDPAS + NMEDPAD + MEDCABDO + TOTAFIS)
##
## Residuals:
## Min 1Q Median 3Q Max
## -62.592 -15.986 -3.646 11.463 134.977
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.74726 14.41573 0.676 0.49924
## IMC -1.64006 0.69036 -2.376 0.01788 *
## NMEDPAS 0.96243 0.15551 6.189 1.23e-09 ***
## NMEDPAD -0.95586 0.20553 -4.651 4.20e-06 ***
## MEDCABDO 1.11495 0.31726 3.514 0.00048 ***
## TOTAFIS 0.01442 0.00357 4.040 6.15e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 25.58 on 519 degrees of freedom
## Multiple R-squared: 0.1772, Adjusted R-squared: 0.1693
## F-statistic: 22.35 on 5 and 519 DF, p-value: < 2.2e-16
Por fim chegamos ao modelo final que descreve a variavel PEMED = 9.7472 - 1.64IMC +0.9624NMEDPAS -0.95586NMEDPAD + 1.1149MEDCABDO +0.01442TOTAFIS
Fazendo o mesmo para a variável PIMED.
modelo2<-lm(PIMED~IDADE+IMC+HRSEDCAL+NMEDPAS+NMEDPAD+MEDCABDO+
TOTAFIS+HDL+TG+GLICEMIA+ESCMATER)
summary(modelo2)
##
## Call:
## lm(formula = PIMED ~ IDADE + IMC + HRSEDCAL + NMEDPAS + NMEDPAD +
## MEDCABDO + TOTAFIS + HDL + TG + GLICEMIA + ESCMATER)
##
## Residuals:
## Min 1Q Median 3Q Max
## -58.083 -14.768 -0.931 12.424 86.327
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -17.466041 22.279458 -0.784 0.433430
## IDADE -0.924230 0.918861 -1.006 0.314965
## IMC -0.706403 0.580731 -1.216 0.224390
## HRSEDCAL -0.531781 0.520804 -1.021 0.307699
## NMEDPAS 0.917379 0.131073 6.999 8.10e-12 ***
## NMEDPAD -0.686498 0.174520 -3.934 9.52e-05 ***
## MEDCABDO 0.697984 0.272579 2.561 0.010732 *
## TOTAFIS 0.010167 0.002967 3.427 0.000659 ***
## HDL -0.204687 0.102394 -1.999 0.046133 *
## TG -0.036578 0.025515 -1.434 0.152296
## GLICEMIA 0.446816 0.137811 3.242 0.001263 **
## ESCMATER -0.254201 0.264443 -0.961 0.336868
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 21.1 on 513 degrees of freedom
## Multiple R-squared: 0.2325, Adjusted R-squared: 0.216
## F-statistic: 14.13 on 11 and 513 DF, p-value: < 2.2e-16
Retirando a variavel IDADE
modelo2<-lm(PIMED~IMC+HRSEDCAL+NMEDPAS+NMEDPAD+MEDCABDO+
TOTAFIS+HDL+TG+GLICEMIA+ESCMATER)
summary(modelo2)
##
## Call:
## lm(formula = PIMED ~ IMC + HRSEDCAL + NMEDPAS + NMEDPAD + MEDCABDO +
## TOTAFIS + HDL + TG + GLICEMIA + ESCMATER)
##
## Residuals:
## Min 1Q Median 3Q Max
## -58.468 -14.576 -0.973 12.562 87.402
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -33.313593 15.752613 -2.115 0.034928 *
## IMC -0.703607 0.580731 -1.212 0.226226
## HRSEDCAL -0.511107 0.520404 -0.982 0.326496
## NMEDPAS 0.903941 0.130391 6.933 1.24e-11 ***
## NMEDPAD -0.667796 0.173529 -3.848 0.000134 ***
## MEDCABDO 0.682353 0.272139 2.507 0.012470 *
## TOTAFIS 0.010340 0.002962 3.491 0.000522 ***
## HDL -0.206891 0.102372 -2.021 0.043800 *
## TG -0.035338 0.025486 -1.387 0.166163
## GLICEMIA 0.460919 0.137097 3.362 0.000831 ***
## ESCMATER -0.211069 0.260945 -0.809 0.418969
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 21.1 on 514 degrees of freedom
## Multiple R-squared: 0.231, Adjusted R-squared: 0.216
## F-statistic: 15.44 on 10 and 514 DF, p-value: < 2.2e-16
Retirando a variável ESCMATER
modelo2<-lm(PIMED~IMC+HRSEDCAL+NMEDPAS+NMEDPAD+MEDCABDO+
TOTAFIS+HDL+TG+GLICEMIA)
summary(modelo2)
##
## Call:
## lm(formula = PIMED ~ IMC + HRSEDCAL + NMEDPAS + NMEDPAD + MEDCABDO +
## TOTAFIS + HDL + TG + GLICEMIA)
##
## Residuals:
## Min 1Q Median 3Q Max
## -57.187 -15.149 -1.309 12.452 87.543
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -33.773178 15.737078 -2.146 0.032332 *
## IMC -0.648195 0.576482 -1.124 0.261369
## HRSEDCAL -0.523568 0.520002 -1.007 0.314476
## NMEDPAS 0.913437 0.129818 7.036 6.32e-12 ***
## NMEDPAD -0.672279 0.173382 -3.877 0.000119 ***
## MEDCABDO 0.652984 0.269615 2.422 0.015783 *
## TOTAFIS 0.010215 0.002957 3.455 0.000596 ***
## HDL -0.212881 0.102069 -2.086 0.037501 *
## TG -0.035516 0.025476 -1.394 0.163895
## GLICEMIA 0.449161 0.136279 3.296 0.001049 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 21.1 on 515 degrees of freedom
## Multiple R-squared: 0.23, Adjusted R-squared: 0.2165
## F-statistic: 17.09 on 9 and 515 DF, p-value: < 2.2e-16
Retirando a variavel HRSEDCAL
modelo2<-lm(PIMED~IMC+NMEDPAS+NMEDPAD+MEDCABDO+
TOTAFIS+HDL+TG+GLICEMIA)
summary(modelo2)
##
## Call:
## lm(formula = PIMED ~ IMC + NMEDPAS + NMEDPAD + MEDCABDO + TOTAFIS +
## HDL + TG + GLICEMIA)
##
## Residuals:
## Min 1Q Median 3Q Max
## -58.194 -14.877 -1.359 12.524 86.811
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -34.068190 15.734560 -2.165 0.030831 *
## IMC -0.678748 0.575691 -1.179 0.238936
## NMEDPAS 0.926047 0.129214 7.167 2.67e-12 ***
## NMEDPAD -0.693993 0.172038 -4.034 6.31e-05 ***
## MEDCABDO 0.653438 0.269618 2.424 0.015712 *
## TOTAFIS 0.010275 0.002956 3.476 0.000552 ***
## HDL -0.215619 0.102034 -2.113 0.035063 *
## TG -0.035755 0.025475 -1.404 0.161061
## GLICEMIA 0.441803 0.136084 3.247 0.001244 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 21.1 on 516 degrees of freedom
## Multiple R-squared: 0.2285, Adjusted R-squared: 0.2165
## F-statistic: 19.1 on 8 and 516 DF, p-value: < 2.2e-16
Retirando a variavel IMC
modelo2<-lm(PIMED~NMEDPAS+NMEDPAD+MEDCABDO+
TOTAFIS+HDL+TG+GLICEMIA)
summary(modelo2)
##
## Call:
## lm(formula = PIMED ~ NMEDPAS + NMEDPAD + MEDCABDO + TOTAFIS +
## HDL + TG + GLICEMIA)
##
## Residuals:
## Min 1Q Median 3Q Max
## -56.286 -14.936 -1.156 12.322 87.195
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -29.255726 15.201637 -1.925 0.054839 .
## NMEDPAS 0.947570 0.127966 7.405 5.37e-13 ***
## NMEDPAD -0.715083 0.171170 -4.178 3.46e-05 ***
## MEDCABDO 0.369939 0.122011 3.032 0.002551 **
## TOTAFIS 0.010184 0.002956 3.445 0.000617 ***
## HDL -0.232759 0.101031 -2.304 0.021628 *
## TG -0.036519 0.025477 -1.433 0.152339
## GLICEMIA 0.450480 0.135937 3.314 0.000985 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 21.11 on 517 degrees of freedom
## Multiple R-squared: 0.2264, Adjusted R-squared: 0.2159
## F-statistic: 21.61 on 7 and 517 DF, p-value: < 2.2e-16
retiramos a variavel TG
modelo2<-lm(PIMED~NMEDPAS+NMEDPAD+MEDCABDO+
TOTAFIS+HDL+GLICEMIA)
summary(modelo2)
##
## Call:
## lm(formula = PIMED ~ NMEDPAS + NMEDPAD + MEDCABDO + TOTAFIS +
## HDL + GLICEMIA)
##
## Residuals:
## Min 1Q Median 3Q Max
## -55.516 -14.716 -1.275 12.215 86.441
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -27.792813 15.182774 -1.831 0.067742 .
## NMEDPAS 0.958693 0.127861 7.498 2.83e-13 ***
## NMEDPAD -0.754794 0.169085 -4.464 9.88e-06 ***
## MEDCABDO 0.329498 0.118825 2.773 0.005755 **
## TOTAFIS 0.010275 0.002958 3.473 0.000557 ***
## HDL -0.206334 0.099436 -2.075 0.038476 *
## GLICEMIA 0.433368 0.135549 3.197 0.001473 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 21.13 on 518 degrees of freedom
## Multiple R-squared: 0.2233, Adjusted R-squared: 0.2143
## F-statistic: 24.82 on 6 and 518 DF, p-value: < 2.2e-16
Assim ficou o modelo PIMED= -27.792 +0.9586NMEPAS - 0.7579NMEPAD + 0.3294MEDCABDO + 0.0102TOTAFIS - 0.2063HDL+ 0.4333GLICEMIA
Por fim fizemos a analise dos resÃduos de cada modelo Análise de ResidÃuos
par(mfrow= c(1,1))
plot(modelo1)
plot(modelo2)