setwd("~/Desktop/Classes/Bioinformatics/gwas/data/LOAD_test")
pcs = read.table( "pca.eigenvec" )
colnames(pcs)[3:7] = c("PC1","PC2","PC3","PC4","PC5")
write.table(pcs, file = "pca2.eigenvec", sep = "")
palette = c("red2","green2","blue2","yellow3", "grey40","grey70","purple")
pcs$colour = palette[as.integer(pcs[,1])]
#plot
plot(pcs[,3:7], col=pcs$colour, lower.panel=NULL)
legend(0.1, 0.5, col=palette, legend = levels(pcs[,1]), pch = c(rep(4,4),rep(20,3)), xpd=NA )

#scree plot
eigen = c(2.39468,
1.36956,
1.29886,
1.25867,
1.24269,
1.22302,
1.21288,
1.20621,
1.20253,
1.19951,
1.19517,
1.193,
1.19077,
1.18668,
1.18418,
1.18126,
1.17891,
1.17798,
1.17553,
1.17169)
num = 1:20
plot(num,eigen, xlab ="Factor number", ylab="Eigenvalue", col="blue")

#genomic inflation factor
"estlambda" <- function(data, plot=FALSE, proportion=1.0,
method="regression", filter=TRUE, df=1,... ) {
data <- data[which(!is.na(data))]
if (proportion>1.0 || proportion<=0)
stop("proportion argument should be greater then zero and less than or equal to one")
ntp <- round( proportion * length(data) )
if ( ntp<1 ) stop("no valid measurements")
if ( ntp==1 ) {
warning(paste("One measurement, lambda = 1 returned"))
return(list(estimate=1.0, se=999.99))
}
if ( ntp<10 ) warning(paste("number of points is too small:", ntp))
if ( min(data)<0 ) stop("data argument has values <0")
if ( max(data)<=1 ) {
# lt16 <- (data < 1.e-16)
# if (any(lt16)) {
# warning(paste("Some probabilities < 1.e-16; set to 1.e-16"))
# data[lt16] <- 1.e-16
# }
data <- qchisq(data, 1, lower.tail=FALSE)
}
if (filter)
{
data[which(abs(data)<1e-8)] <- NA
}
data <- sort(data)
ppoi <- ppoints(data)
ppoi <- sort(qchisq(ppoi, df=df, lower.tail=FALSE))
data <- data[1:ntp]
ppoi <- ppoi[1:ntp]
# s <- summary(lm(data~offset(ppoi)))$coeff
# bug fix thanks to Franz Quehenberger
out <- list()
if (method=="regression") {
s <- summary( lm(data~0+ppoi) )$coeff
out$estimate <- s[1,1]
out$se <- s[1,2]
} else if (method=="median") {
out$estimate <- median(data, na.rm=TRUE)/qchisq(0.5, df)
out$se <- NA
} else if (method=="KS") {
limits <- c(0.5, 100)
out$estimate <- estLambdaKS(data, limits=limits, df=df)
if ( abs(out$estimate-limits[1])<1e-4 || abs(out$estimate-limits[2])<1e-4 )
warning("using method='KS' lambda too close to limits, use other method")
out$se <- NA
} else {
stop("'method' should be either 'regression' or 'median'!")
}
if (plot) {
lim <- c(0, max(data, ppoi,na.rm=TRUE))
# plot(ppoi,data,xlim=lim,ylim=lim,xlab="Expected",ylab="Observed", ...)
oldmargins <- par()$mar
par(mar=oldmargins + 0.2)
plot(ppoi, data,
xlab=expression("Expected " ~ chi^2),
ylab=expression("Observed " ~ chi^2),
...)
abline(a=0, b=1)
abline(a=0, b=out$estimate, col="red")
par(mar=oldmargins)
}
out
}
#genomic inflation factor WITHOUT pca
setwd("~/Desktop/Classes/Bioinformatics/gwas/data/LOAD_test")
results = read.table( "assoc_nopca.assoc.logistic",header=TRUE)
pvalues = results[,12]
estlambda(pvalues)
## $estimate
## [1] 1.000164
##
## $se
## [1] 0.0001061879
#genomic inflation factor with one pca
setwd("~/Desktop/Classes/Bioinformatics/gwas/data/LOAD_test")
results = read.table( "pca1.assoc.logistic",header=TRUE)
pvalues = results[,12]
estlambda(pvalues)
## $estimate
## [1] 0.6919615
##
## $se
## [1] 0.0002102611