R.H.Lowe Jr., M.S. | March 4, 2019 | DEM 7283 | UTSA College of Public Policy

Research Question

For this assignment, we want to know whether the total number of lifetime sexual partners in Ghana is associated with tribal ethncity, religion, marital status and age.

An offset term is not neccesarily useful here. While it would be interesting to examine sexual partner rates across ethnicity or religion, this particular dataset does not have a denominator (numerator for that matter) to calculate a rate.

library(car)
## Loading required package: carData
library(stargazer)
## 
## Please cite as:
##  Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.
##  R package version 5.2.2. https://CRAN.R-project.org/package=stargazer
library(survey)
## Loading required package: grid
## Loading required package: Matrix
## Loading required package: survival
## 
## Attaching package: 'survey'
## The following object is masked from 'package:graphics':
## 
##     dotchart
library(sjPlot)
## Install package "strengejacke" from GitHub (`devtools::install_github("strengejacke/strengejacke")`) to load all sj-packages at once!
library(ggplot2)
require(dplyr)
## Loading required package: dplyr
## 
## Attaching package: 'dplyr'
## The following object is masked from 'package:car':
## 
##     recode
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union

Outcome variable is ‘FG9’:

Q: Total number of living daughters __

library(haven)
wm <- read_sav("Library/Mobile Documents/com~apple~CloudDocs/Desktop/Data/Ghana MICS 2011 SPSS Datasets/wm.sav")

#religion
wm$religion<-Recode(wm$WB8,
recodes="11='Catholic'; 12='Protestant';15='Jehovah Witness';16='Moslem';97='None';else=NA",
as.factor=T)
wm$religion<-relevel(wm$religion, ref='None')

#ethnicity
wm$ethnicity<-Recode(wm$WB9,
recodes="11='Akan'; 12='Ga/Damgme';13='Ewe';14='Guan';15='Gruma';
21='Mole Dagbani'; 22='Grusi';23='Mande'; 24='Non-Ghanaian';else=NA",
as.factor=T)
wm$ethnicity<-relevel(wm$ethnicity, ref='Non-Ghanaian')

#union
wm$mrg<-Recode(wm$MA1,
recodes="1='Marriage'; 2='Cohabiting'; 3='Single'",
as.factor=T)
wm$mrg<-relevel(wm$mrg, ref='Marriage')

#age
wm$agec<-cut(wm$WB2, breaks=c(0,15,25,35,49))

#education level
wm$educ<-Recode(wm$WB4,
recodes="0='Pre'; 1='Prim'; 2='Sec'; 3='High';9=NA",
as.factor=T)
wm$educ<-relevel(wm$educ, ref='Pre')

#literacy
wm$lit<-Recode(wm$WB7,
recodes="1:2='Unread'; 3='Read'; 5='Impaired'; else=NA",
as.factor=T)
wm$lit<-relevel(wm$lit, ref='Read')

#sexual partners (DV)
wm$sexprt<-Recode(wm$SB15,
recodes="20:98=NA")

sub<-wm%>%
  dplyr::select(FG9,sexprt,ethnicity,religion,mrg,agec,educ,lit,wmweight, HH1) %>%
  filter( complete.cases(.))

#First we tell R our survey design
options(survey.lonely.psu = "adjust")
des<-svydesign(ids=~HH1,weights=~wmweight, data =sub ) 

hist(wm$sexprt)

summary(wm$sexprt)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   1.000   1.000   2.000   1.911   2.000  19.000    1891

Poisson Regression

svyhist(~sexprt, des)

svyby(~sexprt, ~religion+ethnicity, des, svymean, na.rm=T)
##                                     religion    ethnicity   sexprt
## Catholic.Non-Ghanaian               Catholic Non-Ghanaian 2.660773
## Moslem.Non-Ghanaian                   Moslem Non-Ghanaian 2.000000
## Protestant.Non-Ghanaian           Protestant Non-Ghanaian 5.000000
## None.Akan                               None         Akan 3.056638
## Catholic.Akan                       Catholic         Akan 2.399840
## Jehovah Witness.Akan         Jehovah Witness         Akan 2.041084
## Moslem.Akan                           Moslem         Akan 2.210184
## Protestant.Akan                   Protestant         Akan 2.346774
## None.Ewe                                None          Ewe 2.229348
## Catholic.Ewe                        Catholic          Ewe 2.264897
## Jehovah Witness.Ewe          Jehovah Witness          Ewe 1.641895
## Moslem.Ewe                            Moslem          Ewe 1.957468
## Protestant.Ewe                    Protestant          Ewe 3.088463
## Catholic.Ga/Damgme                  Catholic    Ga/Damgme 2.283754
## Jehovah Witness.Ga/Damgme    Jehovah Witness    Ga/Damgme 3.845096
## Moslem.Ga/Damgme                      Moslem    Ga/Damgme 1.000000
## Protestant.Ga/Damgme              Protestant    Ga/Damgme 2.724823
## None.Gruma                              None        Gruma 2.010600
## Catholic.Gruma                      Catholic        Gruma 2.024400
## Moslem.Gruma                          Moslem        Gruma 1.000000
## Protestant.Gruma                  Protestant        Gruma 1.228169
## None.Grusi                              None        Grusi 1.357139
## Catholic.Grusi                      Catholic        Grusi 2.346669
## Moslem.Grusi                          Moslem        Grusi 1.228979
## Protestant.Grusi                  Protestant        Grusi 2.452795
## Catholic.Guan                       Catholic         Guan 2.148941
## Jehovah Witness.Guan         Jehovah Witness         Guan 3.688369
## Moslem.Guan                           Moslem         Guan 2.854377
## Protestant.Guan                   Protestant         Guan 2.361815
## None.Mande                              None        Mande 1.000000
## Catholic.Mande                      Catholic        Mande 2.000000
## Jehovah Witness.Mande        Jehovah Witness        Mande 1.000000
## Protestant.Mande                  Protestant        Mande 1.000000
## None.Mole Dagbani                       None Mole Dagbani 1.311147
## Catholic.Mole Dagbani               Catholic Mole Dagbani 1.675174
## Jehovah Witness.Mole Dagbani Jehovah Witness Mole Dagbani 1.890015
## Moslem.Mole Dagbani                   Moslem Mole Dagbani 1.276653
## Protestant.Mole Dagbani           Protestant Mole Dagbani 1.906476
##                                      se
## Catholic.Non-Ghanaian        0.65969047
## Moslem.Non-Ghanaian          0.00000000
## Protestant.Non-Ghanaian      0.00000000
## None.Akan                    0.41741913
## Catholic.Akan                0.14216028
## Jehovah Witness.Akan         0.26589278
## Moslem.Akan                  0.17377747
## Protestant.Akan              0.07733238
## None.Ewe                     0.21090247
## Catholic.Ewe                 0.27754352
## Jehovah Witness.Ewe          0.32539919
## Moslem.Ewe                   0.37819344
## Protestant.Ewe               0.31866482
## Catholic.Ga/Damgme           0.70981594
## Jehovah Witness.Ga/Damgme    0.69081862
## Moslem.Ga/Damgme             0.00000000
## Protestant.Ga/Damgme         0.25801467
## None.Gruma                   0.18823193
## Catholic.Gruma               0.39200194
## Moslem.Gruma                 0.00000000
## Protestant.Gruma             0.24446457
## None.Grusi                   0.21905485
## Catholic.Grusi               0.48450172
## Moslem.Grusi                 0.24992156
## Protestant.Grusi             0.59198421
## Catholic.Guan                0.16235306
## Jehovah Witness.Guan         1.24790801
## Moslem.Guan                  0.15816380
## Protestant.Guan              0.36593426
## None.Mande                   0.00000000
## Catholic.Mande               0.00000000
## Jehovah Witness.Mande        0.00000000
## Protestant.Mande             0.00000000
## None.Mole Dagbani            0.16711416
## Catholic.Mole Dagbani        0.11748998
## Jehovah Witness.Mole Dagbani 0.29371106
## Moslem.Mole Dagbani          0.33745803
## Protestant.Mole Dagbani      0.19322559
svyby(~sexprt, ~ethnicity, des, svymean, na.rm=T)
##                 ethnicity   sexprt         se
## Non-Ghanaian Non-Ghanaian 2.936323 0.56387333
## Akan                 Akan 2.367831 0.06631389
## Ewe                   Ewe 2.668512 0.17242341
## Ga/Damgme       Ga/Damgme 2.632037 0.25049716
## Gruma               Gruma 1.642085 0.22985504
## Grusi               Grusi 2.072234 0.33956147
## Guan                 Guan 2.397150 0.23401679
## Mande               Mande 1.053315 0.06665944
## Mole Dagbani Mole Dagbani 1.690453 0.09994278
#Poisson glm fit to survey data
fit1<-svyglm(sexprt~factor(religion)+factor(ethnicity)+factor(educ)+factor(mrg)+factor(lit)+factor(agec), design=des, family=poisson)
summary(fit1)
## 
## Call:
## svyglm(formula = sexprt ~ factor(religion) + factor(ethnicity) + 
##     factor(educ) + factor(mrg) + factor(lit) + factor(agec), 
##     design = des, family = poisson)
## 
## Survey design:
## svydesign(ids = ~HH1, weights = ~wmweight, data = sub)
## 
## Coefficients:
##                                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                      0.14904    0.22649   0.658 0.510824    
## factor(religion)Catholic        -0.09021    0.10530  -0.857 0.392048    
## factor(religion)Jehovah Witness -0.17196    0.14473  -1.188 0.235346    
## factor(religion)Moslem          -0.18554    0.12137  -1.529 0.126963    
## factor(religion)Protestant      -0.04172    0.10153  -0.411 0.681342    
## factor(ethnicity)Akan           -0.30477    0.16276  -1.873 0.061732 .  
## factor(ethnicity)Ewe            -0.20530    0.17310  -1.186 0.236208    
## factor(ethnicity)Ga/Damgme      -0.19880    0.19135  -1.039 0.299353    
## factor(ethnicity)Gruma          -0.57834    0.24442  -2.366 0.018362 *  
## factor(ethnicity)Grusi          -0.34555    0.21450  -1.611 0.107835    
## factor(ethnicity)Guan           -0.25082    0.18704  -1.341 0.180539    
## factor(ethnicity)Mande          -0.95641    0.19796  -4.831 1.82e-06 ***
## factor(ethnicity)Mole Dagbani   -0.54237    0.17067  -3.178 0.001578 ** 
## factor(educ)Sec                  0.03066    0.05879   0.521 0.602277    
## factor(mrg)Cohabiting            0.23440    0.06136   3.820 0.000151 ***
## factor(mrg)Single                0.15854    0.05796   2.735 0.006459 ** 
## factor(lit)Unread                0.07641    0.05639   1.355 0.176018    
## factor(agec)(15,25]              0.71598    0.07618   9.399  < 2e-16 ***
## factor(agec)(25,35]              0.91098    0.08529  10.681  < 2e-16 ***
## factor(agec)(35,49]              0.99784    0.07915  12.606  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 0.7973674)
## 
## Number of Fisher Scoring iterations: 5
#"risk ratios"
round(exp(summary(fit1)$coef[-1,1]), 3)
##        factor(religion)Catholic factor(religion)Jehovah Witness 
##                           0.914                           0.842 
##          factor(religion)Moslem      factor(religion)Protestant 
##                           0.831                           0.959 
##           factor(ethnicity)Akan            factor(ethnicity)Ewe 
##                           0.737                           0.814 
##      factor(ethnicity)Ga/Damgme          factor(ethnicity)Gruma 
##                           0.820                           0.561 
##          factor(ethnicity)Grusi           factor(ethnicity)Guan 
##                           0.708                           0.778 
##          factor(ethnicity)Mande   factor(ethnicity)Mole Dagbani 
##                           0.384                           0.581 
##                 factor(educ)Sec           factor(mrg)Cohabiting 
##                           1.031                           1.264 
##               factor(mrg)Single               factor(lit)Unread 
##                           1.172                           1.079 
##             factor(agec)(15,25]             factor(agec)(25,35] 
##                           2.046                           2.487 
##             factor(agec)(35,49] 
##                           2.712

We see a significant relationship with the number of sexual partners and the Mande, Gruma and Mole Dagabi tribes. Of these tribes, the Mole Dagbani have higher means of sexual partners in their lifetime. Number of sexual partners happens to increase with age. The lowest mean of sexual partners is attributed to Moslems, compared to other religious groups.

#Overdispersion
fit2<-glm(sexprt~factor(religion)+factor(ethnicity)+factor(educ)+factor(mrg)+factor(lit)+factor(agec), data=wm, family=poisson)
summary(fit2)
## 
## Call:
## glm(formula = sexprt ~ factor(religion) + factor(ethnicity) + 
##     factor(educ) + factor(mrg) + factor(lit) + factor(agec), 
##     family = poisson, data = wm)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.5688  -0.6258  -0.2102   0.3848   6.9500  
## 
## Coefficients:
##                                  Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                      0.418287   0.573687   0.729 0.465927    
## factor(religion)Catholic         0.005449   0.070793   0.077 0.938641    
## factor(religion)Jehovah Witness -0.019995   0.119777  -0.167 0.867420    
## factor(religion)Moslem          -0.075938   0.097512  -0.779 0.436124    
## factor(religion)Protestant       0.018617   0.068502   0.272 0.785802    
## factor(ethnicity)Akan           -0.263069   0.157046  -1.675 0.093913 .  
## factor(ethnicity)Ewe            -0.237013   0.161482  -1.468 0.142175    
## factor(ethnicity)Ga/Damgme      -0.122265   0.175290  -0.698 0.485489    
## factor(ethnicity)Gruma          -0.509611   0.198656  -2.565 0.010309 *  
## factor(ethnicity)Grusi          -0.492411   0.185115  -2.660 0.007814 ** 
## factor(ethnicity)Guan           -0.271468   0.187043  -1.451 0.146677    
## factor(ethnicity)Mande          -0.412620   0.368357  -1.120 0.262644    
## factor(ethnicity)Mole Dagbani   -0.546050   0.159252  -3.429 0.000606 ***
## factor(educ)Prim                -0.110431   0.502921  -0.220 0.826199    
## factor(educ)Sec                 -0.079227   0.503248  -0.157 0.874904    
## factor(mrg)Cohabiting            0.219884   0.044554   4.935 8.01e-07 ***
## factor(mrg)Single                0.179389   0.045592   3.935 8.33e-05 ***
## factor(lit)Unread                0.096204   0.043698   2.202 0.027697 *  
## factor(agec)(15,25]              0.389998   0.222485   1.753 0.079616 .  
## factor(agec)(25,35]              0.647386   0.223589   2.895 0.003786 ** 
## factor(agec)(35,49]              0.707759   0.222904   3.175 0.001497 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 1106.29  on 1515  degrees of freedom
## Residual deviance:  941.07  on 1495  degrees of freedom
##   (9447 observations deleted due to missingness)
## AIC: 4866.2
## 
## Number of Fisher Scoring iterations: 4
scale<-sqrt(fit2$deviance/fit2$df.residual)
scale
## [1] 0.7933985
1-pchisq(fit2$deviance, df = fit2$df.residual)
## [1] 1

P-Value is 1, this model looks to fit the data.

Negative Binomial

library(lmtest)
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
library(sandwich)
coeftest(fit2, vcov=vcovHC(fit2, type="HC1",cluster="HH1"))
## 
## z test of coefficients:
## 
##                                   Estimate Std. Error z value  Pr(>|z|)
## (Intercept)                      0.4182873  0.2758450  1.5164 0.1294219
## factor(religion)Catholic         0.0054495  0.0588161  0.0927 0.9261791
## factor(religion)Jehovah Witness -0.0199951  0.0999462 -0.2001 0.8414349
## factor(religion)Moslem          -0.0759382  0.0773511 -0.9817 0.3262307
## factor(religion)Protestant       0.0186166  0.0574474  0.3241 0.7458895
## factor(ethnicity)Akan           -0.2630692  0.1472132 -1.7870 0.0739384
## factor(ethnicity)Ewe            -0.2370132  0.1500117 -1.5800 0.1141150
## factor(ethnicity)Ga/Damgme      -0.1222651  0.1637645 -0.7466 0.4553106
## factor(ethnicity)Gruma          -0.5096106  0.1707263 -2.9850 0.0028362
## factor(ethnicity)Grusi          -0.4924106  0.1688965 -2.9155 0.0035517
## factor(ethnicity)Guan           -0.2714682  0.1654902 -1.6404 0.1009245
## factor(ethnicity)Mande          -0.4126199  0.3267323 -1.2629 0.2066364
## factor(ethnicity)Mole Dagbani   -0.5460502  0.1479068 -3.6919 0.0002226
## factor(educ)Prim                -0.1104309  0.2078608 -0.5313 0.5952295
## factor(educ)Sec                 -0.0792274  0.2090168 -0.3790 0.7046522
## factor(mrg)Cohabiting            0.2198836  0.0387191  5.6789 1.355e-08
## factor(mrg)Single                0.1793888  0.0422363  4.2473 2.164e-05
## factor(lit)Unread                0.0962036  0.0426318  2.2566 0.0240322
## factor(agec)(15,25]              0.3899982  0.0968466  4.0270 5.650e-05
## factor(agec)(25,35]              0.6473859  0.0970571  6.6702 2.555e-11
## factor(agec)(35,49]              0.7077594  0.0970678  7.2914 3.068e-13
##                                    
## (Intercept)                        
## factor(religion)Catholic           
## factor(religion)Jehovah Witness    
## factor(religion)Moslem             
## factor(religion)Protestant         
## factor(ethnicity)Akan           .  
## factor(ethnicity)Ewe               
## factor(ethnicity)Ga/Damgme         
## factor(ethnicity)Gruma          ** 
## factor(ethnicity)Grusi          ** 
## factor(ethnicity)Guan              
## factor(ethnicity)Mande             
## factor(ethnicity)Mole Dagbani   ***
## factor(educ)Prim                   
## factor(educ)Sec                    
## factor(mrg)Cohabiting           ***
## factor(mrg)Single               ***
## factor(lit)Unread               *  
## factor(agec)(15,25]             ***
## factor(agec)(25,35]             ***
## factor(agec)(35,49]             ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
library(MASS)
## 
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
## 
##     select
fit.nb2<-glm.nb(sexprt~factor(religion)+factor(ethnicity)+factor(educ)+factor(mrg)+factor(lit)+factor(agec), data=wm, weights=wmweight/mean(wmweight, na.rm=T))
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
#clx2(fit.nb2,cluster =sub$ststr)
coeftest(fit.nb2, vcov=vcovHC(fit.nb2, type="HC1",cluster="HH1"))
## 
## z test of coefficients:
## 
##                                   Estimate Std. Error z value  Pr(>|z|)
## (Intercept)                      0.3979679  0.2814153  1.4142  0.157313
## factor(religion)Catholic        -0.0680760  0.0813079 -0.8373  0.402445
## factor(religion)Jehovah Witness -0.1496399  0.1279830 -1.1692  0.242316
## factor(religion)Moslem          -0.1117204  0.0964744 -1.1580  0.246851
## factor(religion)Protestant      -0.0096695  0.0793455 -0.1219  0.903005
## factor(ethnicity)Akan           -0.2910908  0.1785752 -1.6301  0.103086
## factor(ethnicity)Ewe            -0.2534158  0.1815303 -1.3960  0.162715
## factor(ethnicity)Ga/Damgme      -0.2208073  0.1968056 -1.1220  0.261881
## factor(ethnicity)Gruma          -0.5560135  0.2072359 -2.6830  0.007297
## factor(ethnicity)Grusi          -0.3563074  0.2336189 -1.5252  0.127218
## factor(ethnicity)Guan           -0.2085018  0.1957672 -1.0651  0.286853
## factor(ethnicity)Mande          -0.4852058  0.4288682 -1.1314  0.257902
## factor(ethnicity)Mole Dagbani   -0.5497052  0.1828280 -3.0067  0.002641
## factor(educ)Prim                -0.0016274  0.1807024 -0.0090  0.992814
## factor(educ)Sec                 -0.0211594  0.1820377 -0.1162  0.907465
## factor(mrg)Cohabiting            0.2435075  0.0512339  4.7529 2.006e-06
## factor(mrg)Single                0.1635816  0.0505132  3.2384  0.001202
## factor(lit)Unread                0.0519023  0.0473047  1.0972  0.272559
## factor(agec)(15,25]              0.4342010  0.1039770  4.1759 2.968e-05
## factor(agec)(25,35]              0.6869150  0.1074228  6.3945 1.611e-10
## factor(agec)(35,49]              0.7605653  0.1040890  7.3069 2.734e-13
##                                    
## (Intercept)                        
## factor(religion)Catholic           
## factor(religion)Jehovah Witness    
## factor(religion)Moslem             
## factor(religion)Protestant         
## factor(ethnicity)Akan              
## factor(ethnicity)Ewe               
## factor(ethnicity)Ga/Damgme         
## factor(ethnicity)Gruma          ** 
## factor(ethnicity)Grusi             
## factor(ethnicity)Guan              
## factor(ethnicity)Mande             
## factor(ethnicity)Mole Dagbani   ** 
## factor(educ)Prim                   
## factor(educ)Sec                    
## factor(mrg)Cohabiting           ***
## factor(mrg)Single               ** 
## factor(lit)Unread                  
## factor(agec)(15,25]             ***
## factor(agec)(25,35]             ***
## factor(agec)(35,49]             ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(fit.nb2)
## 
## Call:
## glm.nb(formula = sexprt ~ factor(religion) + factor(ethnicity) + 
##     factor(educ) + factor(mrg) + factor(lit) + factor(agec), 
##     data = wm, weights = wmweight/mean(wmweight, na.rm = T), 
##     init.theta = 40557.95952, link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -3.0505  -0.5628  -0.1736   0.3216   6.8058  
## 
## Coefficients:
##                                  Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                      0.397968   0.666190   0.597 0.550254    
## factor(religion)Catholic        -0.068076   0.061064  -1.115 0.264923    
## factor(religion)Jehovah Witness -0.149640   0.102695  -1.457 0.145080    
## factor(religion)Moslem          -0.111720   0.076075  -1.469 0.141953    
## factor(religion)Protestant      -0.009669   0.056930  -0.170 0.865129    
## factor(ethnicity)Akan           -0.291091   0.131613  -2.212 0.026986 *  
## factor(ethnicity)Ewe            -0.253416   0.134470  -1.885 0.059490 .  
## factor(ethnicity)Ga/Damgme      -0.220807   0.142718  -1.547 0.121826    
## factor(ethnicity)Gruma          -0.556014   0.197869  -2.810 0.004954 ** 
## factor(ethnicity)Grusi          -0.356307   0.162428  -2.194 0.028261 *  
## factor(ethnicity)Guan           -0.208502   0.154847  -1.347 0.178140    
## factor(ethnicity)Mande          -0.485206   0.361431  -1.342 0.179448    
## factor(ethnicity)Mole Dagbani   -0.549705   0.142855  -3.848 0.000119 ***
## factor(educ)Prim                -0.001627   0.604552  -0.003 0.997852    
## factor(educ)Sec                 -0.021159   0.604695  -0.035 0.972086    
## factor(mrg)Cohabiting            0.243507   0.036419   6.686 2.29e-11 ***
## factor(mrg)Single                0.163582   0.040712   4.018 5.87e-05 ***
## factor(lit)Unread                0.051902   0.036561   1.420 0.155718    
## factor(agec)(15,25]              0.434201   0.243571   1.783 0.074644 .  
## factor(agec)(25,35]              0.686915   0.244117   2.814 0.004895 ** 
## factor(agec)(35,49]              0.760565   0.243566   3.123 0.001792 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(40557.96) family taken to be 1)
## 
##     Null deviance: 1429.7  on 1515  degrees of freedom
## Residual deviance: 1253.7  on 1495  degrees of freedom
##   (9447 observations deleted due to missingness)
## AIC: 6377.7
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  40558 
##           Std. Err.:  143099 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -6333.73

AIC for the Poisson Model (Computed in our dispersion test) computes to 4866.2, whereas our Negative Binomial Model computes to 6377.7. Thus, we can conclude that the Poisson Model works best for this particular analysis. It is neccesary to note however, that the Negative Binomial model has more signficant predictors than the former model.