Resum

table(mtcars$cyl)
table(mtcars$am)
table(mtcars$cyl, mtcars$am)
library(MASS)
table(cats$Sex)

pie(table(mtcars$cyl),  col=rainbow(3))
barplot(table(cats$Sex), col=rainbow(2))

cut(Nile, breaks=seq(400,1400,100))
table(cut(Nile, breaks=seq(400,1400,100)))
barplot(table(cut(Nile, breaks=seq(400,1400,100))))


length(Nile)
sum(Nile)
sum(Nile)/length(Nile)
mean(Nile)

sort(Nile)
sort(Nile)[50:51]
sum(sort(Nile)[50:51])/2
median(Nile)

quantile(Nile)
for (i in 1:9) {
  print(i)
  print(quantile(Nile, type=i))
}

quantile(Nile, 0:10/10)

summary(Nile)

Nile-mean(Nile)
mean(abs(Nile-mean(Nile)))

sum((Nile-mean(Nile))^2)/(length(Nile)-1)
var(Nile)

sqrt(sum((Nile-mean(Nile))^2)/(length(Nile)-1))
sd(Nile)

stem(Nile)
hist(Nile)
hist(Nile, breaks=20)
hist(Nile, breaks=seq(400,1400,25))

library(boot)
hist(cloth$y)
hist(cloth$y, breaks=30)
hist(cloth$y, breaks=seq(.5,30.5,1))
hist(fir$count, breaks=seq(-.5,7.5,1))

boxplot(speed~pair, data=amis)
boxplot(speed~warning, data=amis)

Resultat

table(mtcars$cyl)
## 
##  4  6  8 
## 11  7 14
table(mtcars$am)
## 
##  0  1 
## 19 13
table(mtcars$cyl, mtcars$am)
##    
##      0  1
##   4  3  8
##   6  4  3
##   8 12  2
library(MASS)
table(cats$Sex)
## 
##  F  M 
## 47 97
pie(table(mtcars$cyl),  col=rainbow(3))

barplot(table(cats$Sex), col=rainbow(2))

cut(Nile, breaks=seq(400,1400,100))
##   [1] (1.1e+03,1.2e+03] (1.1e+03,1.2e+03] (900,1e+03]      
##   [4] (1.2e+03,1.3e+03] (1.1e+03,1.2e+03] (1.1e+03,1.2e+03]
##   [7] (800,900]         (1.2e+03,1.3e+03] (1.3e+03,1.4e+03]
##  [10] (1.1e+03,1.2e+03] (900,1e+03]       (900,1e+03]      
##  [13] (1.1e+03,1.2e+03] (900,1e+03]       (1e+03,1.1e+03]  
##  [16] (900,1e+03]       (1.1e+03,1.2e+03] (700,800]        
##  [19] (900,1e+03]       (1.1e+03,1.2e+03] (1e+03,1.1e+03]  
##  [22] (1.2e+03,1.3e+03] (1.1e+03,1.2e+03] (1.2e+03,1.3e+03]
##  [25] (1.2e+03,1.3e+03] (1.2e+03,1.3e+03] (1e+03,1.1e+03]  
##  [28] (1e+03,1.1e+03]   (700,800]         (800,900]        
##  [31] (800,900]         (600,700]         (900,1e+03]      
##  [34] (800,900]         (700,800]         (900,1e+03]      
##  [37] (600,700]         (1e+03,1.1e+03]   (1e+03,1.1e+03]  
##  [40] (900,1e+03]       (800,900]         (700,800]        
##  [43] (400,500]         (800,900]         (700,800]        
##  [46] (1.1e+03,1.2e+03] (1e+03,1.1e+03]   (800,900]        
##  [49] (700,800]         (800,900]         (700,800]        
##  [52] (800,900]         (800,900]         (800,900]        
##  [55] (600,700]         (800,900]         (700,800]        
##  [58] (700,800]         (1e+03,1.1e+03]   (700,800]        
##  [61] (700,800]         (800,900]         (800,900]        
##  [64] (900,1e+03]       (900,1e+03]       (800,900]        
##  [67] (800,900]         (1e+03,1.1e+03]   (700,800]        
##  [70] (600,700]         (600,700]         (800,900]        
##  [73] (800,900]         (700,800]         (800,900]        
##  [76] (1e+03,1.1e+03]   (800,900]         (800,900]        
##  [79] (800,900]         (800,900]         (700,800]        
##  [82] (700,800]         (800,900]         (1e+03,1.1e+03]  
##  [85] (900,1e+03]       (900,1e+03]       (700,800]        
##  [88] (900,1e+03]       (900,1e+03]       (800,900]        
##  [91] (1e+03,1.1e+03]   (900,1e+03]       (900,1e+03]      
##  [94] (1.1e+03,1.2e+03] (900,1e+03]       (700,800]        
##  [97] (900,1e+03]       (700,800]         (700,800]        
## [100] (700,800]        
## 10 Levels: (400,500] (500,600] (600,700] (700,800] ... (1.3e+03,1.4e+03]
table(cut(Nile, breaks=seq(400,1400,100)))
## 
##         (400,500]         (500,600]         (600,700]         (700,800] 
##                 1                 0                 5                20 
##         (800,900]       (900,1e+03]   (1e+03,1.1e+03] (1.1e+03,1.2e+03] 
##                25                19                12                11 
## (1.2e+03,1.3e+03] (1.3e+03,1.4e+03] 
##                 6                 1
barplot(table(cut(Nile, breaks=seq(400,1400,100))))

length(Nile)
## [1] 100
sum(Nile)
## [1] 91935
sum(Nile)/length(Nile)
## [1] 919.35
mean(Nile)
## [1] 919.35
sort(Nile)
##   [1]  456  649  676  692  694  698  701  702  714  718  726  740  742  744
##  [15]  744  746  749  759  764  768  771  774  781  796  797  799  801  812
##  [29]  813  815  821  822  824  831  832  833  838  840  845  845  845  846
##  [43]  848  860  862  864  865  874  874  890  897  901  906  912  916  918
##  [57]  919  923  935  940  944  958  960  963  969  975  984  986  994  995
##  [71] 1010 1020 1020 1020 1030 1040 1040 1050 1050 1100 1100 1100 1110 1120
##  [85] 1120 1140 1140 1150 1160 1160 1160 1170 1180 1210 1210 1220 1230 1250
##  [99] 1260 1370
sort(Nile)[50:51]
## [1] 890 897
sum(sort(Nile)[50:51])/2
## [1] 893.5
median(Nile)
## [1] 893.5
quantile(Nile)
##     0%    25%    50%    75%   100% 
##  456.0  798.5  893.5 1032.5 1370.0
for (i in 1:9) {
  print(i)
  print(quantile(Nile, type=i))
}
## [1] 1
##   0%  25%  50%  75% 100% 
##  456  797  890 1030 1370 
## [1] 2
##     0%    25%    50%    75%   100% 
##  456.0  798.0  893.5 1035.0 1370.0 
## [1] 3
##   0%  25%  50%  75% 100% 
##  456  797  890 1030 1370 
## [1] 4
##   0%  25%  50%  75% 100% 
##  456  797  890 1030 1370 
## [1] 5
##     0%    25%    50%    75%   100% 
##  456.0  798.0  893.5 1035.0 1370.0 
## [1] 6
##     0%    25%    50%    75%   100% 
##  456.0  797.5  893.5 1037.5 1370.0 
## [1] 7
##     0%    25%    50%    75%   100% 
##  456.0  798.5  893.5 1032.5 1370.0 
## [1] 8
##        0%       25%       50%       75%      100% 
##  456.0000  797.8333  893.5000 1035.8333 1370.0000 
## [1] 9
##       0%      25%      50%      75%     100% 
##  456.000  797.875  893.500 1035.625 1370.000
quantile(Nile, 0:10/10)
##     0%    10%    20%    30%    40%    50%    60%    70%    80%    90% 
##  456.0  725.2  770.4  819.2  845.0  893.5  941.6  999.5 1100.0 1160.0 
##   100% 
## 1370.0
summary(Nile)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   456.0   798.5   893.5   919.4  1032.5  1370.0
Nile-mean(Nile)
## Time Series:
## Start = 1871 
## End = 1970 
## Frequency = 1 
##   [1]  200.65  240.65   43.65  290.65  240.65  240.65 -106.35  310.65
##   [9]  450.65  220.65   75.65   15.65  190.65   74.65  100.65   40.65
##  [17]  260.65 -120.35   38.65  220.65  180.65  290.65  230.65  330.65
##  [25]  340.65  300.65  110.65  180.65 -145.35  -79.35  -45.35 -225.35
##  [33]   20.65  -86.35 -218.35   -3.35 -227.35  100.65  130.65   49.65
##  [41]  -88.35 -193.35 -463.35  -95.35 -217.35  200.65  180.65  -87.35
##  [49] -155.35  -98.35 -151.35  -74.35  -55.35  -57.35 -221.35  -74.35
##  [57] -175.35 -123.35  120.65 -160.35 -138.35  -54.35  -74.35   24.65
##  [65]   64.65  -22.35  -97.35   90.65 -148.35 -243.35 -270.35  -73.35
##  [73] -107.35 -177.35 -118.35  120.65  -59.35  -45.35  -71.35  -29.35
##  [81] -175.35 -170.35  -81.35  130.65   -1.35   66.65 -122.35    3.65
##  [89]   55.65 -104.35  100.65  -13.35  -18.35  250.65   -7.35 -173.35
##  [97]   -0.35 -201.35 -205.35 -179.35
mean(abs(Nile-mean(Nile)))
## [1] 138.679
sum((Nile-mean(Nile))^2)/(length(Nile)-1)
## [1] 28637.95
var(Nile)
## [1] 28637.95
sqrt(sum((Nile-mean(Nile))^2)/(length(Nile)-1))
## [1] 169.2275
sd(Nile)
## [1] 169.2275
stem(Nile)
## 
##   The decimal point is 2 digit(s) to the right of the |
## 
##    4 | 6
##    5 | 
##    6 | 5899
##    7 | 000123444455667778
##    8 | 000011222233344555556667779
##    9 | 0011222244466678899
##   10 | 0122234455
##   11 | 00012244566678
##   12 | 112356
##   13 | 7
hist(Nile)

hist(Nile, breaks=20)

hist(Nile, breaks=seq(400,1400,25))

library(boot)
hist(cloth$y)

hist(cloth$y, breaks=30)

hist(cloth$y, breaks=seq(.5,30.5,1))

hist(fir$count, breaks=seq(-.5,7.5,1))

boxplot(speed~pair, data=amis)

boxplot(speed~warning, data=amis)