The Impact of Maternal Age on Maternal Mortality

Introdution

America is one of 13 countries where in the last 25 years maternal mortality rates have worsened [1].Black women are a particularly vulnerable group with a high maternal mortality rate who frequently report receiving inadequate maternal healthcare and support.India has worked substanially to reduce the maternal mortality rate by establishing several crucial government intervention programs and sucessfully dropped from 556 per 100 000 live births in 1990 to 130 per 100 000 live births in 2016 [2].For my research, I will be looking at age as the independent variable and how it impacts maternal mortality rates when interacting with other dependent variables, such as seeking medical care, where they live (rural or urban), and if they have a safe drinking water supply .

Installed Packages for Data Analysis

library (readr)
library (pander)
library (Zelig)
## Loading required package: survival
library (maxLik)
## Loading required package: miscTools
## 
## Please cite the 'maxLik' package as:
## Henningsen, Arne and Toomet, Ott (2011). maxLik: A package for maximum likelihood estimation in R. Computational Statistics 26(3), 443-458. DOI 10.1007/s00180-010-0217-1.
## 
## If you have questions, suggestions, or comments regarding the 'maxLik' package, please use a forum or 'tracker' at maxLik's R-Forge site:
## https://r-forge.r-project.org/projects/maxlik/
library (visreg)
library (texreg)
## Version:  1.36.23
## Date:     2017-03-03
## Author:   Philip Leifeld (University of Glasgow)
## 
## Please cite the JSS article in your publications -- see citation("texreg").
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union

Dataset

The “predict_mortality_death_rate” dataset is downloaded from Kaggle. The dataset comprises of responses from the Annual Health Survey in 8 Empowered Action Group States (Bihar, Jharkhand, Uttar Pradesh, Uttarakhand, Madhya Pradesh, Chhattisgarh, Orissa and Rajasthan) and Assam, India. The survey is administered by the Office of Registrar General, India. It is conducted over a three year period, starting with the baseline survey and two updated versions, from 2010 - 2011 then 2012-2013. The representative sample encompasses about 20.1 million population and 4.1 million households [3]. There are 770k observations in the original dataset and 121 variables.

predict_mortality_death_rate <- read_csv("C:/Users/Matthew/Downloads/predict-mortality-death-rate.zip")
## Multiple files in zip: reading 'Mortality_05_UT.csv'
## Parsed with column specification:
## cols(
##   .default = col_double(),
##   field38 = col_logical(),
##   building_no = col_character(),
##   isdeadmigrated = col_logical(),
##   x = col_logical(),
##   v126 = col_logical()
## )
## See spec(...) for full column specifications.
head (predict_mortality_death_rate)
## # A tibble: 6 x 122
##       id  m_id client_m_id hl_id house_no house_hold_no state district
##    <dbl> <dbl>       <dbl> <dbl>    <dbl>         <dbl> <dbl>    <dbl>
## 1 165767    10          NA    NA      132             1     5        9
## 2 167609     4          NA    NA      111             1     5        2
## 3 530767   954          NA 25345       19             1     5        1
## 4 530775   962          NA 25535       72             6     5        1
## 5 167601    26          NA    NA      248             2     5        2
## 6 167593     7          NA    NA       77             1     5        2
## # ... with 114 more variables: rural <dbl>, stratum_code <dbl>,
## #   psu_id <dbl>, m_serial_no <dbl>, deceased_sex <dbl>,
## #   date_of_death <dbl>, month_of_death <dbl>, year_of_death <dbl>,
## #   age_of_death_below_one_month <dbl>,
## #   age_of_death_below_eleven_month <dbl>,
## #   age_of_death_above_one_year <dbl>, treatment_source <dbl>,
## #   place_of_death <dbl>, is_death_reg <dbl>,
## #   is_death_certificate_received <dbl>,
## #   serial_num_of_infant_mother <dbl>, order_of_birth <dbl>,
## #   death_symptoms <dbl>, is_death_associated_with_pregnan <dbl>,
## #   death_period <dbl>, months_of_pregnancy <dbl>,
## #   factors_contributing_death <dbl>, factors_contributing_death_2 <dbl>,
## #   symptoms_of_death <dbl>, time_between_onset_of_complicati <dbl>,
## #   nearest_medical_facility <dbl>, m_expall_status <dbl>, field38 <lgl>,
## #   hh_id <dbl>, client_hh_id <dbl>, currently_dead_or_out_migrated <dbl>,
## #   hh_serial_no <dbl>, sex <dbl>, usual_residance <dbl>,
## #   relation_to_head <dbl>, member_identity <dbl>, father_serial_no <dbl>,
## #   mother_serial_no <dbl>, date_of_birth <dbl>, month_of_birth <dbl>,
## #   year_of_birth <dbl>, age <dbl>, religion <dbl>,
## #   social_group_code <dbl>, marital_status <dbl>, date_of_marriage <dbl>,
## #   month_of_marriage <dbl>, year_of_marriage <dbl>,
## #   currently_attending_school <dbl>,
## #   reason_for_not_attending_school <dbl>, highest_qualification <dbl>,
## #   occupation_status <dbl>, disability_status <dbl>,
## #   injury_treatment_type <dbl>, illness_type <dbl>,
## #   symptoms_pertaining_illness <dbl>, sought_medical_care <dbl>,
## #   diagnosed_for <dbl>, diagnosis_source <dbl>, regular_treatment <dbl>,
## #   regular_treatment_source <dbl>, chew <dbl>, smoke <dbl>,
## #   alcohol <dbl>, status <dbl>, hh_expall_status <dbl>,
## #   client_hl_id <dbl>, serial_no <dbl>, building_no <chr>,
## #   house_status <dbl>, house_structure <dbl>, owner_status <dbl>,
## #   drinking_water_source <dbl>, is_water_filter <dbl>,
## #   water_filteration <dbl>, toilet_used <dbl>, is_toilet_shared <dbl>,
## #   household_have_electricity <dbl>, lighting_source <dbl>,
## #   cooking_fuel <dbl>, no_of_dwelling_rooms <dbl>,
## #   kitchen_availability <dbl>, is_radio <dbl>, is_television <dbl>,
## #   is_computer <dbl>, is_telephone <dbl>, is_washing_machine <dbl>,
## #   is_refrigerator <dbl>, is_sewing_machine <dbl>, is_bicycle <dbl>,
## #   is_scooter <dbl>, is_car <dbl>, is_tractor <dbl>, is_water_pump <dbl>,
## #   cart <dbl>, land_possessed <dbl>, hl_expall_status <dbl>, fid <dbl>,
## #   isdeadmigrated <lgl>, residancial_status <dbl>, ...

Model 1: Mortality and Age

I used the “is_death_certificate_received” variable due to the notion that its a strong confirmation of death for the participants surveyed. This model demonsrates a strong correlation between age and mortality.

model_1 <- glm(is_death_certificate_received ~ age,data = predict_mortality_death_rate) 
summary(model_1)      
## 
## Call:
## glm(formula = is_death_certificate_received ~ age, data = predict_mortality_death_rate)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.9508  -0.8156   0.1417   0.2176   4.1631  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 0.7159628  0.0124326  57.588   <2e-16 ***
## age         0.0023722  0.0002432   9.755   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 0.6094838)
## 
##     Null deviance: 30111  on 49310  degrees of freedom
## Residual deviance: 30053  on 49309  degrees of freedom
##   (4192 observations deleted due to missingness)
## AIC: 115527
## 
## Number of Fisher Scoring iterations: 2

Model 2: Mortality & Living in a Rural or Urban Region

model_2 <- glm(is_death_certificate_received ~ rural, data= predict_mortality_death_rate)
summary(model_2)   
## 
## Call:
## glm(formula = is_death_certificate_received ~ rural, data = predict_mortality_death_rate)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8459  -0.8330   0.1541   0.1670   4.1670  
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 0.820217   0.011362   72.19   <2e-16 ***
## rural       0.012830   0.009164    1.40    0.162    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 0.6118744)
## 
##     Null deviance: 30320  on 49551  degrees of freedom
## Residual deviance: 30318  on 49550  degrees of freedom
##   (3951 observations deleted due to missingness)
## AIC: 116285
## 
## Number of Fisher Scoring iterations: 2

Model 3

model_3 <- glm(is_death_certificate_received~ age+rural,data = predict_mortality_death_rate)
summary(model_3)      
## 
## Call:
## glm(formula = is_death_certificate_received ~ age + rural, data = predict_mortality_death_rate)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.9626  -0.8130   0.1421   0.2154   4.1657  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 0.6988231  0.0163482  42.746   <2e-16 ***
## age         0.0023660  0.0002432   9.728   <2e-16 ***
## rural       0.0147910  0.0091612   1.615    0.106    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 0.6094639)
## 
##     Null deviance: 30111  on 49310  degrees of freedom
## Residual deviance: 30051  on 49308  degrees of freedom
##   (4192 observations deleted due to missingness)
## AIC: 115526
## 
## Number of Fisher Scoring iterations: 2

Model 4

model_4 <- glm(is_death_certificate_received~ age+rural+is_water_filter+household_have_electricity+is_refrigerator,data = predict_mortality_death_rate)
summary(model_4)   
## 
## Call:
## glm(formula = is_death_certificate_received ~ age + rural + is_water_filter + 
##     household_have_electricity + is_refrigerator, data = predict_mortality_death_rate)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.0181  -0.8086   0.1350   0.2248   4.1788  
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                 0.9133138  0.0366629  24.911  < 2e-16 ***
## age                         0.0020895  0.0002497   8.369  < 2e-16 ***
## rural                      -0.0104661  0.0106438  -0.983  0.32546    
## is_water_filter            -0.1029359  0.0116731  -8.818  < 2e-16 ***
## household_have_electricity  0.0391465  0.0130781   2.993  0.00276 ** 
## is_refrigerator            -0.0107694  0.0099152  -1.086  0.27742    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 0.6109933)
## 
##     Null deviance: 29177  on 47575  degrees of freedom
## Residual deviance: 29065  on 47570  degrees of freedom
##   (5927 observations deleted due to missingness)
## AIC: 111584
## 
## Number of Fisher Scoring iterations: 2

Model 4: Mortality & Intersecting Variables

model_4 <- lm(is_death_certificate_received~ age+rural+is_water_filter+household_have_electricity+is_refrigerator,data = predict_mortality_death_rate)
summary(model_4)   
## 
## Call:
## lm(formula = is_death_certificate_received ~ age + rural + is_water_filter + 
##     household_have_electricity + is_refrigerator, data = predict_mortality_death_rate)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.0181 -0.8086  0.1350  0.2248  4.1788 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                 0.9133138  0.0366629  24.911  < 2e-16 ***
## age                         0.0020895  0.0002497   8.369  < 2e-16 ***
## rural                      -0.0104661  0.0106438  -0.983  0.32546    
## is_water_filter            -0.1029359  0.0116731  -8.818  < 2e-16 ***
## household_have_electricity  0.0391465  0.0130781   2.993  0.00276 ** 
## is_refrigerator            -0.0107694  0.0099152  -1.086  0.27742    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7817 on 47570 degrees of freedom
##   (5927 observations deleted due to missingness)
## Multiple R-squared:  0.003834,   Adjusted R-squared:  0.00373 
## F-statistic: 36.62 on 5 and 47570 DF,  p-value: < 2.2e-16
htmlreg(list(model_1, model_2, model_3), doctype = FALSE)
## 
## <table cellspacing="0" align="center" style="border: none;">
## <caption align="bottom" style="margin-top:0.3em;">Statistical models</caption>
## <tr>
## <th style="text-align: left; border-top: 2px solid black; border-bottom: 1px solid black; padding-right: 12px;"><b></b></th>
## <th style="text-align: left; border-top: 2px solid black; border-bottom: 1px solid black; padding-right: 12px;"><b>Model 1</b></th>
## <th style="text-align: left; border-top: 2px solid black; border-bottom: 1px solid black; padding-right: 12px;"><b>Model 2</b></th>
## <th style="text-align: left; border-top: 2px solid black; border-bottom: 1px solid black; padding-right: 12px;"><b>Model 3</b></th>
## </tr>
## <tr>
## <td style="padding-right: 12px; border: none;">(Intercept)</td>
## <td style="padding-right: 12px; border: none;">0.72<sup style="vertical-align: 0px;">***</sup></td>
## <td style="padding-right: 12px; border: none;">0.82<sup style="vertical-align: 0px;">***</sup></td>
## <td style="padding-right: 12px; border: none;">0.70<sup style="vertical-align: 0px;">***</sup></td>
## </tr>
## <tr>
## <td style="padding-right: 12px; border: none;"></td>
## <td style="padding-right: 12px; border: none;">(0.01)</td>
## <td style="padding-right: 12px; border: none;">(0.01)</td>
## <td style="padding-right: 12px; border: none;">(0.02)</td>
## </tr>
## <tr>
## <td style="padding-right: 12px; border: none;">age</td>
## <td style="padding-right: 12px; border: none;">0.00<sup style="vertical-align: 0px;">***</sup></td>
## <td style="padding-right: 12px; border: none;"></td>
## <td style="padding-right: 12px; border: none;">0.00<sup style="vertical-align: 0px;">***</sup></td>
## </tr>
## <tr>
## <td style="padding-right: 12px; border: none;"></td>
## <td style="padding-right: 12px; border: none;">(0.00)</td>
## <td style="padding-right: 12px; border: none;"></td>
## <td style="padding-right: 12px; border: none;">(0.00)</td>
## </tr>
## <tr>
## <td style="padding-right: 12px; border: none;">rural</td>
## <td style="padding-right: 12px; border: none;"></td>
## <td style="padding-right: 12px; border: none;">0.01</td>
## <td style="padding-right: 12px; border: none;">0.01</td>
## </tr>
## <tr>
## <td style="padding-right: 12px; border: none;"></td>
## <td style="padding-right: 12px; border: none;"></td>
## <td style="padding-right: 12px; border: none;">(0.01)</td>
## <td style="padding-right: 12px; border: none;">(0.01)</td>
## </tr>
## <tr>
## <td style="border-top: 1px solid black;">AIC</td>
## <td style="border-top: 1px solid black;">115526.56</td>
## <td style="border-top: 1px solid black;">116285.14</td>
## <td style="border-top: 1px solid black;">115525.95</td>
## </tr>
## <tr>
## <td style="padding-right: 12px; border: none;">BIC</td>
## <td style="padding-right: 12px; border: none;">115552.98</td>
## <td style="padding-right: 12px; border: none;">116311.58</td>
## <td style="padding-right: 12px; border: none;">115561.18</td>
## </tr>
## <tr>
## <td style="padding-right: 12px; border: none;">Log Likelihood</td>
## <td style="padding-right: 12px; border: none;">-57760.28</td>
## <td style="padding-right: 12px; border: none;">-58139.57</td>
## <td style="padding-right: 12px; border: none;">-57758.98</td>
## </tr>
## <tr>
## <td style="padding-right: 12px; border: none;">Deviance</td>
## <td style="padding-right: 12px; border: none;">30053.03</td>
## <td style="padding-right: 12px; border: none;">30318.38</td>
## <td style="padding-right: 12px; border: none;">30051.45</td>
## </tr>
## <tr>
## <td style="border-bottom: 2px solid black;">Num. obs.</td>
## <td style="border-bottom: 2px solid black;">49311</td>
## <td style="border-bottom: 2px solid black;">49552</td>
## <td style="border-bottom: 2px solid black;">49311</td>
## </tr>
## <tr>
## <td style="padding-right: 12px; border: none;" colspan="5"><span style="font-size:0.8em"><sup style="vertical-align: 0px;">***</sup>p &lt; 0.001, <sup style="vertical-align: 0px;">**</sup>p &lt; 0.01, <sup style="vertical-align: 0px;">*</sup>p &lt; 0.05</span></td>
## </tr>
## </table>

References

  1. Villarosa, Linda.“Why America’s Black Mothers and Babies Are in a Life-or-Death Crisis.” New York Times. Published April 2018. Accessed March 2019. https://www.nytimes.com/2018/04/11/magazine/black-mothers-babies-death-maternal-mortality.html

2)Singh, Poonam Khetrapal. “India has achieved groundbreaking success in reducing maternal mortality.” World Health Organization: South-East Asia. Accessed March 2019. http://www.searo.who.int/mediacentre/features/2018/india-groundbreaking-sucess-reducing-maternal-mortality-rate/en/

  1. Press Information Bureau, Government of India. Ministry of Health and Family Welfare. Published 16-July 2012 Accessed March 2019. http://pib.nic.in/newsite/mbErel.aspx?relid=85350