library(fpp2)
## Loading required package: ggplot2
## Loading required package: forecast
## Loading required package: fma
## Loading required package: expsmooth
library(mlbench)
library(plyr)
##
## Attaching package: 'plyr'
## The following object is masked from 'package:fma':
##
## ozone
We can use a correlation plot to examine the relationship between the variables and the predicted value.
data(Glass)
pairs(Glass)
We can see that there is a strong linear relationship between Ri and Ca. We also see that the K content is independent of the the other minerals. Likewise, iron is found at all levels with many other minerals in many types of glass. Otherwise, the mineral content with respect to the listed minerals does not appear to be colinear.
data(Glass)
sapply(Glass, function(x){
boxplot(as.numeric(x))
})
## RI Na Mg Al Si K
## stats Numeric,5 Numeric,5 Numeric,5 Numeric,5 Numeric,5 Numeric,5
## n 214 214 214 214 214 214
## conf Numeric,2 Numeric,2 Numeric,2 Numeric,2 Numeric,2 Numeric,2
## out Numeric,17 Numeric,7 Numeric,0 Numeric,18 Numeric,12 Numeric,7
## group Numeric,17 Numeric,7 Numeric,0 Numeric,18 Numeric,12 Numeric,7
## names "1" "1" "1" "1" "1" "1"
## Ca Ba Fe Type
## stats Numeric,5 Numeric,5 Numeric,5 Numeric,5
## n 214 214 214 214
## conf Numeric,2 Numeric,2 Numeric,2 Numeric,2
## out Numeric,26 Numeric,38 Numeric,12 Numeric,0
## group Numeric,26 Numeric,38 Numeric,12 Numeric,0
## names "1" "1" "1" "1"
We can see from the boxplots, that every variable except Mg has outliers. We can look at density plots to see the distributions. In these plots, we can see that most of the data is skewed right with most data points fairly low, but with some more extreme mineral contents listed.
sapply(Glass, function(x){
plot(density(as.numeric(x)))
})
## $RI
## NULL
##
## $Na
## NULL
##
## $Mg
## NULL
##
## $Al
## NULL
##
## $Si
## NULL
##
## $K
## NULL
##
## $Ca
## NULL
##
## $Ba
## NULL
##
## $Fe
## NULL
##
## $Type
## NULL
Most of these data vectors are not normal distributions and our model would benefit if there data was transformed using a Box-Cox transformation. The data that has 2 peaks could benefit from a logistic function that bifurcated the data set into one peak or the other. As we can see below, taking the square- or cube-root of the iron vector gives us nicer, bi-modal data. The Box Cox transformation does something even more dramatic..
sq <- Glass$Fe^(1/2)
cub <- Glass$Fe^(1/3)
lambda <- BoxCox.lambda(Glass$Fe)
boxcox <- BoxCox(Glass$Fe, lambda)
plot(density(Glass$Fe))
plot(density(sq))
plot(density(cub))
plot(density(boxcox))
data("Soybean")
sapply(Soybean, function(x){
barplot(table(x))
})
## $Class
## [,1]
## [1,] 0.7
## [2,] 1.9
## [3,] 3.1
## [4,] 4.3
## [5,] 5.5
## [6,] 6.7
## [7,] 7.9
## [8,] 9.1
## [9,] 10.3
## [10,] 11.5
## [11,] 12.7
## [12,] 13.9
## [13,] 15.1
## [14,] 16.3
## [15,] 17.5
## [16,] 18.7
## [17,] 19.9
## [18,] 21.1
## [19,] 22.3
##
## $date
## [,1]
## [1,] 0.7
## [2,] 1.9
## [3,] 3.1
## [4,] 4.3
## [5,] 5.5
## [6,] 6.7
## [7,] 7.9
##
## $plant.stand
## [,1]
## [1,] 0.7
## [2,] 1.9
##
## $precip
## [,1]
## [1,] 0.7
## [2,] 1.9
## [3,] 3.1
##
## $temp
## [,1]
## [1,] 0.7
## [2,] 1.9
## [3,] 3.1
##
## $hail
## [,1]
## [1,] 0.7
## [2,] 1.9
##
## $crop.hist
## [,1]
## [1,] 0.7
## [2,] 1.9
## [3,] 3.1
## [4,] 4.3
##
## $area.dam
## [,1]
## [1,] 0.7
## [2,] 1.9
## [3,] 3.1
## [4,] 4.3
##
## $sever
## [,1]
## [1,] 0.7
## [2,] 1.9
## [3,] 3.1
##
## $seed.tmt
## [,1]
## [1,] 0.7
## [2,] 1.9
## [3,] 3.1
##
## $germ
## [,1]
## [1,] 0.7
## [2,] 1.9
## [3,] 3.1
##
## $plant.growth
## [,1]
## [1,] 0.7
## [2,] 1.9
##
## $leaves
## [,1]
## [1,] 0.7
## [2,] 1.9
##
## $leaf.halo
## [,1]
## [1,] 0.7
## [2,] 1.9
## [3,] 3.1
##
## $leaf.marg
## [,1]
## [1,] 0.7
## [2,] 1.9
## [3,] 3.1
##
## $leaf.size
## [,1]
## [1,] 0.7
## [2,] 1.9
## [3,] 3.1
##
## $leaf.shread
## [,1]
## [1,] 0.7
## [2,] 1.9
##
## $leaf.malf
## [,1]
## [1,] 0.7
## [2,] 1.9
##
## $leaf.mild
## [,1]
## [1,] 0.7
## [2,] 1.9
## [3,] 3.1
##
## $stem
## [,1]
## [1,] 0.7
## [2,] 1.9
##
## $lodging
## [,1]
## [1,] 0.7
## [2,] 1.9
##
## $stem.cankers
## [,1]
## [1,] 0.7
## [2,] 1.9
## [3,] 3.1
## [4,] 4.3
##
## $canker.lesion
## [,1]
## [1,] 0.7
## [2,] 1.9
## [3,] 3.1
## [4,] 4.3
##
## $fruiting.bodies
## [,1]
## [1,] 0.7
## [2,] 1.9
##
## $ext.decay
## [,1]
## [1,] 0.7
## [2,] 1.9
## [3,] 3.1
##
## $mycelium
## [,1]
## [1,] 0.7
## [2,] 1.9
##
## $int.discolor
## [,1]
## [1,] 0.7
## [2,] 1.9
## [3,] 3.1
##
## $sclerotia
## [,1]
## [1,] 0.7
## [2,] 1.9
##
## $fruit.pods
## [,1]
## [1,] 0.7
## [2,] 1.9
## [3,] 3.1
## [4,] 4.3
##
## $fruit.spots
## [,1]
## [1,] 0.7
## [2,] 1.9
## [3,] 3.1
## [4,] 4.3
##
## $seed
## [,1]
## [1,] 0.7
## [2,] 1.9
##
## $mold.growth
## [,1]
## [1,] 0.7
## [2,] 1.9
##
## $seed.discolor
## [,1]
## [1,] 0.7
## [2,] 1.9
##
## $seed.size
## [,1]
## [1,] 0.7
## [2,] 1.9
##
## $shriveling
## [,1]
## [1,] 0.7
## [2,] 1.9
##
## $roots
## [,1]
## [1,] 0.7
## [2,] 1.9
## [3,] 3.1
Yes, features 19, 26, 27, 28, 31, 32, 33, 34, and 35 are degenrate, meaning, there is only 1 useful category label for each of these. ### b We can see from the figures below that several of the data vectors have hundreds of missing data points while a couple have very few. In particular, we see that seed.tmt, loding, germ, hail, and sever have the most missing data because they appear to be the hardest to collect.
missing <- sapply(Soybean, function(x){
sum(is.na(x))
})
missing
## Class date plant.stand precip
## 0 1 36 38
## temp hail crop.hist area.dam
## 30 121 16 1
## sever seed.tmt germ plant.growth
## 121 121 112 16
## leaves leaf.halo leaf.marg leaf.size
## 0 84 84 84
## leaf.shread leaf.malf leaf.mild stem
## 100 84 108 16
## lodging stem.cankers canker.lesion fruiting.bodies
## 121 38 38 106
## ext.decay mycelium int.discolor sclerotia
## 38 38 38 38
## fruit.pods fruit.spots seed mold.growth
## 84 106 92 92
## seed.discolor seed.size shriveling roots
## 106 92 106 31
missing2 <- as.data.frame(missing)
missing2 <- sort(missing2$missing, decreasing = TRUE)
missing2
## [1] 121 121 121 121 112 108 106 106 106 106 100 92 92 92 84 84 84
## [18] 84 84 38 38 38 38 38 38 38 36 31 30 16 16 16 1 1
## [35] 0 0
table(Soybean$Class, complete.cases(Soybean))
##
## FALSE TRUE
## 2-4-d-injury 16 0
## alternarialeaf-spot 0 91
## anthracnose 0 44
## bacterial-blight 0 20
## bacterial-pustule 0 20
## brown-spot 0 92
## brown-stem-rot 0 44
## charcoal-rot 0 20
## cyst-nematode 14 0
## diaporthe-pod-&-stem-blight 15 0
## diaporthe-stem-canker 0 20
## downy-mildew 0 20
## frog-eye-leaf-spot 0 91
## herbicide-injury 8 0
## phyllosticta-leaf-spot 0 20
## phytophthora-rot 68 20
## powdery-mildew 0 20
## purple-seed-stain 0 20
## rhizoctonia-root-rot 0 20
We can see below that nearly 10% of our rows are incomplete. To make the data more useful for modelling, we can use imputation.
ordered <- unlist(lapply(Soybean, is.ordered))
ordered <- names(ordered)[ordered]
list <- as.character(unique(Soybean$Class[complete.cases(Soybean)]))
complete <- subset(Soybean, Class %in% list)
complete
## Class date plant.stand precip temp hail crop.hist
## 1 diaporthe-stem-canker 6 0 2 1 0 1
## 2 diaporthe-stem-canker 4 0 2 1 0 2
## 3 diaporthe-stem-canker 3 0 2 1 0 1
## 4 diaporthe-stem-canker 3 0 2 1 0 1
## 5 diaporthe-stem-canker 6 0 2 1 0 2
## 6 diaporthe-stem-canker 5 0 2 1 0 3
## 7 diaporthe-stem-canker 5 0 2 1 0 2
## 8 diaporthe-stem-canker 4 0 2 1 1 1
## 9 diaporthe-stem-canker 6 0 2 1 0 3
## 10 diaporthe-stem-canker 4 0 2 1 0 2
## 11 charcoal-rot 6 0 0 2 0 1
## 12 charcoal-rot 4 0 0 1 1 1
## 13 charcoal-rot 3 0 0 1 0 1
## 14 charcoal-rot 6 0 0 1 1 3
## 15 charcoal-rot 6 0 0 2 0 1
## 16 charcoal-rot 5 0 0 2 1 3
## 17 charcoal-rot 6 0 0 2 1 0
## 18 charcoal-rot 4 0 0 1 0 2
## 19 charcoal-rot 3 0 0 2 0 2
## 20 charcoal-rot 5 0 0 2 1 2
## 21 rhizoctonia-root-rot 1 1 2 0 0 2
## 22 rhizoctonia-root-rot 1 1 2 0 0 1
## 23 rhizoctonia-root-rot 3 0 2 0 1 3
## 24 rhizoctonia-root-rot 0 1 2 0 0 0
## 25 rhizoctonia-root-rot 0 1 2 0 0 1
## 26 rhizoctonia-root-rot 1 1 2 0 0 3
## 27 rhizoctonia-root-rot 1 1 2 0 0 0
## 28 rhizoctonia-root-rot 2 1 2 0 0 2
## 29 rhizoctonia-root-rot 1 1 2 0 0 1
## 30 rhizoctonia-root-rot 2 1 2 0 0 1
## 31 phytophthora-rot 0 1 2 1 1 1
## 32 phytophthora-rot 1 1 2 1 <NA> 3
## 33 phytophthora-rot 2 1 2 2 <NA> 2
## 34 phytophthora-rot 1 1 2 0 0 2
## 35 phytophthora-rot 2 1 2 2 <NA> 2
## 36 phytophthora-rot 3 1 2 1 <NA> 2
## 37 phytophthora-rot 0 1 1 1 0 1
## 38 phytophthora-rot 3 1 2 0 0 2
## 39 phytophthora-rot 2 1 1 1 <NA> 0
## 40 phytophthora-rot 2 1 2 0 0 1
## 41 phytophthora-rot 2 1 2 1 <NA> 1
## 42 phytophthora-rot 1 1 2 1 <NA> 1
## 43 phytophthora-rot 0 1 2 1 0 3
## 44 phytophthora-rot 0 1 1 1 1 2
## 45 phytophthora-rot 3 1 2 0 0 1
## 46 phytophthora-rot 2 1 2 2 <NA> 3
## 47 phytophthora-rot 0 1 2 1 0 2
## 48 phytophthora-rot 2 1 1 2 <NA> 2
## 49 phytophthora-rot 2 1 2 1 1 1
## 50 phytophthora-rot 0 1 2 1 0 3
## 51 phytophthora-rot 1 1 2 1 0 0
## 52 phytophthora-rot 1 1 2 1 <NA> 0
## 53 phytophthora-rot 3 1 2 1 <NA> 1
## 54 phytophthora-rot 2 1 2 1 <NA> 1
## 55 phytophthora-rot 3 1 2 2 <NA> 2
## 56 phytophthora-rot 1 1 2 1 1 3
## 57 phytophthora-rot 3 1 1 1 <NA> 3
## 58 phytophthora-rot 2 1 2 2 <NA> 1
## 59 phytophthora-rot 3 1 1 2 <NA> 2
## 60 phytophthora-rot 1 1 2 2 <NA> 1
## 61 phytophthora-rot 2 1 2 2 <NA> 3
## 62 phytophthora-rot 3 1 1 1 <NA> 0
## 63 phytophthora-rot 2 1 2 0 0 1
## 64 phytophthora-rot 3 1 1 1 <NA> 1
## 65 phytophthora-rot 2 1 2 2 <NA> 1
## 66 phytophthora-rot 1 1 2 0 0 0
## 67 phytophthora-rot 3 1 2 1 <NA> 2
## 68 phytophthora-rot 3 1 2 1 <NA> 3
## 69 phytophthora-rot 3 1 1 0 0 2
## 70 phytophthora-rot 3 1 2 2 <NA> 2
## 71 brown-stem-rot 4 0 0 1 0 1
## 72 brown-stem-rot 4 0 0 1 0 1
## 73 brown-stem-rot 3 1 0 0 0 3
## 74 brown-stem-rot 5 0 0 2 0 1
## 75 brown-stem-rot 5 0 0 2 0 2
## 76 brown-stem-rot 4 0 0 1 0 3
## 77 brown-stem-rot 5 0 0 1 1 3
## 78 brown-stem-rot 6 0 1 1 1 2
## 79 brown-stem-rot 5 1 0 0 0 3
## 80 brown-stem-rot 5 1 0 1 0 1
## 81 brown-stem-rot 4 0 1 0 1 2
## 82 brown-stem-rot 4 1 0 0 0 3
## 83 brown-stem-rot 4 0 0 1 0 2
## 84 brown-stem-rot 3 1 0 0 0 2
## 85 brown-stem-rot 5 0 0 1 0 3
## 86 brown-stem-rot 4 0 0 1 0 3
## 87 brown-stem-rot 4 0 0 1 0 3
## 88 brown-stem-rot 4 0 0 1 0 1
## 89 brown-stem-rot 4 0 0 1 0 1
## 90 brown-stem-rot 3 0 0 1 0 3
## 91 powdery-mildew 5 0 0 1 1 3
## 92 powdery-mildew 6 0 1 0 1 0
## 93 powdery-mildew 1 1 0 1 0 3
## 94 powdery-mildew 6 1 1 0 0 2
## 95 powdery-mildew 4 1 1 0 0 2
## 96 powdery-mildew 6 0 0 1 1 1
## 97 powdery-mildew 2 1 1 0 0 2
## 98 powdery-mildew 6 1 0 1 0 1
## 99 powdery-mildew 5 1 0 1 0 1
## 100 powdery-mildew 1 1 0 1 0 1
## 101 downy-mildew 6 0 2 0 1 2
## 102 downy-mildew 2 0 2 1 1 1
## 103 downy-mildew 1 0 2 1 1 3
## 104 downy-mildew 4 1 2 2 0 2
## 105 downy-mildew 1 0 2 0 1 0
## 106 downy-mildew 2 1 2 0 0 3
## 107 downy-mildew 2 1 2 1 0 2
## 108 downy-mildew 4 1 2 2 0 2
## 109 downy-mildew 4 1 2 0 0 1
## 110 downy-mildew 5 1 2 1 0 3
## 111 brown-spot 1 1 2 2 1 3
## 112 brown-spot 2 0 2 1 0 2
## 113 brown-spot 2 0 2 1 0 2
## 114 brown-spot 2 0 2 1 0 1
## 115 brown-spot 1 1 2 2 1 3
## 116 brown-spot 1 1 2 1 0 2
## 117 brown-spot 0 1 2 2 1 3
## 118 brown-spot 2 0 2 1 0 2
## 119 brown-spot 1 0 2 1 0 2
## 120 brown-spot 2 1 2 1 0 3
## 121 brown-spot 5 0 2 1 0 2
## 122 brown-spot 1 1 2 1 0 3
## 123 brown-spot 1 0 2 1 0 3
## 124 brown-spot 4 0 2 1 0 1
## 125 brown-spot 1 0 2 1 0 2
## 126 brown-spot 4 1 2 1 0 3
## 127 brown-spot 2 0 2 1 0 3
## 128 brown-spot 0 1 1 1 1 2
## 129 brown-spot 1 1 1 1 1 2
## 130 brown-spot 1 1 2 1 0 1
## 131 brown-spot 1 0 2 1 0 1
## 132 brown-spot 2 0 2 1 0 3
## 133 brown-spot 3 0 2 1 0 2
## 134 brown-spot 2 1 2 2 1 3
## 135 brown-spot 1 0 2 1 0 2
## 136 brown-spot 1 1 2 1 0 2
## 137 brown-spot 5 0 2 1 0 1
## 138 brown-spot 4 1 1 1 1 2
## 139 brown-spot 3 1 2 1 0 1
## 140 brown-spot 1 0 2 1 0 3
## 141 brown-spot 4 0 2 1 0 2
## 142 brown-spot 2 1 2 1 0 2
## 143 brown-spot 2 1 1 1 1 0
## 144 brown-spot 3 1 2 1 0 3
## 145 brown-spot 3 0 2 1 0 3
## 146 brown-spot 2 0 2 1 0 2
## 147 brown-spot 3 0 2 1 0 3
## 148 brown-spot 3 1 2 1 0 3
## 149 brown-spot 2 1 2 1 0 3
## 150 brown-spot 5 1 2 1 0 3
## 151 bacterial-blight 5 0 2 1 1 3
## 152 bacterial-blight 4 0 2 2 1 2
## 153 bacterial-blight 2 0 1 1 0 0
## 154 bacterial-blight 3 0 1 1 0 1
## 155 bacterial-blight 3 0 1 1 0 3
## 156 bacterial-blight 3 0 2 1 1 2
## 157 bacterial-blight 3 0 1 1 0 1
## 158 bacterial-blight 4 0 2 1 1 0
## 159 bacterial-blight 2 0 1 1 0 3
## 160 bacterial-blight 4 1 2 2 1 2
## 161 bacterial-pustule 2 1 1 2 0 2
## 162 bacterial-pustule 3 0 2 0 1 2
## 163 bacterial-pustule 2 0 1 0 0 0
## 164 bacterial-pustule 4 1 2 1 0 3
## 165 bacterial-pustule 3 0 2 1 1 1
## 166 bacterial-pustule 3 1 1 0 0 2
## 167 bacterial-pustule 3 0 1 1 1 2
## 168 bacterial-pustule 3 1 2 1 0 0
## 169 bacterial-pustule 4 0 1 1 1 1
## 170 bacterial-pustule 5 1 1 1 0 2
## 171 purple-seed-stain 6 0 2 0 1 2
## 172 purple-seed-stain 6 0 2 0 0 2
## 173 purple-seed-stain 4 0 2 1 1 1
## 174 purple-seed-stain 4 0 2 1 1 0
## 175 purple-seed-stain 4 0 2 0 0 0
## 176 purple-seed-stain 6 0 2 2 0 2
## 177 purple-seed-stain 3 0 2 0 1 0
## 178 purple-seed-stain 3 0 2 1 1 3
## 179 purple-seed-stain 5 0 2 1 0 1
## 180 purple-seed-stain 4 0 2 1 0 0
## 181 anthracnose 5 1 2 1 0 3
## 182 anthracnose 5 1 2 2 1 2
## 183 anthracnose 6 0 2 1 0 1
## 184 anthracnose 2 1 2 2 1 0
## 185 anthracnose 3 0 2 1 0 3
## 186 anthracnose 4 1 2 2 1 2
## 187 anthracnose 6 0 2 1 0 2
## 188 anthracnose 1 0 2 1 0 1
## 189 anthracnose 6 1 2 1 0 2
## 190 anthracnose 5 0 2 1 0 1
## 191 anthracnose 5 1 2 2 1 3
## 192 anthracnose 0 0 2 1 0 3
## 193 anthracnose 6 0 2 1 0 2
## 194 anthracnose 5 1 2 1 0 1
## 195 anthracnose 5 0 2 1 0 2
## 196 anthracnose 6 1 2 2 1 0
## 197 anthracnose 5 0 2 1 0 1
## 198 anthracnose 6 1 2 2 1 3
## 199 anthracnose 5 1 2 1 0 3
## 200 anthracnose 5 1 2 1 0 2
## 201 phyllosticta-leaf-spot 3 1 1 1 0 0
## 202 phyllosticta-leaf-spot 3 0 0 1 1 0
## 203 phyllosticta-leaf-spot 3 1 1 1 0 0
## 204 phyllosticta-leaf-spot 3 0 0 1 1 2
## 205 phyllosticta-leaf-spot 3 1 1 2 0 3
## 206 phyllosticta-leaf-spot 2 0 0 1 1 0
## 207 phyllosticta-leaf-spot 1 0 0 2 1 3
## 208 phyllosticta-leaf-spot 2 1 1 1 0 2
## 209 phyllosticta-leaf-spot 2 0 0 2 1 3
## 210 phyllosticta-leaf-spot 2 1 1 2 0 3
## 211 alternarialeaf-spot 4 1 2 1 0 1
## 212 alternarialeaf-spot 4 0 1 1 0 3
## 213 alternarialeaf-spot 3 0 2 1 0 0
## 214 alternarialeaf-spot 6 0 2 2 0 3
## 215 alternarialeaf-spot 6 0 1 1 1 2
## 216 alternarialeaf-spot 5 0 2 2 0 3
## 217 alternarialeaf-spot 6 0 1 1 0 3
## 218 alternarialeaf-spot 5 1 2 2 0 3
## 219 alternarialeaf-spot 6 0 2 2 0 3
## 220 alternarialeaf-spot 6 0 2 2 0 3
## 221 alternarialeaf-spot 5 0 2 2 0 2
## 222 alternarialeaf-spot 4 1 2 1 0 3
## 223 alternarialeaf-spot 6 0 2 1 0 1
## 224 alternarialeaf-spot 5 0 2 2 0 2
## 225 alternarialeaf-spot 5 1 2 1 0 0
## 226 alternarialeaf-spot 4 0 2 1 0 2
## 227 alternarialeaf-spot 4 0 2 1 0 1
## 228 alternarialeaf-spot 5 0 2 1 0 2
## 229 alternarialeaf-spot 6 0 2 2 0 3
## 230 alternarialeaf-spot 6 1 2 2 0 1
## 231 alternarialeaf-spot 5 1 2 2 0 3
## 232 alternarialeaf-spot 5 1 2 2 0 3
## 233 alternarialeaf-spot 4 1 2 1 0 2
## 234 alternarialeaf-spot 6 1 1 2 0 2
## 235 alternarialeaf-spot 4 1 2 1 0 1
## 236 alternarialeaf-spot 6 1 2 2 0 2
## 237 alternarialeaf-spot 4 1 2 1 0 0
## 238 alternarialeaf-spot 4 0 2 2 0 3
## 239 alternarialeaf-spot 5 0 2 2 0 2
## 240 alternarialeaf-spot 3 0 2 1 0 0
## 241 alternarialeaf-spot 5 0 2 1 0 1
## 242 alternarialeaf-spot 5 0 2 2 0 1
## 243 alternarialeaf-spot 4 0 2 2 0 1
## 244 alternarialeaf-spot 5 1 2 1 0 3
## 245 alternarialeaf-spot 6 0 2 1 0 2
## 246 alternarialeaf-spot 5 0 2 1 0 0
## 247 alternarialeaf-spot 6 0 2 1 0 0
## 248 alternarialeaf-spot 5 1 2 2 0 2
## 249 alternarialeaf-spot 5 0 2 1 0 3
## 250 alternarialeaf-spot 6 0 2 1 0 1
## 251 frog-eye-leaf-spot 6 0 1 2 0 3
## 252 frog-eye-leaf-spot 4 0 1 2 0 1
## 253 frog-eye-leaf-spot 5 0 1 1 0 2
## 254 frog-eye-leaf-spot 5 1 2 1 0 3
## 255 frog-eye-leaf-spot 6 1 2 2 0 3
## 256 frog-eye-leaf-spot 4 0 1 1 0 3
## 257 frog-eye-leaf-spot 3 0 2 1 0 2
## 258 frog-eye-leaf-spot 5 0 2 2 0 2
## 259 frog-eye-leaf-spot 5 0 2 1 0 1
## 260 frog-eye-leaf-spot 5 0 2 2 0 2
## 261 frog-eye-leaf-spot 5 0 2 1 0 0
## 262 frog-eye-leaf-spot 4 0 2 1 0 2
## 263 frog-eye-leaf-spot 4 0 2 2 0 1
## 264 frog-eye-leaf-spot 4 0 2 1 0 2
## 265 frog-eye-leaf-spot 3 1 2 1 0 3
## 266 frog-eye-leaf-spot 5 0 2 1 0 3
## 267 frog-eye-leaf-spot 5 0 2 2 0 1
## 268 frog-eye-leaf-spot 4 0 2 2 0 1
## 269 frog-eye-leaf-spot 5 0 2 2 0 2
## 270 frog-eye-leaf-spot 5 0 2 1 0 3
## 271 frog-eye-leaf-spot 3 0 2 1 0 1
## 272 frog-eye-leaf-spot 6 0 1 2 0 3
## 273 frog-eye-leaf-spot 5 0 1 1 0 1
## 274 frog-eye-leaf-spot 5 0 2 1 0 3
## 275 frog-eye-leaf-spot 5 1 2 1 0 3
## 276 frog-eye-leaf-spot 3 1 2 1 0 3
## 277 frog-eye-leaf-spot 6 1 2 2 0 3
## 278 frog-eye-leaf-spot 4 0 2 1 0 1
## 279 frog-eye-leaf-spot 4 0 2 2 0 1
## 280 frog-eye-leaf-spot 6 1 2 2 0 3
## 281 frog-eye-leaf-spot 5 1 2 2 0 3
## 282 frog-eye-leaf-spot 4 0 2 1 0 0
## 283 frog-eye-leaf-spot 4 0 2 1 0 2
## 284 frog-eye-leaf-spot 4 1 1 2 0 1
## 285 frog-eye-leaf-spot 4 0 2 1 0 2
## 286 frog-eye-leaf-spot 5 1 2 1 0 1
## 287 frog-eye-leaf-spot 4 0 2 2 0 1
## 288 frog-eye-leaf-spot 5 0 2 1 0 1
## 289 frog-eye-leaf-spot 5 0 2 2 0 2
## 290 frog-eye-leaf-spot 5 1 2 1 0 2
## 308 diaporthe-stem-canker 6 0 2 1 0 1
## 309 diaporthe-stem-canker 3 0 2 1 0 2
## 310 diaporthe-stem-canker 4 0 2 1 0 3
## 311 diaporthe-stem-canker 5 0 2 1 0 1
## 312 diaporthe-stem-canker 3 0 2 1 0 3
## 313 diaporthe-stem-canker 5 0 2 1 0 2
## 314 diaporthe-stem-canker 5 0 2 1 0 3
## 315 diaporthe-stem-canker 3 0 2 1 0 2
## 316 diaporthe-stem-canker 4 0 2 1 0 3
## 317 diaporthe-stem-canker 6 0 2 1 0 3
## 318 charcoal-rot 4 0 0 1 0 2
## 319 charcoal-rot 5 0 0 2 0 3
## 320 charcoal-rot 4 0 0 2 0 3
## 321 charcoal-rot 5 0 0 2 0 0
## 322 charcoal-rot 5 0 0 2 1 2
## 323 charcoal-rot 3 0 0 2 1 0
## 324 charcoal-rot 4 0 0 2 1 1
## 325 charcoal-rot 5 0 0 2 1 2
## 326 charcoal-rot 6 0 0 2 1 3
## 327 charcoal-rot 6 0 0 2 1 3
## 328 rhizoctonia-root-rot 0 1 2 0 0 0
## 329 rhizoctonia-root-rot 0 1 2 0 0 3
## 330 rhizoctonia-root-rot 0 1 2 0 0 2
## 331 rhizoctonia-root-rot 2 1 2 0 0 0
## 332 rhizoctonia-root-rot 1 1 2 0 0 2
## 333 rhizoctonia-root-rot 2 1 2 0 0 3
## 334 rhizoctonia-root-rot 2 1 2 0 0 2
## 335 rhizoctonia-root-rot 4 0 2 0 1 0
## 336 rhizoctonia-root-rot 0 1 2 0 0 1
## 337 rhizoctonia-root-rot 2 1 2 0 0 3
## 338 phytophthora-rot 2 1 1 0 0 3
## 339 phytophthora-rot 1 1 2 0 0 3
## 340 phytophthora-rot 2 1 2 1 1 3
## 341 phytophthora-rot 1 1 2 1 1 2
## 342 phytophthora-rot 3 1 1 1 <NA> 2
## 343 phytophthora-rot 3 1 1 1 <NA> 3
## 344 phytophthora-rot 0 1 2 2 <NA> 3
## 345 phytophthora-rot 1 1 2 1 <NA> 2
## 346 phytophthora-rot 1 1 2 1 <NA> 0
## 347 phytophthora-rot 4 1 1 2 <NA> 3
## 348 phytophthora-rot 1 1 2 2 <NA> 2
## 349 phytophthora-rot 2 1 2 1 <NA> 3
## 350 phytophthora-rot 3 1 2 2 <NA> 2
## 351 phytophthora-rot 4 1 1 1 <NA> 3
## 352 phytophthora-rot 1 1 2 1 <NA> 2
## 353 phytophthora-rot 1 1 2 1 <NA> 3
## 354 phytophthora-rot 1 1 2 2 <NA> 1
## 355 phytophthora-rot 2 1 1 2 <NA> 2
## 356 phytophthora-rot 3 1 1 1 <NA> 3
## 357 phytophthora-rot 3 1 1 1 <NA> 1
## 358 phytophthora-rot 1 1 2 2 <NA> 1
## 359 phytophthora-rot 2 1 2 2 <NA> 2
## 360 phytophthora-rot 3 1 1 1 <NA> 3
## 361 phytophthora-rot 4 1 1 1 <NA> 2
## 362 phytophthora-rot 1 1 2 2 <NA> 3
## 363 phytophthora-rot 2 1 2 2 <NA> 2
## 364 phytophthora-rot 3 1 1 1 <NA> 3
## 365 phytophthora-rot 4 1 1 1 <NA> 2
## 366 phytophthora-rot 1 1 2 2 <NA> 3
## 367 phytophthora-rot 2 1 2 2 <NA> 2
## 368 phytophthora-rot 3 1 1 1 <NA> 3
## 369 phytophthora-rot 1 1 2 2 <NA> 2
## 370 phytophthora-rot 2 1 2 1 <NA> 3
## 371 phytophthora-rot 3 1 2 1 <NA> 1
## 372 phytophthora-rot 1 1 2 2 <NA> 2
## 373 phytophthora-rot 2 1 2 2 <NA> 3
## 374 phytophthora-rot 3 1 1 1 <NA> 2
## 375 phytophthora-rot 4 1 1 1 <NA> 3
## 376 phytophthora-rot 1 1 2 1 <NA> 2
## 377 phytophthora-rot 2 1 2 1 <NA> 3
## 378 phytophthora-rot 3 1 1 1 <NA> 1
## 379 phytophthora-rot 4 1 1 1 <NA> 1
## 380 phytophthora-rot 1 1 2 2 <NA> 2
## 381 phytophthora-rot 2 1 2 2 <NA> 3
## 382 phytophthora-rot 3 1 1 1 <NA> 2
## 383 phytophthora-rot 2 1 1 1 <NA> 3
## 384 phytophthora-rot 3 1 1 1 <NA> 2
## 385 phytophthora-rot 3 1 1 1 <NA> 3
## 386 brown-stem-rot 3 0 0 0 1 1
## 387 brown-stem-rot 4 0 1 0 1 2
## 388 brown-stem-rot 3 0 0 0 1 3
## 389 brown-stem-rot 5 0 0 1 1 3
## 390 brown-stem-rot 6 0 0 1 1 2
## 391 brown-stem-rot 4 0 1 0 1 3
## 392 brown-stem-rot 5 0 0 2 0 2
## 393 brown-stem-rot 5 0 0 1 0 1
## 394 brown-stem-rot 4 0 0 1 0 3
## 395 brown-stem-rot 5 0 0 1 0 2
## 396 brown-stem-rot 5 0 0 1 0 2
## 397 brown-stem-rot 3 1 1 0 0 2
## 398 brown-stem-rot 5 1 1 1 0 2
## 399 brown-stem-rot 4 1 0 0 0 2
## 400 brown-stem-rot 5 1 1 0 0 3
## 401 brown-stem-rot 4 1 1 0 0 3
## 402 brown-stem-rot 6 1 1 1 0 3
## 403 brown-stem-rot 3 0 0 1 0 2
## 404 brown-stem-rot 5 0 0 2 0 3
## 405 brown-stem-rot 3 0 0 1 0 2
## 406 brown-stem-rot 4 0 0 1 0 1
## 407 brown-stem-rot 5 0 0 2 0 2
## 408 brown-stem-rot 4 0 0 1 0 1
## 409 brown-stem-rot 5 0 0 2 0 3
## 410 powdery-mildew 1 0 0 0 1 0
## 411 powdery-mildew 2 0 1 1 1 1
## 412 powdery-mildew 3 0 2 0 1 2
## 413 powdery-mildew 4 0 0 1 1 3
## 414 powdery-mildew 5 0 1 0 1 0
## 415 powdery-mildew 4 0 1 0 1 2
## 416 powdery-mildew 3 1 0 1 0 3
## 417 powdery-mildew 4 1 1 0 0 0
## 418 powdery-mildew 2 1 1 0 0 0
## 419 powdery-mildew 5 1 0 1 0 3
## 420 downy-mildew 3 0 2 0 1 2
## 421 downy-mildew 4 0 2 1 1 3
## 422 downy-mildew 5 0 2 1 1 1
## 423 downy-mildew 2 0 2 0 1 0
## 424 downy-mildew 3 0 2 1 1 1
## 425 downy-mildew 6 1 2 0 0 1
## 426 downy-mildew 3 1 2 2 0 3
## 427 downy-mildew 5 1 2 1 0 2
## 428 downy-mildew 3 1 2 1 0 1
## 429 downy-mildew 5 1 2 0 0 3
## 430 brown-spot 1 1 2 1 0 3
## 431 brown-spot 2 0 2 1 0 1
## 432 brown-spot 3 0 2 1 0 2
## 433 brown-spot 2 1 2 1 0 3
## 434 brown-spot 2 0 2 1 0 2
## 435 brown-spot 5 0 2 1 0 2
## 436 brown-spot 2 0 2 1 0 3
## 437 brown-spot 1 0 2 1 0 2
## 438 brown-spot 2 1 1 1 1 2
## 439 brown-spot 3 1 2 2 1 1
## 440 brown-spot 0 0 1 1 0 0
## 441 brown-spot 1 0 2 2 0 1
## 442 brown-spot 2 0 1 1 0 2
## 443 brown-spot 3 0 2 2 0 3
## 444 brown-spot 4 0 1 1 0 1
## 445 brown-spot 0 0 2 2 0 2
## 446 brown-spot 1 0 1 1 0 3
## 447 brown-spot 2 0 2 2 0 1
## 448 brown-spot 0 0 1 1 0 2
## 449 brown-spot 1 1 2 2 1 3
## 450 brown-spot 1 0 2 1 0 1
## 451 brown-spot 2 0 2 1 0 2
## 452 brown-spot 3 1 2 1 0 3
## 453 brown-spot 4 0 2 1 0 2
## 454 brown-spot 5 0 2 1 0 3
## 455 brown-spot 1 1 2 1 0 2
## 456 brown-spot 2 0 2 1 0 3
## 457 brown-spot 3 0 2 1 0 2
## 458 brown-spot 1 1 2 1 0 3
## 459 brown-spot 2 0 2 1 0 1
## 460 brown-spot 3 0 2 1 0 2
## 461 brown-spot 1 1 2 1 0 3
## 462 brown-spot 2 0 2 1 0 2
## 463 brown-spot 3 0 2 1 0 3
## 464 brown-spot 1 1 2 1 0 2
## 465 brown-spot 2 0 2 1 0 3
## 466 brown-spot 3 0 2 1 0 2
## 467 brown-spot 4 1 2 1 0 3
## 468 brown-spot 5 0 2 1 0 1
## 469 brown-spot 1 0 2 1 0 2
## 470 brown-spot 2 1 2 1 0 3
## 471 brown-spot 3 0 2 1 0 2
## 472 brown-spot 4 0 2 1 0 3
## 473 brown-spot 5 1 2 1 0 3
## 474 brown-spot 1 0 2 1 0 1
## 475 brown-spot 2 0 2 1 0 2
## 476 brown-spot 3 1 2 1 0 3
## 477 brown-spot 1 0 2 1 0 1
## 478 brown-spot 2 0 2 1 0 2
## 479 brown-spot 3 1 2 1 0 3
## 480 brown-spot 1 0 2 1 0 1
## 481 brown-spot 2 0 2 1 0 2
## 482 bacterial-blight 3 0 2 1 1 1
## 483 bacterial-blight 4 1 1 1 0 2
## 484 bacterial-blight 2 1 1 1 0 1
## 485 bacterial-blight 4 0 1 2 0 3
## 486 bacterial-blight 5 1 2 1 1 1
## 487 bacterial-blight 3 0 1 1 0 2
## 488 bacterial-blight 4 0 2 1 1 3
## 489 bacterial-blight 3 0 2 1 1 1
## 490 bacterial-blight 4 1 1 1 0 2
## 491 bacterial-blight 5 0 2 1 1 3
## 492 bacterial-pustule 3 0 1 0 1 3
## 493 bacterial-pustule 1 1 1 1 0 1
## 494 bacterial-pustule 2 0 1 2 1 2
## 495 bacterial-pustule 3 1 1 1 0 3
## 496 bacterial-pustule 2 0 2 1 1 3
## 497 bacterial-pustule 2 0 2 1 1 1
## 498 bacterial-pustule 1 0 1 1 1 3
## 499 bacterial-pustule 2 1 2 2 0 1
## 500 bacterial-pustule 5 0 1 2 1 0
## 501 bacterial-pustule 2 1 2 0 0 1
## 502 purple-seed-stain 5 0 2 2 1 2
## 503 purple-seed-stain 6 0 2 0 1 3
## 504 purple-seed-stain 5 0 2 2 1 1
## 505 purple-seed-stain 4 0 2 2 1 0
## 506 purple-seed-stain 5 0 2 0 0 1
## 507 purple-seed-stain 6 0 2 1 0 2
## 508 purple-seed-stain 3 0 2 2 0 3
## 509 purple-seed-stain 3 0 2 0 0 3
## 510 purple-seed-stain 5 0 2 2 0 1
## 511 purple-seed-stain 6 0 2 1 0 3
## 512 anthracnose 0 0 2 1 0 0
## 513 anthracnose 2 0 2 1 0 2
## 514 anthracnose 4 0 2 1 0 0
## 515 anthracnose 1 0 2 1 0 0
## 516 anthracnose 4 1 2 2 1 1
## 517 anthracnose 6 0 2 1 0 3
## 518 anthracnose 6 1 2 1 0 1
## 519 anthracnose 6 1 2 1 0 3
## 520 anthracnose 5 1 2 1 0 2
## 521 anthracnose 5 0 2 1 0 3
## 522 anthracnose 4 0 2 1 0 2
## 523 anthracnose 3 1 2 2 1 1
## 524 anthracnose 4 1 2 2 1 1
## 525 anthracnose 5 1 2 2 1 2
## 526 anthracnose 6 1 2 2 1 3
## 527 anthracnose 4 0 2 1 0 1
## 528 anthracnose 5 1 2 1 0 2
## 529 anthracnose 6 0 2 1 0 3
## 530 anthracnose 4 1 2 1 0 1
## 531 anthracnose 5 0 2 1 0 2
## 532 anthracnose 6 1 2 1 0 3
## 533 anthracnose 5 0 2 1 0 3
## 534 anthracnose 5 1 2 1 0 1
## 535 anthracnose 5 0 2 1 0 1
## 536 phyllosticta-leaf-spot 1 0 0 1 1 0
## 537 phyllosticta-leaf-spot 3 0 0 1 1 2
## 538 phyllosticta-leaf-spot 1 1 1 1 0 2
## 539 phyllosticta-leaf-spot 2 1 1 1 0 2
## 540 phyllosticta-leaf-spot 2 0 0 2 1 1
## 541 phyllosticta-leaf-spot 2 0 0 2 1 1
## 542 phyllosticta-leaf-spot 3 1 1 2 0 1
## 543 phyllosticta-leaf-spot 4 1 1 2 0 1
## 544 phyllosticta-leaf-spot 2 1 1 2 0 3
## 545 phyllosticta-leaf-spot 4 1 1 2 0 1
## 546 alternarialeaf-spot 6 0 2 2 0 2
## 547 alternarialeaf-spot 5 0 2 2 0 2
## 548 alternarialeaf-spot 6 1 2 2 0 2
## 549 alternarialeaf-spot 5 1 2 1 0 2
## 550 alternarialeaf-spot 6 0 2 1 0 3
## 551 alternarialeaf-spot 5 0 2 1 0 2
## 552 alternarialeaf-spot 6 0 2 1 0 3
## 553 alternarialeaf-spot 5 0 2 1 0 3
## 554 alternarialeaf-spot 5 1 2 1 1 0
## 555 alternarialeaf-spot 5 1 2 1 1 1
## 556 alternarialeaf-spot 4 0 2 1 1 0
## 557 alternarialeaf-spot 6 1 1 2 1 1
## 558 alternarialeaf-spot 4 1 2 1 0 2
## 559 alternarialeaf-spot 6 0 1 1 1 0
## 560 alternarialeaf-spot 5 0 2 1 1 2
## 561 alternarialeaf-spot 6 0 1 2 1 3
## 562 alternarialeaf-spot 4 1 2 2 0 0
## 563 alternarialeaf-spot 5 1 1 2 1 0
## 564 alternarialeaf-spot 6 0 2 1 0 1
## 565 alternarialeaf-spot 5 1 1 2 1 2
## 566 alternarialeaf-spot 4 0 2 1 0 1
## 567 alternarialeaf-spot 5 0 2 2 0 2
## 568 alternarialeaf-spot 6 1 2 2 0 3
## 569 alternarialeaf-spot 5 0 2 2 0 1
## 570 alternarialeaf-spot 5 0 2 2 0 2
## 571 alternarialeaf-spot 5 1 2 2 0 3
## 572 alternarialeaf-spot 5 0 2 2 0 2
## 573 alternarialeaf-spot 5 1 2 2 0 3
## 574 alternarialeaf-spot 5 0 2 2 0 1
## 575 alternarialeaf-spot 4 0 2 1 0 2
## 576 alternarialeaf-spot 5 1 2 2 0 3
## 577 alternarialeaf-spot 6 0 2 2 0 1
## 578 alternarialeaf-spot 3 0 2 1 0 2
## 579 alternarialeaf-spot 4 1 2 1 0 3
## 580 alternarialeaf-spot 5 0 2 2 0 1
## 581 alternarialeaf-spot 6 0 2 2 0 2
## 582 alternarialeaf-spot 4 1 2 1 0 3
## 583 alternarialeaf-spot 4 0 2 1 0 1
## 584 alternarialeaf-spot 5 0 2 2 0 2
## 585 alternarialeaf-spot 5 1 2 2 0 3
## 586 alternarialeaf-spot 5 0 2 2 0 1
## 587 alternarialeaf-spot 6 0 2 2 0 2
## 588 alternarialeaf-spot 6 1 2 2 0 3
## 589 alternarialeaf-spot 5 0 2 2 0 1
## 590 alternarialeaf-spot 6 0 2 2 0 2
## 591 alternarialeaf-spot 5 1 2 2 0 3
## 592 alternarialeaf-spot 6 0 2 2 0 3
## 593 alternarialeaf-spot 5 0 2 2 0 3
## 594 alternarialeaf-spot 6 1 2 2 0 3
## 595 alternarialeaf-spot 5 0 2 2 0 2
## 596 alternarialeaf-spot 6 0 2 2 0 2
## 597 frog-eye-leaf-spot 4 1 2 1 0 3
## 598 frog-eye-leaf-spot 4 0 2 1 0 2
## 599 frog-eye-leaf-spot 3 0 2 1 0 1
## 600 frog-eye-leaf-spot 4 0 2 1 0 1
## 601 frog-eye-leaf-spot 4 1 2 1 0 3
## 602 frog-eye-leaf-spot 4 1 2 1 0 2
## 603 frog-eye-leaf-spot 4 1 2 1 0 3
## 604 frog-eye-leaf-spot 4 0 1 1 1 3
## 605 frog-eye-leaf-spot 6 0 1 1 0 2
## 606 frog-eye-leaf-spot 5 0 1 1 1 0
## 607 frog-eye-leaf-spot 3 0 2 1 1 0
## 608 frog-eye-leaf-spot 5 0 2 1 1 2
## 609 frog-eye-leaf-spot 3 1 2 1 1 0
## 610 frog-eye-leaf-spot 5 0 2 1 1 2
## 611 frog-eye-leaf-spot 4 0 2 2 1 1
## 612 frog-eye-leaf-spot 4 0 2 2 1 3
## 613 frog-eye-leaf-spot 3 1 2 2 1 2
## 614 frog-eye-leaf-spot 4 1 2 2 1 3
## 615 frog-eye-leaf-spot 3 0 2 2 0 2
## 616 frog-eye-leaf-spot 3 0 2 1 0 1
## 617 frog-eye-leaf-spot 4 0 2 2 0 2
## 618 frog-eye-leaf-spot 5 1 2 1 0 3
## 619 frog-eye-leaf-spot 6 0 2 2 0 1
## 620 frog-eye-leaf-spot 4 0 2 1 0 2
## 621 frog-eye-leaf-spot 5 1 2 2 0 3
## 622 frog-eye-leaf-spot 6 0 2 1 0 1
## 623 frog-eye-leaf-spot 4 0 2 2 0 2
## 624 frog-eye-leaf-spot 5 1 2 1 0 3
## 625 frog-eye-leaf-spot 6 0 2 2 0 1
## 626 frog-eye-leaf-spot 4 0 2 1 0 2
## 627 frog-eye-leaf-spot 5 1 2 2 0 3
## 628 frog-eye-leaf-spot 6 0 2 1 0 1
## 629 frog-eye-leaf-spot 3 0 2 2 0 2
## 630 frog-eye-leaf-spot 4 1 2 1 0 3
## 631 frog-eye-leaf-spot 5 0 2 2 0 1
## 632 frog-eye-leaf-spot 6 0 2 2 0 2
## 633 frog-eye-leaf-spot 3 1 2 1 0 3
## 634 frog-eye-leaf-spot 4 0 2 1 0 1
## 635 frog-eye-leaf-spot 5 0 2 1 0 2
## 636 frog-eye-leaf-spot 6 1 2 2 0 3
## 637 frog-eye-leaf-spot 3 0 2 1 0 1
## 638 frog-eye-leaf-spot 4 0 2 1 0 2
## 639 frog-eye-leaf-spot 5 1 2 2 0 3
## 640 frog-eye-leaf-spot 4 0 2 1 0 1
## 641 frog-eye-leaf-spot 5 0 2 2 0 2
## 642 frog-eye-leaf-spot 6 1 2 1 0 3
## 643 frog-eye-leaf-spot 4 0 2 2 0 1
## 644 frog-eye-leaf-spot 5 0 2 1 0 2
## 645 frog-eye-leaf-spot 6 1 2 2 0 3
## 646 frog-eye-leaf-spot 4 0 2 1 0 1
## 647 frog-eye-leaf-spot 5 0 2 2 0 2
## area.dam sever seed.tmt germ plant.growth leaves leaf.halo leaf.marg
## 1 1 1 0 0 1 1 0 2
## 2 0 2 1 1 1 1 0 2
## 3 0 2 1 2 1 1 0 2
## 4 0 2 0 1 1 1 0 2
## 5 0 1 0 2 1 1 0 2
## 6 0 1 0 1 1 1 0 2
## 7 0 1 1 0 1 1 0 2
## 8 0 1 0 2 1 1 0 2
## 9 0 1 1 1 1 1 0 2
## 10 0 2 0 2 1 1 0 2
## 11 3 1 1 0 1 1 0 2
## 12 3 1 1 1 1 1 0 2
## 13 2 1 0 0 1 1 0 2
## 14 3 1 1 0 1 1 0 2
## 15 3 1 1 1 1 1 0 2
## 16 3 1 1 2 1 1 0 2
## 17 2 1 0 0 1 1 0 2
## 18 2 1 0 1 1 1 0 2
## 19 2 1 0 2 1 1 0 2
## 20 2 1 0 2 1 1 0 2
## 21 1 2 0 2 1 0 0 2
## 22 1 2 0 1 1 0 0 2
## 23 1 2 0 1 1 0 0 2
## 24 1 1 1 2 1 0 0 2
## 25 1 2 1 2 1 0 0 2
## 26 1 2 0 2 1 0 0 2
## 27 1 1 0 1 1 0 0 2
## 28 1 1 0 1 1 0 0 2
## 29 1 2 0 2 1 0 0 2
## 30 1 2 0 2 1 0 0 2
## 31 1 1 0 0 1 1 0 2
## 32 1 <NA> <NA> <NA> 1 1 0 2
## 33 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 34 1 2 1 1 1 1 0 2
## 35 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 36 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 37 1 1 0 0 1 1 0 2
## 38 1 2 1 1 1 1 0 2
## 39 1 <NA> <NA> <NA> 1 1 0 2
## 40 1 2 0 1 1 1 0 2
## 41 1 <NA> <NA> <NA> 1 1 0 2
## 42 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 43 1 1 0 0 1 1 0 2
## 44 1 2 1 0 1 1 0 2
## 45 1 2 1 0 1 1 0 2
## 46 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 47 1 1 0 1 1 1 0 2
## 48 1 <NA> <NA> <NA> 1 1 0 2
## 49 1 2 0 2 1 1 0 2
## 50 1 1 0 2 1 1 0 2
## 51 1 2 1 1 1 1 0 2
## 52 1 <NA> <NA> <NA> 1 1 0 2
## 53 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 54 1 <NA> <NA> <NA> 1 1 0 2
## 55 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 56 1 2 0 1 1 1 0 2
## 57 1 <NA> <NA> <NA> 1 1 0 2
## 58 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 59 1 <NA> <NA> <NA> 1 1 0 2
## 60 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 61 1 <NA> <NA> <NA> 1 1 0 2
## 62 1 <NA> <NA> <NA> 1 1 0 2
## 63 1 2 0 0 1 1 0 2
## 64 1 <NA> <NA> <NA> 1 1 0 2
## 65 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 66 1 2 1 0 1 1 0 2
## 67 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 68 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 69 1 2 1 2 1 1 0 2
## 70 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 71 3 1 1 2 0 1 0 2
## 72 3 1 1 2 0 1 0 2
## 73 0 1 1 2 1 0 0 2
## 74 3 1 1 2 0 1 0 2
## 75 3 1 1 1 0 1 0 2
## 76 2 1 0 1 0 1 0 2
## 77 3 1 0 2 1 1 2 0
## 78 0 1 1 0 1 0 0 2
## 79 2 1 0 0 1 1 0 2
## 80 3 1 1 0 1 1 2 0
## 81 3 1 1 2 1 0 0 2
## 82 2 1 1 1 1 1 2 0
## 83 0 1 1 0 0 1 0 2
## 84 0 2 0 1 1 1 2 0
## 85 2 1 0 1 0 1 0 2
## 86 3 1 1 0 0 1 0 2
## 87 2 1 0 2 0 1 0 2
## 88 2 1 1 2 0 1 0 2
## 89 2 1 0 0 0 1 0 2
## 90 2 1 0 0 0 1 0 2
## 91 3 1 0 1 0 1 0 2
## 92 0 0 1 2 0 1 0 2
## 93 3 1 2 0 0 1 0 2
## 94 2 0 1 2 0 1 0 2
## 95 2 0 2 0 0 1 0 2
## 96 1 1 0 2 0 1 0 2
## 97 2 0 0 1 0 1 0 2
## 98 1 1 1 2 0 1 0 2
## 99 1 1 0 1 0 1 0 2
## 100 1 1 2 0 0 1 0 2
## 101 1 0 1 2 0 1 2 0
## 102 1 1 1 2 0 1 2 0
## 103 2 1 0 1 0 1 1 0
## 104 2 1 0 1 0 1 1 0
## 105 0 1 0 1 0 1 1 0
## 106 0 1 0 1 0 1 1 0
## 107 0 1 0 1 0 1 2 0
## 108 1 0 1 2 0 1 1 0
## 109 2 1 0 1 0 1 2 0
## 110 2 1 0 1 0 1 1 0
## 111 3 1 0 2 1 1 2 0
## 112 3 1 1 1 0 1 2 0
## 113 3 1 1 0 0 1 2 0
## 114 0 1 2 0 0 1 2 0
## 115 3 1 1 1 1 1 2 0
## 116 3 1 0 2 0 1 2 0
## 117 3 1 2 1 0 1 2 0
## 118 3 1 0 0 0 1 2 0
## 119 3 1 1 1 0 1 2 0
## 120 3 1 0 2 0 1 2 0
## 121 2 1 0 1 0 1 2 0
## 122 3 1 1 2 0 1 2 0
## 123 3 1 2 0 0 1 2 0
## 124 3 1 0 0 0 1 2 0
## 125 3 1 0 1 0 1 2 0
## 126 3 1 0 2 0 1 2 0
## 127 3 1 0 0 0 1 2 0
## 128 2 0 2 1 1 1 2 0
## 129 0 0 0 2 0 1 2 0
## 130 0 1 2 2 0 1 2 0
## 131 3 1 0 0 0 1 2 0
## 132 3 1 1 1 0 1 2 0
## 133 3 2 2 1 0 1 2 0
## 134 1 1 1 0 1 1 2 0
## 135 3 1 2 0 0 1 2 0
## 136 3 1 0 2 0 1 2 0
## 137 3 1 0 0 0 1 2 0
## 138 2 0 0 2 0 1 2 0
## 139 3 1 0 2 0 1 2 0
## 140 3 1 0 0 0 1 2 0
## 141 3 2 1 1 0 1 2 0
## 142 3 1 0 2 0 1 2 0
## 143 0 1 1 0 0 1 2 0
## 144 1 1 0 2 0 1 2 0
## 145 3 2 2 0 0 1 2 0
## 146 2 1 0 1 0 1 2 0
## 147 1 1 0 0 0 1 2 0
## 148 1 1 0 2 0 1 2 0
## 149 3 2 2 2 0 1 2 0
## 150 3 2 0 2 0 1 2 0
## 151 3 1 1 0 0 1 2 0
## 152 3 1 1 1 0 1 2 0
## 153 0 0 0 0 0 1 1 0
## 154 2 0 0 0 0 1 1 0
## 155 2 0 0 0 0 1 1 0
## 156 1 1 1 0 0 1 2 0
## 157 0 0 0 1 0 1 1 0
## 158 3 1 1 1 0 1 2 0
## 159 1 0 0 0 0 1 1 0
## 160 1 1 1 2 0 1 2 0
## 161 2 0 0 2 0 1 1 1
## 162 3 1 1 1 1 1 2 1
## 163 0 0 0 0 0 1 1 1
## 164 0 1 0 2 0 1 1 0
## 165 1 1 0 1 0 1 1 1
## 166 0 0 0 2 0 1 2 1
## 167 3 0 0 1 1 1 1 1
## 168 2 1 0 2 0 1 1 1
## 169 3 0 0 1 0 1 1 1
## 170 0 0 1 2 0 1 1 1
## 171 2 0 0 0 0 0 0 2
## 172 2 0 1 1 0 1 2 0
## 173 1 0 1 2 0 0 0 2
## 174 0 0 0 1 0 1 2 0
## 175 0 0 0 2 0 1 2 0
## 176 2 0 0 1 0 1 2 0
## 177 0 0 0 1 0 0 0 2
## 178 3 0 1 1 0 0 0 2
## 179 1 0 0 0 0 1 2 0
## 180 0 0 1 1 0 0 0 2
## 181 3 1 1 0 0 0 0 2
## 182 2 0 1 2 0 1 0 2
## 183 1 1 1 1 0 0 0 2
## 184 0 1 0 0 1 1 0 2
## 185 3 1 0 0 1 1 0 2
## 186 2 1 0 1 1 1 0 2
## 187 2 1 0 1 0 0 0 2
## 188 1 1 1 1 1 1 0 2
## 189 2 1 1 1 0 0 0 2
## 190 1 1 2 2 1 1 0 2
## 191 3 0 1 2 1 1 0 2
## 192 3 1 1 2 1 1 0 2
## 193 2 0 0 0 1 1 0 2
## 194 1 1 0 1 0 0 0 2
## 195 2 1 0 2 0 0 0 2
## 196 0 1 0 1 0 1 0 2
## 197 1 1 0 0 0 0 0 2
## 198 3 0 2 1 0 1 0 2
## 199 3 1 0 1 0 0 0 2
## 200 2 1 1 1 0 0 0 2
## 201 2 0 0 2 0 1 2 0
## 202 2 0 0 1 0 1 2 0
## 203 0 0 0 0 0 1 2 0
## 204 0 0 0 0 0 1 2 0
## 205 2 0 1 1 0 1 2 0
## 206 3 0 2 2 0 1 2 0
## 207 2 1 1 1 0 1 2 0
## 208 2 1 1 1 0 1 2 0
## 209 0 1 1 0 1 1 2 0
## 210 3 0 2 2 0 1 2 0
## 211 1 1 1 2 0 1 2 0
## 212 3 1 0 1 0 1 2 0
## 213 0 1 0 1 0 1 2 0
## 214 3 0 1 1 0 1 2 0
## 215 2 0 2 2 0 1 2 0
## 216 3 1 0 1 0 1 2 0
## 217 3 0 1 1 0 1 2 0
## 218 1 0 0 2 0 1 2 0
## 219 3 0 1 1 0 1 2 0
## 220 2 1 1 0 0 1 2 0
## 221 3 0 0 1 0 1 2 0
## 222 0 1 1 2 0 1 2 0
## 223 1 0 1 0 0 1 2 0
## 224 2 1 0 0 0 1 2 0
## 225 0 0 0 2 0 1 2 0
## 226 2 0 0 1 0 1 2 0
## 227 1 1 1 1 0 1 2 0
## 228 1 0 0 0 0 1 2 0
## 229 2 0 1 0 0 1 2 0
## 230 1 0 1 2 0 1 2 0
## 231 1 1 0 2 0 1 2 0
## 232 3 1 1 1 0 1 2 0
## 233 1 0 0 2 0 1 2 0
## 234 2 0 2 0 0 1 2 0
## 235 2 1 1 2 0 1 2 0
## 236 1 0 1 2 0 1 2 0
## 237 3 0 0 2 0 1 2 0
## 238 3 1 0 0 0 1 2 0
## 239 3 1 0 1 0 1 2 0
## 240 0 1 0 0 0 1 2 0
## 241 2 0 1 0 0 1 2 0
## 242 1 0 1 1 0 1 2 0
## 243 1 1 0 2 0 1 2 0
## 244 3 0 1 2 0 1 2 0
## 245 1 0 0 1 0 1 2 0
## 246 3 0 0 0 0 1 2 0
## 247 3 0 0 1 0 1 2 0
## 248 1 1 0 2 0 1 2 0
## 249 0 0 1 0 0 1 2 0
## 250 2 0 1 1 0 1 2 0
## 251 3 0 0 0 0 1 2 0
## 252 1 0 1 1 0 1 2 0
## 253 1 0 0 0 0 1 2 0
## 254 2 0 0 2 0 1 2 0
## 255 3 0 1 2 0 1 2 0
## 256 3 1 1 0 0 1 2 0
## 257 3 0 1 1 0 1 2 0
## 258 2 0 0 1 0 1 2 0
## 259 1 1 1 0 0 1 2 0
## 260 3 0 1 1 0 1 2 0
## 261 1 0 1 1 0 1 2 0
## 262 3 0 1 0 0 1 2 0
## 263 1 1 1 0 0 1 2 0
## 264 1 1 1 1 0 1 2 0
## 265 2 1 0 2 0 1 2 0
## 266 0 1 0 1 0 1 2 0
## 267 1 0 1 0 0 1 2 0
## 268 2 1 0 0 0 1 2 0
## 269 1 0 1 1 0 1 2 0
## 270 0 1 0 0 0 1 2 0
## 271 2 1 0 1 0 1 2 0
## 272 3 0 1 0 0 1 2 0
## 273 3 1 2 0 0 1 2 0
## 274 2 1 0 0 0 1 2 0
## 275 3 0 1 2 0 1 2 0
## 276 0 1 0 2 0 1 2 0
## 277 1 0 1 2 0 1 2 0
## 278 2 1 0 1 0 1 2 0
## 279 0 1 0 0 0 1 2 0
## 280 0 0 0 2 0 1 2 0
## 281 3 0 1 2 0 1 2 0
## 282 1 1 1 0 0 1 2 0
## 283 3 1 1 1 0 1 2 0
## 284 1 0 2 2 1 1 2 0
## 285 0 0 0 1 0 1 2 0
## 286 2 1 0 2 0 1 2 0
## 287 3 1 1 0 0 1 2 0
## 288 2 0 0 0 0 1 2 0
## 289 0 0 0 1 0 1 2 0
## 290 3 0 1 2 0 1 2 0
## 308 0 1 0 2 1 1 0 2
## 309 0 2 1 1 1 1 0 2
## 310 0 2 0 2 1 1 0 2
## 311 0 1 0 1 1 1 0 2
## 312 0 1 0 1 1 1 0 2
## 313 0 1 1 0 1 1 0 2
## 314 1 1 1 2 1 1 0 2
## 315 1 1 0 1 1 1 0 2
## 316 0 1 1 2 1 1 0 2
## 317 0 1 1 1 1 1 0 2
## 318 3 1 1 1 1 1 0 2
## 319 2 1 0 2 1 1 0 2
## 320 3 1 1 1 1 1 0 2
## 321 2 1 0 2 1 1 0 2
## 322 2 1 0 2 1 1 0 2
## 323 2 1 0 1 1 1 0 2
## 324 3 1 1 2 1 1 0 2
## 325 2 1 0 0 1 1 0 2
## 326 3 1 1 1 1 1 0 2
## 327 3 1 1 0 1 1 0 2
## 328 1 1 0 1 1 0 0 2
## 329 1 2 0 2 1 0 0 2
## 330 1 1 1 1 1 0 0 2
## 331 1 1 0 1 1 0 0 2
## 332 1 1 0 1 1 0 0 2
## 333 1 2 0 1 1 0 0 2
## 334 1 1 0 2 1 0 0 2
## 335 1 2 0 2 1 1 0 2
## 336 1 1 1 1 1 0 0 2
## 337 1 2 0 2 1 0 0 2
## 338 1 2 0 2 1 1 0 2
## 339 1 1 1 2 1 1 0 2
## 340 1 2 1 2 1 1 0 2
## 341 3 1 1 1 1 1 0 2
## 342 1 <NA> <NA> <NA> 1 1 0 2
## 343 1 <NA> <NA> <NA> 1 1 0 2
## 344 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 345 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 346 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 347 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 348 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 349 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 350 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 351 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 352 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 353 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 354 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 355 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 356 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 357 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 358 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 359 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 360 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 361 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 362 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 363 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 364 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 365 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 366 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 367 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 368 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 369 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 370 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 371 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 372 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 373 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 374 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 375 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 376 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 377 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 378 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 379 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 380 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 381 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 382 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 383 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 384 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 385 1 <NA> <NA> <NA> 1 1 <NA> <NA>
## 386 0 2 0 0 1 1 2 0
## 387 2 1 1 1 1 0 0 2
## 388 2 2 0 1 1 1 2 0
## 389 0 1 0 0 1 1 2 0
## 390 1 1 1 1 1 1 2 0
## 391 2 2 0 2 1 0 0 2
## 392 3 1 0 2 0 1 0 2
## 393 0 1 1 0 0 1 0 2
## 394 2 1 0 1 0 1 0 2
## 395 3 1 0 2 0 1 0 2
## 396 2 1 1 1 0 1 0 2
## 397 0 2 0 2 1 0 0 2
## 398 3 2 0 0 1 0 0 2
## 399 2 2 0 1 1 1 2 0
## 400 3 1 1 2 1 0 0 2
## 401 1 1 1 0 1 0 0 2
## 402 3 1 1 1 1 0 0 2
## 403 2 1 0 1 0 1 0 2
## 404 0 1 0 2 0 1 0 2
## 405 2 1 1 1 0 1 0 2
## 406 3 1 0 0 0 1 0 2
## 407 0 1 1 0 0 1 0 2
## 408 0 1 0 0 0 1 0 2
## 409 2 1 1 1 0 1 0 2
## 410 0 0 0 0 0 1 0 2
## 411 1 1 1 1 0 1 0 2
## 412 2 0 0 2 0 1 0 2
## 413 3 1 0 0 0 1 0 2
## 414 0 0 0 1 0 1 0 2
## 415 2 0 1 0 0 1 0 2
## 416 3 1 1 2 0 1 0 2
## 417 0 0 2 0 0 1 0 2
## 418 0 0 0 1 0 1 0 2
## 419 3 1 0 1 0 1 0 2
## 420 2 1 0 1 0 1 1 0
## 421 3 1 1 2 0 1 2 0
## 422 0 1 0 1 0 1 1 0
## 423 3 1 1 2 0 1 2 0
## 424 0 1 0 1 0 1 2 0
## 425 3 0 1 2 0 1 2 0
## 426 1 1 1 2 0 1 1 0
## 427 3 0 1 2 0 1 1 0
## 428 1 0 1 2 0 1 2 0
## 429 3 0 1 2 0 1 2 0
## 430 2 1 0 2 0 1 2 0
## 431 1 1 0 0 0 1 2 0
## 432 3 1 0 1 0 1 2 0
## 433 3 1 0 2 0 1 2 0
## 434 2 1 0 1 0 1 2 0
## 435 3 2 1 1 0 1 2 0
## 436 3 1 1 1 0 1 2 0
## 437 3 1 2 1 0 1 2 0
## 438 2 1 1 2 1 1 2 0
## 439 1 0 2 1 0 1 2 0
## 440 0 0 0 0 0 1 2 0
## 441 1 0 1 1 1 1 2 0
## 442 2 1 2 2 0 1 2 0
## 443 3 0 0 1 1 1 2 0
## 444 0 1 1 2 0 1 2 0
## 445 1 1 2 1 1 1 2 0
## 446 2 0 0 2 0 1 2 0
## 447 3 0 1 1 0 1 2 0
## 448 0 0 2 2 1 1 2 0
## 449 1 0 0 1 0 1 2 0
## 450 1 1 0 0 0 1 2 0
## 451 2 1 0 1 0 1 2 0
## 452 3 1 0 2 0 1 2 0
## 453 1 1 0 0 0 1 2 0
## 454 2 1 0 1 0 1 2 0
## 455 3 1 0 2 0 1 2 0
## 456 3 1 0 0 0 1 2 0
## 457 3 1 0 1 0 1 2 0
## 458 3 1 0 2 0 1 2 0
## 459 1 1 0 0 0 1 2 0
## 460 2 1 0 1 0 1 2 0
## 461 3 1 0 2 0 1 2 0
## 462 3 1 0 0 0 1 2 0
## 463 3 1 0 1 0 1 2 0
## 464 1 1 0 2 0 1 2 0
## 465 2 1 0 0 0 1 2 0
## 466 3 1 0 1 0 1 2 0
## 467 1 1 0 2 0 1 2 0
## 468 2 1 0 0 0 1 2 0
## 469 3 1 0 1 0 1 2 0
## 470 3 1 0 2 0 1 2 0
## 471 1 1 0 0 0 1 2 0
## 472 3 1 0 1 0 1 2 0
## 473 3 1 0 2 0 1 2 0
## 474 1 1 0 0 0 1 2 0
## 475 2 1 0 1 0 1 2 0
## 476 3 1 0 2 0 1 2 0
## 477 1 1 0 0 0 1 2 0
## 478 2 1 0 1 0 1 2 0
## 479 3 1 0 2 0 1 2 0
## 480 3 1 0 0 0 1 2 0
## 481 2 1 0 1 0 1 2 0
## 482 1 1 1 1 0 1 2 0
## 483 2 0 0 2 0 1 1 0
## 484 0 0 0 2 0 1 1 0
## 485 2 0 0 1 0 1 1 0
## 486 3 1 1 2 1 1 2 0
## 487 0 0 0 0 1 1 1 0
## 488 1 1 1 1 0 1 2 0
## 489 2 1 1 1 1 1 2 0
## 490 3 0 0 2 0 1 1 0
## 491 0 1 1 1 1 1 2 0
## 492 3 0 0 1 0 1 1 1
## 493 0 0 1 2 0 1 1 1
## 494 1 0 0 1 0 1 2 1
## 495 2 0 0 2 0 1 2 0
## 496 1 1 1 1 0 1 1 1
## 497 3 1 0 1 0 1 1 1
## 498 1 0 1 1 0 1 1 0
## 499 2 1 1 2 0 1 1 1
## 500 1 0 0 1 1 1 1 1
## 501 2 1 0 2 0 1 1 1
## 502 2 0 0 1 0 1 2 0
## 503 3 0 1 2 0 1 2 0
## 504 1 0 1 2 0 1 2 0
## 505 0 0 0 2 0 1 2 0
## 506 1 0 0 1 0 1 2 0
## 507 2 0 0 2 0 0 0 2
## 508 3 0 0 1 0 0 0 2
## 509 3 0 0 2 0 0 0 2
## 510 1 0 1 2 0 0 0 2
## 511 3 0 1 2 0 1 2 0
## 512 0 0 0 0 0 1 0 2
## 513 2 0 2 2 1 1 0 2
## 514 0 0 1 1 0 1 0 2
## 515 0 0 2 1 1 1 0 2
## 516 1 1 0 0 0 1 0 2
## 517 3 1 0 1 0 0 0 2
## 518 1 1 1 0 0 0 0 2
## 519 3 1 0 0 0 0 0 2
## 520 2 1 0 2 0 0 0 2
## 521 3 1 1 0 0 0 0 2
## 522 2 1 1 2 0 0 0 2
## 523 1 0 1 2 1 1 0 2
## 524 1 0 1 0 1 1 0 2
## 525 2 1 0 1 0 1 0 2
## 526 3 0 1 2 0 1 0 2
## 527 1 2 0 0 0 0 0 2
## 528 2 1 1 1 0 0 0 2
## 529 3 1 0 0 0 0 0 2
## 530 1 2 1 1 0 0 0 2
## 531 2 1 0 0 0 0 0 2
## 532 3 1 1 1 0 0 0 2
## 533 3 1 0 0 0 0 0 2
## 534 1 1 1 1 0 0 0 2
## 535 1 1 0 1 0 0 0 2
## 536 0 1 0 0 0 1 2 0
## 537 3 0 0 2 1 1 2 0
## 538 3 1 0 2 0 1 2 0
## 539 0 1 0 2 0 1 2 0
## 540 2 0 1 1 0 1 2 0
## 541 3 0 0 2 0 1 2 0
## 542 0 0 0 0 1 1 2 0
## 543 2 0 1 1 1 1 2 0
## 544 0 0 1 1 0 1 2 0
## 545 3 0 1 1 0 1 2 0
## 546 2 0 1 0 0 1 2 0
## 547 2 1 0 0 0 1 2 0
## 548 3 1 1 2 0 1 2 0
## 549 2 0 0 2 0 1 2 0
## 550 3 0 1 0 0 1 2 0
## 551 2 0 0 0 0 1 2 0
## 552 3 0 1 1 0 1 2 0
## 553 0 0 1 1 0 1 2 0
## 554 0 1 1 1 0 1 2 0
## 555 1 1 1 1 0 1 2 0
## 556 0 1 0 0 0 1 2 0
## 557 1 0 2 2 0 1 2 0
## 558 2 0 0 0 0 1 2 0
## 559 0 0 2 2 0 1 2 0
## 560 2 1 1 1 0 1 2 0
## 561 3 0 2 0 0 1 2 0
## 562 0 0 0 2 0 1 2 0
## 563 0 1 1 2 0 1 2 0
## 564 1 0 2 0 0 1 2 0
## 565 2 0 0 0 0 1 2 0
## 566 0 1 0 0 0 1 2 0
## 567 1 1 1 1 0 1 2 0
## 568 2 0 0 2 0 1 2 0
## 569 3 0 1 0 0 1 2 0
## 570 0 1 0 1 0 1 2 0
## 571 1 0 1 2 0 1 2 0
## 572 3 0 1 1 0 1 2 0
## 573 0 1 0 2 0 1 2 0
## 574 1 0 1 0 0 1 2 0
## 575 2 1 0 1 0 1 2 0
## 576 3 0 1 2 0 1 2 0
## 577 0 0 0 0 0 1 2 0
## 578 1 1 1 1 0 1 2 0
## 579 2 1 0 2 0 1 2 0
## 580 3 1 1 0 0 1 2 0
## 581 0 0 0 1 0 1 2 0
## 582 1 1 1 2 0 1 2 0
## 583 2 1 0 0 0 1 2 0
## 584 3 0 1 1 0 1 2 0
## 585 0 0 0 2 0 1 2 0
## 586 1 1 1 0 0 1 2 0
## 587 2 0 0 1 0 1 2 0
## 588 3 0 1 2 0 1 2 0
## 589 0 0 0 0 0 1 2 0
## 590 1 1 1 1 0 1 2 0
## 591 2 0 0 2 0 1 2 0
## 592 3 1 1 0 0 1 2 0
## 593 1 0 0 1 0 1 2 0
## 594 2 1 1 2 0 1 2 0
## 595 1 1 0 0 0 1 2 0
## 596 2 0 1 1 0 1 2 0
## 597 0 1 0 2 0 1 2 0
## 598 2 1 0 1 0 1 2 0
## 599 0 0 0 0 0 1 2 0
## 600 3 1 1 0 0 1 2 0
## 601 1 1 1 2 0 1 2 0
## 602 1 0 1 2 0 1 2 0
## 603 0 1 0 2 0 1 2 0
## 604 1 0 0 1 0 1 2 0
## 605 3 0 1 0 0 1 2 0
## 606 1 0 0 0 0 1 2 0
## 607 0 1 0 1 0 1 2 0
## 608 2 0 2 0 0 1 2 0
## 609 0 1 1 2 1 1 2 0
## 610 2 0 0 0 0 1 2 0
## 611 0 1 2 0 0 1 2 0
## 612 2 0 1 0 0 1 2 0
## 613 0 1 0 2 1 1 2 0
## 614 0 1 2 2 1 1 2 0
## 615 2 1 0 1 0 1 2 0
## 616 0 1 0 0 0 1 2 0
## 617 1 1 1 1 0 1 2 0
## 618 2 0 0 2 0 1 2 0
## 619 3 0 1 0 0 1 2 0
## 620 0 1 0 1 0 1 2 0
## 621 1 0 1 2 0 1 2 0
## 622 2 0 0 0 0 1 2 0
## 623 3 1 1 1 0 1 2 0
## 624 0 0 0 2 0 1 2 0
## 625 1 0 1 0 0 1 2 0
## 626 2 1 0 1 0 1 2 0
## 627 3 0 1 2 0 1 2 0
## 628 0 0 0 0 0 1 2 0
## 629 1 1 1 1 0 1 2 0
## 630 2 1 0 2 0 1 2 0
## 631 3 0 1 0 0 1 2 0
## 632 0 0 0 1 0 1 2 0
## 633 1 1 1 2 0 1 2 0
## 634 2 1 0 0 0 1 2 0
## 635 3 0 1 1 0 1 2 0
## 636 0 0 0 2 0 1 2 0
## 637 1 1 1 0 0 1 2 0
## 638 2 1 0 1 0 1 2 0
## 639 3 0 1 2 0 1 2 0
## 640 0 1 0 0 0 1 2 0
## 641 1 0 1 1 0 1 2 0
## 642 2 0 0 2 0 1 2 0
## 643 3 1 1 0 0 1 2 0
## 644 0 0 0 1 0 1 2 0
## 645 1 0 1 2 0 1 2 0
## 646 2 1 0 0 0 1 2 0
## 647 3 0 1 1 0 1 2 0
## leaf.size leaf.shread leaf.malf leaf.mild stem lodging stem.cankers
## 1 2 0 0 0 1 1 3
## 2 2 0 0 0 1 0 3
## 3 2 0 0 0 1 0 3
## 4 2 0 0 0 1 0 3
## 5 2 0 0 0 1 0 3
## 6 2 0 0 0 1 0 3
## 7 2 0 0 0 1 1 3
## 8 2 0 0 0 1 0 3
## 9 2 0 0 0 1 0 3
## 10 2 0 0 0 1 0 3
## 11 2 0 0 0 1 0 0
## 12 2 0 0 0 1 1 0
## 13 2 0 0 0 1 0 0
## 14 2 0 0 0 1 0 0
## 15 2 0 0 0 1 0 0
## 16 2 0 0 0 1 0 0
## 17 2 0 0 0 1 1 0
## 18 2 0 0 0 1 0 0
## 19 2 0 0 0 1 0 0
## 20 2 0 0 0 1 0 0
## 21 2 0 0 0 1 0 1
## 22 2 0 0 0 1 0 1
## 23 2 0 0 0 1 1 1
## 24 2 0 0 0 1 0 1
## 25 2 0 0 0 1 0 1
## 26 2 0 0 0 1 0 1
## 27 2 0 0 0 1 0 1
## 28 2 0 0 0 1 0 1
## 29 2 0 0 0 1 0 1
## 30 2 0 0 0 1 0 1
## 31 2 0 0 0 1 0 1
## 32 2 0 0 0 1 <NA> 2
## 33 <NA> <NA> <NA> <NA> 1 <NA> 3
## 34 2 0 0 0 1 0 2
## 35 <NA> <NA> <NA> <NA> 1 <NA> 2
## 36 <NA> <NA> <NA> <NA> 1 <NA> 3
## 37 2 0 0 0 1 0 1
## 38 2 0 0 0 1 0 2
## 39 2 0 0 0 1 <NA> 2
## 40 2 0 0 0 1 0 1
## 41 2 0 0 0 1 <NA> 2
## 42 <NA> <NA> <NA> <NA> 1 <NA> 1
## 43 2 0 0 0 1 0 1
## 44 2 0 0 0 1 1 2
## 45 2 0 0 0 1 0 2
## 46 <NA> <NA> <NA> <NA> 1 <NA> 3
## 47 2 0 0 0 1 0 1
## 48 2 0 0 0 1 <NA> 2
## 49 2 0 0 0 1 0 1
## 50 2 0 0 0 1 0 1
## 51 2 0 0 0 1 0 2
## 52 2 0 0 0 1 <NA> 1
## 53 <NA> <NA> <NA> <NA> 1 <NA> 3
## 54 2 0 0 0 1 <NA> 3
## 55 <NA> <NA> <NA> <NA> 1 <NA> 2
## 56 2 0 0 0 1 1 1
## 57 2 0 0 0 1 <NA> 2
## 58 <NA> <NA> <NA> <NA> 1 <NA> 2
## 59 2 0 0 0 1 <NA> 2
## 60 <NA> <NA> <NA> <NA> 1 <NA> 1
## 61 2 0 0 0 1 <NA> 2
## 62 2 0 0 0 1 <NA> 3
## 63 2 0 0 0 1 0 1
## 64 2 0 0 0 1 <NA> 3
## 65 <NA> <NA> <NA> <NA> 1 <NA> 1
## 66 2 0 0 0 1 0 2
## 67 <NA> <NA> <NA> <NA> 1 <NA> 2
## 68 <NA> <NA> <NA> <NA> 1 <NA> 3
## 69 2 0 0 0 1 0 2
## 70 <NA> <NA> <NA> <NA> 1 <NA> 3
## 71 2 0 0 0 1 0 0
## 72 2 0 0 0 1 0 0
## 73 2 0 0 0 1 0 0
## 74 2 0 0 0 1 0 0
## 75 2 0 0 0 1 0 0
## 76 2 0 0 0 1 0 0
## 77 1 0 0 0 1 1 0
## 78 1 0 0 0 1 1 0
## 79 2 0 0 0 1 1 0
## 80 1 0 0 0 1 1 0
## 81 2 0 0 0 1 1 0
## 82 1 0 0 0 1 1 0
## 83 2 0 0 0 1 0 0
## 84 1 0 0 0 1 0 0
## 85 2 0 0 0 1 0 0
## 86 2 0 0 0 1 0 0
## 87 2 0 0 0 1 0 0
## 88 2 0 0 0 1 0 0
## 89 2 0 0 0 1 0 0
## 90 2 0 0 0 1 0 0
## 91 2 0 0 1 0 0 0
## 92 2 0 0 1 0 0 0
## 93 2 0 0 1 0 0 0
## 94 2 0 0 1 0 0 0
## 95 2 0 0 1 0 0 0
## 96 2 0 0 1 0 0 0
## 97 2 0 0 1 0 0 0
## 98 2 0 0 1 0 0 0
## 99 2 0 0 1 0 0 0
## 100 2 0 0 1 0 0 0
## 101 1 0 1 2 0 0 0
## 102 1 0 1 2 0 0 0
## 103 1 0 0 2 0 0 0
## 104 1 0 1 2 0 0 0
## 105 1 0 0 2 0 0 0
## 106 1 0 0 2 0 0 0
## 107 1 0 0 2 0 0 0
## 108 1 0 0 2 0 0 0
## 109 1 0 0 2 0 0 0
## 110 1 0 0 2 0 0 0
## 111 1 0 0 0 0 0 0
## 112 1 0 0 0 0 0 0
## 113 1 1 0 0 0 0 0
## 114 1 1 0 0 0 0 0
## 115 1 0 0 0 0 0 0
## 116 1 1 0 0 0 0 0
## 117 1 0 0 0 0 0 0
## 118 1 1 0 0 0 0 0
## 119 1 1 0 0 0 0 0
## 120 1 1 0 0 0 0 0
## 121 1 0 0 0 1 0 3
## 122 1 1 0 0 0 0 0
## 123 1 1 0 0 0 0 0
## 124 1 1 0 0 1 0 3
## 125 1 1 0 0 0 0 0
## 126 1 0 0 0 1 0 3
## 127 1 1 0 0 0 0 0
## 128 1 0 0 0 0 0 0
## 129 1 0 0 0 0 0 0
## 130 1 1 0 0 0 0 0
## 131 1 0 0 0 1 0 3
## 132 1 1 0 0 0 0 0
## 133 1 0 0 0 1 0 0
## 134 1 0 0 0 0 0 0
## 135 1 1 0 0 0 0 0
## 136 1 1 0 0 0 0 0
## 137 1 1 0 0 1 0 3
## 138 1 0 0 0 1 0 3
## 139 1 1 0 0 1 0 3
## 140 1 0 0 0 0 0 0
## 141 1 0 0 0 1 0 0
## 142 1 0 0 0 0 0 0
## 143 1 0 0 0 0 0 0
## 144 1 0 0 0 1 0 3
## 145 1 0 0 0 1 0 0
## 146 1 0 0 0 1 0 3
## 147 1 1 0 0 0 0 0
## 148 1 1 0 0 1 0 3
## 149 1 1 0 0 0 0 0
## 150 1 0 0 0 1 0 0
## 151 0 1 0 0 0 0 0
## 152 0 1 0 0 0 0 0
## 153 0 0 0 0 0 0 0
## 154 0 1 0 0 0 0 0
## 155 0 1 1 0 0 0 0
## 156 0 1 0 0 0 0 0
## 157 0 1 0 0 0 0 0
## 158 0 1 0 0 0 0 0
## 159 0 1 0 0 0 0 0
## 160 0 1 0 0 0 0 0
## 161 0 0 0 0 0 0 0
## 162 0 1 0 0 0 0 0
## 163 0 0 0 0 0 0 0
## 164 0 1 1 0 0 0 0
## 165 0 1 0 0 0 0 0
## 166 0 0 0 0 0 0 0
## 167 0 1 0 0 0 0 0
## 168 0 1 0 0 0 0 0
## 169 0 1 0 0 0 0 0
## 170 0 1 0 0 0 0 0
## 171 2 0 0 0 1 1 0
## 172 0 0 0 0 1 0 0
## 173 2 0 0 0 0 0 0
## 174 0 0 0 0 0 1 0
## 175 0 0 0 0 0 0 0
## 176 0 0 0 0 1 0 0
## 177 2 0 0 0 0 1 0
## 178 2 0 0 0 0 0 0
## 179 0 0 0 0 1 0 0
## 180 2 0 0 0 1 0 0
## 181 2 0 0 0 1 0 3
## 182 2 0 0 0 1 0 3
## 183 2 0 0 0 1 0 3
## 184 2 0 0 0 1 0 2
## 185 2 0 0 0 1 0 3
## 186 2 0 0 0 1 0 3
## 187 2 0 0 0 1 0 3
## 188 2 0 0 0 1 0 2
## 189 2 0 0 0 1 0 3
## 190 2 0 0 0 1 0 3
## 191 2 0 0 0 1 1 3
## 192 2 0 0 0 1 0 2
## 193 2 0 0 0 1 0 3
## 194 2 0 0 0 1 0 3
## 195 2 0 0 0 1 0 3
## 196 2 0 0 0 1 0 3
## 197 2 0 0 0 1 0 3
## 198 2 0 0 0 1 1 3
## 199 2 0 0 0 1 0 3
## 200 2 0 0 0 1 0 3
## 201 1 0 0 0 0 0 0
## 202 1 0 1 0 0 0 0
## 203 1 0 0 0 0 0 0
## 204 1 0 0 0 0 0 0
## 205 1 1 1 0 0 0 0
## 206 1 0 0 0 0 0 0
## 207 1 1 1 0 0 0 0
## 208 1 0 1 0 0 0 0
## 209 1 1 0 0 0 0 0
## 210 1 1 0 0 0 0 0
## 211 1 0 0 0 0 0 0
## 212 1 0 0 0 0 0 0
## 213 1 0 0 0 0 0 0
## 214 1 0 0 0 0 0 0
## 215 1 0 0 0 0 0 0
## 216 1 0 0 0 0 0 0
## 217 1 0 0 0 0 0 0
## 218 1 0 0 0 0 0 0
## 219 1 0 0 0 0 0 0
## 220 1 0 0 0 0 0 0
## 221 1 0 0 0 0 0 0
## 222 1 0 0 0 0 0 0
## 223 1 1 0 0 0 0 0
## 224 1 0 0 0 0 0 0
## 225 1 0 0 0 0 0 0
## 226 1 0 0 0 0 0 0
## 227 1 1 0 0 0 0 0
## 228 1 0 0 0 0 0 0
## 229 1 0 0 0 0 0 0
## 230 1 0 0 0 0 0 0
## 231 1 0 0 0 0 0 0
## 232 1 0 0 0 0 0 0
## 233 1 1 0 0 0 0 0
## 234 1 0 0 0 0 0 0
## 235 1 0 0 0 0 0 0
## 236 1 0 0 0 0 0 0
## 237 1 0 0 0 0 0 0
## 238 1 0 0 0 0 0 0
## 239 1 0 0 0 0 0 0
## 240 1 0 0 0 0 0 0
## 241 1 1 0 0 0 0 0
## 242 1 0 0 0 0 0 0
## 243 1 0 0 0 0 0 0
## 244 1 1 0 0 0 0 0
## 245 1 1 0 0 0 0 0
## 246 1 0 0 0 0 0 0
## 247 1 0 0 0 0 0 0
## 248 1 0 0 0 0 0 0
## 249 1 1 0 0 0 0 0
## 250 1 1 0 0 0 0 0
## 251 1 0 0 0 1 0 3
## 252 1 0 0 0 0 0 0
## 253 1 0 0 0 1 0 3
## 254 1 0 0 0 0 0 0
## 255 1 0 0 0 1 0 3
## 256 1 0 0 0 0 0 0
## 257 1 0 0 0 1 0 3
## 258 1 0 0 0 1 0 3
## 259 1 0 0 0 0 0 0
## 260 1 0 0 0 1 0 3
## 261 1 0 0 0 1 0 3
## 262 1 0 0 0 0 0 0
## 263 1 0 0 0 1 0 3
## 264 1 0 0 0 1 0 3
## 265 1 0 0 0 1 0 3
## 266 1 0 0 0 1 0 3
## 267 1 0 0 0 1 0 3
## 268 1 0 0 0 1 0 3
## 269 1 0 0 0 1 0 3
## 270 1 0 0 0 1 0 3
## 271 1 0 0 0 0 0 0
## 272 1 0 0 0 1 0 3
## 273 1 0 0 0 1 0 3
## 274 1 0 0 0 1 0 3
## 275 1 0 0 0 0 0 0
## 276 1 0 0 0 0 0 0
## 277 1 0 0 0 1 0 3
## 278 1 0 0 0 0 0 0
## 279 1 0 0 0 1 0 3
## 280 1 0 0 0 1 0 3
## 281 1 0 0 0 1 0 3
## 282 1 0 0 0 0 0 0
## 283 1 0 0 0 1 0 3
## 284 1 0 0 0 0 0 0
## 285 1 0 0 0 0 0 0
## 286 1 0 0 0 0 0 0
## 287 1 0 0 0 1 0 3
## 288 1 0 0 0 1 0 3
## 289 1 0 0 0 1 0 3
## 290 1 0 0 0 1 0 3
## 308 2 0 0 0 1 0 3
## 309 2 0 0 0 1 0 3
## 310 2 0 0 0 1 0 3
## 311 2 0 0 0 1 0 3
## 312 2 0 0 0 1 0 3
## 313 2 0 0 0 1 0 3
## 314 2 0 0 0 1 1 3
## 315 2 0 0 0 1 1 3
## 316 2 0 0 0 1 1 3
## 317 2 0 0 0 1 1 3
## 318 2 0 0 0 1 0 0
## 319 2 0 0 0 1 0 0
## 320 2 0 0 0 1 0 0
## 321 2 0 0 0 1 0 0
## 322 2 0 0 0 1 1 0
## 323 2 0 0 0 1 0 0
## 324 2 0 0 0 1 0 0
## 325 2 0 0 0 1 0 0
## 326 2 0 0 0 1 0 0
## 327 2 0 0 0 1 0 0
## 328 2 0 0 0 1 0 1
## 329 2 0 0 0 1 0 1
## 330 2 0 0 0 1 0 1
## 331 2 0 0 0 1 0 1
## 332 2 0 0 0 1 0 1
## 333 2 0 0 0 1 0 1
## 334 2 0 0 0 1 0 1
## 335 2 0 0 0 1 1 1
## 336 2 0 0 0 1 0 1
## 337 2 0 0 0 1 0 1
## 338 2 0 0 0 1 0 1
## 339 2 0 0 0 1 0 2
## 340 2 0 0 0 1 0 2
## 341 2 0 0 0 1 0 2
## 342 2 0 0 0 1 <NA> 3
## 343 2 0 0 0 1 <NA> 2
## 344 <NA> <NA> <NA> <NA> 1 <NA> 3
## 345 <NA> <NA> <NA> <NA> 1 <NA> 1
## 346 <NA> <NA> <NA> <NA> 1 <NA> 0
## 347 <NA> <NA> <NA> <NA> 1 <NA> 3
## 348 <NA> <NA> <NA> <NA> 1 <NA> 1
## 349 <NA> <NA> <NA> <NA> 1 <NA> 1
## 350 <NA> <NA> <NA> <NA> 1 <NA> 3
## 351 <NA> <NA> <NA> <NA> 1 <NA> 3
## 352 <NA> <NA> <NA> <NA> 1 <NA> 1
## 353 <NA> <NA> <NA> <NA> 1 <NA> 3
## 354 <NA> <NA> <NA> <NA> 1 <NA> 3
## 355 <NA> <NA> <NA> <NA> 1 <NA> 1
## 356 <NA> <NA> <NA> <NA> 1 <NA> 2
## 357 <NA> <NA> <NA> <NA> 1 <NA> 3
## 358 <NA> <NA> <NA> <NA> 1 <NA> 0
## 359 <NA> <NA> <NA> <NA> 1 <NA> 2
## 360 <NA> <NA> <NA> <NA> 1 <NA> 3
## 361 <NA> <NA> <NA> <NA> 1 <NA> 3
## 362 <NA> <NA> <NA> <NA> 1 <NA> 0
## 363 <NA> <NA> <NA> <NA> 1 <NA> 2
## 364 <NA> <NA> <NA> <NA> 1 <NA> 3
## 365 <NA> <NA> <NA> <NA> 1 <NA> 3
## 366 <NA> <NA> <NA> <NA> 1 <NA> 0
## 367 <NA> <NA> <NA> <NA> 1 <NA> 2
## 368 <NA> <NA> <NA> <NA> 1 <NA> 3
## 369 <NA> <NA> <NA> <NA> 1 <NA> 0
## 370 <NA> <NA> <NA> <NA> 1 <NA> 2
## 371 <NA> <NA> <NA> <NA> 1 <NA> 3
## 372 <NA> <NA> <NA> <NA> 1 <NA> 0
## 373 <NA> <NA> <NA> <NA> 1 <NA> 2
## 374 <NA> <NA> <NA> <NA> 1 <NA> 3
## 375 <NA> <NA> <NA> <NA> 1 <NA> 3
## 376 <NA> <NA> <NA> <NA> 1 <NA> 2
## 377 <NA> <NA> <NA> <NA> 1 <NA> 3
## 378 <NA> <NA> <NA> <NA> 1 <NA> 3
## 379 <NA> <NA> <NA> <NA> 1 <NA> 3
## 380 <NA> <NA> <NA> <NA> 1 <NA> 2
## 381 <NA> <NA> <NA> <NA> 1 <NA> 3
## 382 <NA> <NA> <NA> <NA> 1 <NA> 3
## 383 <NA> <NA> <NA> <NA> 1 <NA> 3
## 384 <NA> <NA> <NA> <NA> 1 <NA> 3
## 385 <NA> <NA> <NA> <NA> 1 <NA> 3
## 386 1 0 0 0 1 1 0
## 387 2 0 0 0 1 1 0
## 388 1 0 0 0 1 1 0
## 389 2 0 0 0 1 1 0
## 390 1 0 0 0 1 1 0
## 391 2 0 0 0 1 1 0
## 392 2 0 0 0 1 0 0
## 393 2 0 0 0 1 0 0
## 394 2 0 0 0 1 0 0
## 395 2 0 0 0 1 0 0
## 396 2 0 0 0 1 0 0
## 397 2 0 0 0 1 1 0
## 398 2 0 0 0 1 1 0
## 399 1 0 0 0 1 0 0
## 400 2 0 0 0 1 1 0
## 401 2 0 0 0 1 0 0
## 402 2 0 0 0 1 1 0
## 403 2 0 0 0 1 0 0
## 404 2 0 0 0 1 0 0
## 405 2 0 0 0 1 0 0
## 406 2 0 0 0 1 0 0
## 407 2 0 0 0 1 0 0
## 408 2 0 0 0 1 0 0
## 409 2 0 0 0 1 0 0
## 410 2 0 0 1 0 0 0
## 411 2 0 0 1 0 0 0
## 412 2 0 0 1 0 0 0
## 413 2 0 0 1 0 0 0
## 414 2 0 0 1 0 0 0
## 415 2 0 0 1 0 0 0
## 416 2 0 0 1 0 0 0
## 417 2 0 0 1 0 0 0
## 418 2 0 0 1 0 0 0
## 419 2 0 0 1 0 0 0
## 420 1 0 0 2 0 0 0
## 421 1 0 1 2 0 0 0
## 422 1 0 0 2 0 0 0
## 423 1 0 0 2 0 0 0
## 424 1 0 1 2 0 0 0
## 425 1 0 1 2 0 0 0
## 426 1 0 0 2 0 0 0
## 427 1 0 0 2 0 0 0
## 428 1 0 0 2 0 0 0
## 429 1 0 0 2 0 0 0
## 430 1 0 0 0 1 0 3
## 431 1 1 0 0 0 0 0
## 432 1 0 0 0 0 0 0
## 433 1 1 0 0 0 0 0
## 434 1 1 0 0 1 0 3
## 435 1 0 0 0 1 0 0
## 436 1 1 0 0 0 0 0
## 437 1 1 0 0 0 0 0
## 438 1 0 0 0 0 0 0
## 439 1 0 0 0 1 0 3
## 440 1 0 0 0 0 0 0
## 441 1 0 0 0 0 0 0
## 442 1 0 0 0 0 0 0
## 443 1 0 0 0 1 0 3
## 444 1 0 0 0 1 0 3
## 445 1 0 0 0 0 0 0
## 446 1 0 0 0 0 0 0
## 447 1 0 0 0 0 0 0
## 448 1 0 0 0 0 0 0
## 449 1 0 0 0 0 0 0
## 450 1 0 0 0 0 0 0
## 451 1 1 0 0 0 0 0
## 452 1 0 0 0 1 0 3
## 453 1 1 0 0 1 0 3
## 454 1 0 0 0 1 0 3
## 455 1 1 0 0 0 0 0
## 456 1 1 0 0 0 0 0
## 457 1 0 0 0 1 0 3
## 458 1 1 0 0 0 0 0
## 459 1 1 0 0 0 0 0
## 460 1 0 0 0 1 0 3
## 461 1 1 0 0 0 0 0
## 462 1 1 0 0 0 0 0
## 463 1 1 0 0 1 0 3
## 464 1 1 0 0 0 0 0
## 465 1 1 0 0 0 0 0
## 466 1 0 0 0 1 0 3
## 467 1 0 0 0 1 0 3
## 468 1 0 0 0 1 0 3
## 469 1 1 0 0 0 0 0
## 470 1 1 0 0 0 0 0
## 471 1 0 0 0 1 0 3
## 472 1 0 0 0 1 0 3
## 473 1 0 0 0 1 0 3
## 474 1 0 0 0 0 0 0
## 475 1 0 0 0 0 0 0
## 476 1 1 0 0 1 0 3
## 477 1 1 0 0 1 0 3
## 478 1 1 0 0 1 0 3
## 479 1 1 0 0 1 0 3
## 480 1 1 0 0 1 0 3
## 481 1 1 0 0 1 0 3
## 482 0 1 0 0 0 0 0
## 483 0 1 0 0 0 0 0
## 484 0 0 0 0 0 0 0
## 485 0 1 0 0 0 0 0
## 486 0 1 0 0 0 0 0
## 487 0 1 0 0 0 0 0
## 488 0 0 1 0 0 0 0
## 489 0 1 0 0 0 0 0
## 490 0 1 0 0 0 0 0
## 491 0 1 0 0 0 0 0
## 492 0 0 0 0 0 0 0
## 493 0 1 0 0 0 0 0
## 494 0 1 0 0 0 0 0
## 495 0 0 0 0 0 0 0
## 496 0 1 0 0 0 0 0
## 497 0 1 0 0 0 0 0
## 498 0 1 0 0 0 0 0
## 499 0 1 0 0 0 0 0
## 500 0 0 1 0 0 0 0
## 501 0 1 1 0 0 0 0
## 502 0 0 0 0 0 1 0
## 503 0 0 0 0 1 0 0
## 504 0 0 0 0 0 0 0
## 505 0 0 0 0 0 1 0
## 506 0 0 0 0 1 0 0
## 507 2 0 0 0 1 0 0
## 508 2 0 0 0 0 0 0
## 509 2 0 0 0 0 0 0
## 510 2 0 0 0 0 0 0
## 511 0 0 0 0 1 0 0
## 512 2 0 0 0 1 0 2
## 513 2 0 0 0 1 0 3
## 514 2 0 0 0 1 0 3
## 515 2 0 0 0 1 0 2
## 516 2 0 0 0 1 1 3
## 517 2 0 0 0 1 0 3
## 518 2 0 0 0 1 0 3
## 519 2 0 0 0 1 0 3
## 520 2 0 0 0 1 0 3
## 521 2 0 0 0 1 0 3
## 522 2 0 0 0 1 0 3
## 523 2 0 0 0 1 1 3
## 524 2 0 0 0 1 1 3
## 525 2 0 0 0 1 0 3
## 526 2 0 0 0 1 0 3
## 527 2 0 0 0 1 0 3
## 528 2 0 0 0 1 0 3
## 529 2 0 0 0 1 0 3
## 530 2 0 0 0 1 0 3
## 531 2 0 0 0 1 0 3
## 532 2 0 0 0 1 0 3
## 533 2 0 0 0 1 0 3
## 534 2 0 0 0 1 0 3
## 535 2 0 0 0 1 0 3
## 536 1 0 1 0 0 0 0
## 537 1 0 1 0 0 0 0
## 538 1 0 0 0 0 0 0
## 539 1 0 0 0 0 0 0
## 540 1 1 0 0 0 0 0
## 541 1 1 0 0 0 0 0
## 542 1 1 1 0 0 0 0
## 543 1 1 1 0 0 0 0
## 544 1 1 1 0 0 0 0
## 545 1 1 1 0 0 0 0
## 546 1 0 0 0 0 0 0
## 547 1 0 0 0 0 0 0
## 548 1 0 0 0 0 0 0
## 549 1 0 0 0 0 0 0
## 550 1 0 0 0 0 0 0
## 551 1 1 0 0 0 0 0
## 552 1 1 0 0 0 0 0
## 553 1 1 0 0 0 0 0
## 554 1 0 0 0 0 0 0
## 555 1 0 0 0 0 0 0
## 556 1 0 0 0 0 0 0
## 557 1 0 0 0 0 0 0
## 558 1 0 0 0 0 0 0
## 559 1 0 0 0 0 0 0
## 560 1 0 0 0 0 0 0
## 561 1 0 0 0 0 0 0
## 562 1 0 0 0 0 0 0
## 563 1 0 0 0 0 0 0
## 564 1 0 0 0 0 0 0
## 565 1 0 0 0 0 0 0
## 566 1 0 0 0 0 0 0
## 567 1 0 0 0 0 0 0
## 568 1 0 0 0 0 0 0
## 569 1 0 0 0 0 0 0
## 570 1 0 0 0 0 0 0
## 571 1 0 0 0 0 0 0
## 572 1 0 0 0 0 0 0
## 573 1 0 0 0 0 0 0
## 574 1 0 0 0 0 0 0
## 575 1 0 0 0 0 0 0
## 576 1 0 0 0 0 0 0
## 577 1 0 0 0 0 0 0
## 578 1 0 0 0 0 0 0
## 579 1 0 0 0 0 0 0
## 580 1 0 0 0 0 0 0
## 581 1 0 0 0 0 0 0
## 582 1 0 0 0 0 0 0
## 583 1 0 0 0 0 0 0
## 584 1 0 0 0 0 0 0
## 585 1 0 0 0 0 0 0
## 586 1 0 0 0 0 0 0
## 587 1 0 0 0 0 0 0
## 588 1 0 0 0 0 0 0
## 589 1 0 0 0 0 0 0
## 590 1 0 0 0 0 0 0
## 591 1 0 0 0 0 0 0
## 592 1 0 0 0 0 0 0
## 593 1 0 0 0 0 0 0
## 594 1 0 0 0 0 0 0
## 595 1 0 0 0 0 0 0
## 596 1 0 0 0 0 0 0
## 597 1 0 0 0 1 0 3
## 598 1 0 0 0 1 0 3
## 599 1 0 0 0 0 0 0
## 600 1 0 0 0 0 0 0
## 601 1 0 0 0 0 0 0
## 602 1 0 0 0 1 0 3
## 603 1 0 0 0 0 0 0
## 604 1 0 0 0 0 0 0
## 605 1 0 0 0 0 0 0
## 606 1 0 0 0 1 0 3
## 607 1 0 0 0 0 0 0
## 608 1 0 0 0 1 1 3
## 609 1 0 0 0 0 1 2
## 610 1 0 0 0 1 0 3
## 611 1 0 0 0 0 0 0
## 612 1 0 0 0 0 0 0
## 613 1 0 0 0 0 0 0
## 614 1 0 0 0 0 1 3
## 615 1 0 0 0 0 0 0
## 616 1 0 0 0 1 0 3
## 617 1 0 0 0 1 0 3
## 618 1 0 0 0 1 0 3
## 619 1 0 0 0 1 0 3
## 620 1 0 0 0 1 0 3
## 621 1 0 0 0 1 0 3
## 622 1 0 0 0 1 0 3
## 623 1 0 0 0 1 0 3
## 624 1 0 0 0 1 0 3
## 625 1 0 0 0 1 0 3
## 626 1 0 0 0 1 0 3
## 627 1 0 0 0 1 0 3
## 628 1 0 0 0 1 0 3
## 629 1 0 0 0 1 0 3
## 630 1 0 0 0 1 0 3
## 631 1 0 0 0 1 0 3
## 632 1 0 0 0 1 0 3
## 633 1 0 0 0 1 0 3
## 634 1 0 0 0 1 0 3
## 635 1 0 0 0 1 0 3
## 636 1 0 0 0 1 0 3
## 637 1 0 0 0 1 0 3
## 638 1 0 0 0 1 0 3
## 639 1 0 0 0 1 0 3
## 640 1 0 0 0 1 0 3
## 641 1 0 0 0 1 0 3
## 642 1 0 0 0 1 0 3
## 643 1 0 0 0 1 0 3
## 644 1 0 0 0 1 0 3
## 645 1 0 0 0 1 0 3
## 646 1 0 0 0 1 0 3
## 647 1 0 0 0 1 0 3
## canker.lesion fruiting.bodies ext.decay mycelium int.discolor
## 1 1 1 1 0 0
## 2 1 1 1 0 0
## 3 0 1 1 0 0
## 4 0 1 1 0 0
## 5 1 1 1 0 0
## 6 0 1 1 0 0
## 7 1 1 1 0 0
## 8 1 1 1 0 0
## 9 1 1 1 0 0
## 10 1 1 1 0 0
## 11 3 0 0 0 2
## 12 3 0 0 0 2
## 13 3 0 0 0 2
## 14 3 0 0 0 2
## 15 3 0 0 0 2
## 16 3 0 0 0 2
## 17 3 0 0 0 2
## 18 3 0 0 0 2
## 19 3 0 0 0 2
## 20 3 0 0 0 2
## 21 1 0 1 1 0
## 22 1 0 1 0 0
## 23 1 0 1 1 0
## 24 1 0 1 0 0
## 25 1 0 1 0 0
## 26 1 0 1 0 0
## 27 1 0 1 0 0
## 28 1 0 1 0 0
## 29 1 0 1 0 0
## 30 1 0 1 0 0
## 31 2 0 1 0 0
## 32 2 <NA> 0 0 0
## 33 2 <NA> 0 0 0
## 34 2 0 0 0 0
## 35 2 <NA> 0 0 0
## 36 2 <NA> 0 0 0
## 37 2 0 0 0 0
## 38 2 0 0 0 0
## 39 2 <NA> 0 0 0
## 40 2 0 0 0 0
## 41 2 <NA> 0 0 0
## 42 2 <NA> 0 0 0
## 43 2 0 0 0 0
## 44 2 0 1 0 0
## 45 2 0 0 0 0
## 46 2 <NA> 0 0 0
## 47 2 0 0 0 0
## 48 2 <NA> 0 0 0
## 49 2 0 1 0 0
## 50 2 0 0 0 0
## 51 2 0 0 0 0
## 52 2 <NA> 0 0 0
## 53 2 <NA> 0 0 0
## 54 2 <NA> 0 0 0
## 55 2 <NA> 0 0 0
## 56 2 0 1 0 0
## 57 2 <NA> 0 0 0
## 58 2 <NA> 0 0 0
## 59 2 <NA> 0 0 0
## 60 2 <NA> 0 0 0
## 61 2 <NA> 0 0 0
## 62 2 <NA> 0 0 0
## 63 2 0 0 0 0
## 64 2 <NA> 0 0 0
## 65 2 <NA> 0 0 0
## 66 2 0 0 0 0
## 67 2 <NA> 0 0 0
## 68 2 <NA> 0 0 0
## 69 2 0 0 0 0
## 70 2 <NA> 0 0 0
## 71 0 0 0 0 1
## 72 0 0 0 0 1
## 73 3 0 0 0 1
## 74 0 0 0 0 1
## 75 0 0 0 0 1
## 76 0 0 0 0 1
## 77 3 0 0 0 1
## 78 3 0 0 0 1
## 79 3 0 0 0 1
## 80 3 0 0 0 1
## 81 3 0 0 0 1
## 82 3 0 0 0 1
## 83 0 0 0 0 1
## 84 3 0 0 0 1
## 85 0 0 0 0 1
## 86 0 0 0 0 1
## 87 0 0 0 0 1
## 88 0 0 0 0 1
## 89 0 0 0 0 1
## 90 0 0 0 0 1
## 91 0 0 0 0 0
## 92 0 0 0 0 0
## 93 0 0 0 0 0
## 94 0 0 0 0 0
## 95 0 0 0 0 0
## 96 0 0 0 0 0
## 97 0 0 0 0 0
## 98 0 0 0 0 0
## 99 0 0 0 0 0
## 100 0 0 0 0 0
## 101 0 0 0 0 0
## 102 0 0 0 0 0
## 103 0 0 0 0 0
## 104 0 0 0 0 0
## 105 0 0 0 0 0
## 106 0 0 0 0 0
## 107 0 0 0 0 0
## 108 0 0 0 0 0
## 109 0 0 0 0 0
## 110 0 0 0 0 0
## 111 0 0 0 0 0
## 112 0 0 0 0 0
## 113 0 0 0 0 0
## 114 0 0 0 0 0
## 115 0 0 0 0 0
## 116 0 0 0 0 0
## 117 0 0 0 0 0
## 118 0 0 0 0 0
## 119 0 0 0 0 0
## 120 0 0 0 0 0
## 121 1 1 0 0 0
## 122 0 0 0 0 0
## 123 0 0 0 0 0
## 124 1 1 0 0 0
## 125 0 0 0 0 0
## 126 1 1 0 0 0
## 127 0 0 0 0 0
## 128 0 0 0 0 0
## 129 0 0 0 0 0
## 130 0 0 0 0 0
## 131 1 1 0 0 0
## 132 0 0 0 0 0
## 133 3 1 1 0 0
## 134 0 0 0 0 0
## 135 0 0 0 0 0
## 136 0 0 0 0 0
## 137 1 1 0 0 0
## 138 1 1 0 0 0
## 139 1 1 0 0 0
## 140 0 0 0 0 0
## 141 3 1 1 0 0
## 142 0 0 0 0 0
## 143 0 0 0 0 0
## 144 1 1 0 0 0
## 145 3 1 1 0 0
## 146 1 1 0 0 0
## 147 0 0 0 0 0
## 148 1 1 0 0 0
## 149 0 0 0 0 0
## 150 3 1 1 0 0
## 151 0 0 0 0 0
## 152 0 0 0 0 0
## 153 0 0 0 0 0
## 154 0 0 0 0 0
## 155 0 0 0 0 0
## 156 0 0 0 0 0
## 157 0 0 0 0 0
## 158 0 0 0 0 0
## 159 0 0 0 0 0
## 160 0 0 0 0 0
## 161 0 0 0 0 0
## 162 0 0 0 0 0
## 163 0 0 0 0 0
## 164 0 0 0 0 0
## 165 0 0 0 0 0
## 166 0 0 0 0 0
## 167 0 0 0 0 0
## 168 0 0 0 0 0
## 169 0 0 0 0 0
## 170 0 0 0 0 0
## 171 3 0 0 0 0
## 172 3 0 0 0 0
## 173 3 0 0 0 0
## 174 3 0 0 0 0
## 175 3 0 0 0 0
## 176 3 0 0 0 0
## 177 3 0 0 0 0
## 178 3 0 0 0 0
## 179 3 0 0 0 0
## 180 3 0 0 0 0
## 181 2 0 0 0 0
## 182 1 1 1 0 0
## 183 2 1 0 0 0
## 184 1 0 1 0 0
## 185 2 1 1 0 0
## 186 1 1 1 0 0
## 187 2 1 0 0 0
## 188 2 0 1 0 0
## 189 2 1 0 0 0
## 190 2 1 1 0 0
## 191 2 1 1 0 0
## 192 2 0 1 0 0
## 193 1 1 1 0 0
## 194 2 0 0 0 0
## 195 2 1 0 0 0
## 196 1 1 1 0 0
## 197 2 1 0 0 0
## 198 2 1 1 0 0
## 199 2 0 0 0 0
## 200 2 0 0 0 0
## 201 0 0 0 0 0
## 202 0 0 0 0 0
## 203 0 0 0 0 0
## 204 0 0 0 0 0
## 205 0 0 0 0 0
## 206 0 0 0 0 0
## 207 0 0 0 0 0
## 208 0 0 0 0 0
## 209 0 0 0 0 0
## 210 0 0 0 0 0
## 211 0 0 0 0 0
## 212 0 0 0 0 0
## 213 0 0 0 0 0
## 214 0 0 0 0 0
## 215 0 0 0 0 0
## 216 0 0 0 0 0
## 217 0 0 0 0 0
## 218 0 0 0 0 0
## 219 0 0 0 0 0
## 220 0 0 0 0 0
## 221 0 0 0 0 0
## 222 0 0 0 0 0
## 223 0 0 0 0 0
## 224 0 0 0 0 0
## 225 0 0 0 0 0
## 226 0 0 0 0 0
## 227 0 0 0 0 0
## 228 0 0 0 0 0
## 229 0 0 0 0 0
## 230 0 0 0 0 0
## 231 0 0 0 0 0
## 232 0 0 0 0 0
## 233 0 0 0 0 0
## 234 0 0 0 0 0
## 235 0 0 0 0 0
## 236 0 0 0 0 0
## 237 0 0 0 0 0
## 238 0 0 0 0 0
## 239 0 0 0 0 0
## 240 0 0 0 0 0
## 241 0 0 0 0 0
## 242 0 0 0 0 0
## 243 0 0 0 0 0
## 244 0 0 0 0 0
## 245 0 0 0 0 0
## 246 0 0 0 0 0
## 247 0 0 0 0 0
## 248 0 0 0 0 0
## 249 0 0 0 0 0
## 250 0 0 0 0 0
## 251 2 1 1 0 0
## 252 0 0 0 0 0
## 253 1 0 1 0 0
## 254 0 0 0 0 0
## 255 2 0 1 0 0
## 256 0 0 0 0 0
## 257 2 0 1 0 0
## 258 2 0 1 0 0
## 259 0 0 0 0 0
## 260 2 0 1 0 0
## 261 2 0 1 0 0
## 262 0 0 0 0 0
## 263 2 0 1 0 0
## 264 1 0 1 0 0
## 265 2 0 1 0 0
## 266 1 0 1 0 0
## 267 2 0 1 0 0
## 268 2 0 1 0 0
## 269 2 0 1 0 0
## 270 1 0 1 0 0
## 271 0 0 0 0 0
## 272 2 1 0 0 0
## 273 0 1 0 0 0
## 274 1 0 1 0 0
## 275 0 0 0 0 0
## 276 0 0 0 0 0
## 277 2 0 1 0 0
## 278 0 0 0 0 0
## 279 2 0 1 0 0
## 280 2 0 1 0 0
## 281 2 0 1 0 0
## 282 0 0 0 0 0
## 283 1 0 1 0 0
## 284 0 0 0 0 0
## 285 0 0 0 0 0
## 286 0 0 0 0 0
## 287 2 0 1 0 0
## 288 2 0 1 0 0
## 289 2 0 1 0 0
## 290 2 0 1 0 0
## 308 1 1 1 0 0
## 309 0 1 1 0 0
## 310 1 1 1 0 0
## 311 0 1 1 0 0
## 312 0 1 1 0 0
## 313 0 1 1 0 0
## 314 0 1 1 0 0
## 315 0 1 1 0 0
## 316 0 1 1 0 0
## 317 1 1 1 0 0
## 318 3 0 0 0 2
## 319 3 0 0 0 2
## 320 3 0 0 0 2
## 321 3 0 0 0 2
## 322 3 0 0 0 2
## 323 3 0 0 0 2
## 324 3 0 0 0 2
## 325 3 0 0 0 2
## 326 3 0 0 0 2
## 327 3 0 0 0 2
## 328 1 0 1 0 0
## 329 1 0 1 0 0
## 330 1 0 1 0 0
## 331 1 0 1 0 0
## 332 1 0 1 0 0
## 333 1 0 1 0 0
## 334 1 0 1 1 0
## 335 1 0 1 1 0
## 336 1 0 1 1 0
## 337 1 0 1 1 0
## 338 2 0 0 0 0
## 339 2 0 0 0 0
## 340 2 0 1 0 0
## 341 2 0 1 0 0
## 342 2 <NA> 0 0 0
## 343 2 <NA> 0 0 0
## 344 2 <NA> 0 0 0
## 345 2 <NA> 0 0 0
## 346 2 <NA> 2 0 0
## 347 2 <NA> 0 0 0
## 348 2 <NA> 2 0 0
## 349 2 <NA> 0 0 0
## 350 2 <NA> 0 0 0
## 351 2 <NA> 0 0 0
## 352 2 <NA> 2 0 0
## 353 2 <NA> 2 0 0
## 354 2 <NA> 2 0 0
## 355 2 <NA> 2 0 0
## 356 2 <NA> 0 0 0
## 357 2 <NA> 0 0 0
## 358 2 <NA> 2 0 0
## 359 2 <NA> 0 0 0
## 360 2 <NA> 0 0 0
## 361 2 <NA> 0 0 0
## 362 2 <NA> 2 0 0
## 363 2 <NA> 0 0 0
## 364 2 <NA> 0 0 0
## 365 2 <NA> 0 0 0
## 366 2 <NA> 2 0 0
## 367 2 <NA> 0 0 0
## 368 2 <NA> 0 0 0
## 369 2 <NA> 2 0 0
## 370 2 <NA> 0 0 0
## 371 2 <NA> 0 0 0
## 372 2 <NA> 2 0 0
## 373 2 <NA> 0 0 0
## 374 2 <NA> 0 0 0
## 375 2 <NA> 0 0 0
## 376 2 <NA> 2 0 0
## 377 2 <NA> 0 0 0
## 378 2 <NA> 0 0 0
## 379 2 <NA> 0 0 0
## 380 2 <NA> 2 0 0
## 381 2 <NA> 0 0 0
## 382 2 <NA> 0 0 0
## 383 2 <NA> 0 0 0
## 384 2 <NA> 0 0 0
## 385 2 <NA> 0 0 0
## 386 3 0 0 0 1
## 387 3 0 0 0 1
## 388 3 0 0 0 1
## 389 3 0 0 0 1
## 390 3 0 0 0 1
## 391 3 0 0 0 1
## 392 0 0 0 0 1
## 393 0 0 0 0 1
## 394 0 0 0 0 1
## 395 0 0 0 0 1
## 396 0 0 0 0 1
## 397 3 0 0 0 1
## 398 3 0 0 0 1
## 399 3 0 0 0 1
## 400 3 0 0 0 1
## 401 3 0 0 0 1
## 402 3 0 0 0 1
## 403 0 0 0 0 1
## 404 0 0 0 0 1
## 405 0 0 0 0 1
## 406 0 0 0 0 1
## 407 0 0 0 0 1
## 408 0 0 0 0 1
## 409 0 0 0 0 1
## 410 0 0 0 0 0
## 411 0 0 0 0 0
## 412 0 0 0 0 0
## 413 0 0 0 0 0
## 414 0 0 0 0 0
## 415 0 0 0 0 0
## 416 0 0 0 0 0
## 417 0 0 0 0 0
## 418 0 0 0 0 0
## 419 0 0 0 0 0
## 420 0 0 0 0 0
## 421 0 0 0 0 0
## 422 0 0 0 0 0
## 423 0 0 0 0 0
## 424 0 0 0 0 0
## 425 0 0 0 0 0
## 426 0 0 0 0 0
## 427 0 0 0 0 0
## 428 0 0 0 0 0
## 429 0 0 0 0 0
## 430 1 1 0 0 0
## 431 0 0 0 0 0
## 432 0 0 0 0 0
## 433 0 0 0 0 0
## 434 1 1 0 0 0
## 435 3 1 1 0 0
## 436 0 0 0 0 0
## 437 0 0 0 0 0
## 438 0 0 0 0 0
## 439 1 0 0 0 0
## 440 0 0 0 0 0
## 441 0 0 0 0 0
## 442 0 0 0 0 0
## 443 1 0 0 0 0
## 444 1 1 0 0 0
## 445 0 0 0 0 0
## 446 0 0 0 0 0
## 447 0 0 0 0 0
## 448 0 0 0 0 0
## 449 0 0 0 0 0
## 450 0 0 0 0 0
## 451 0 0 0 0 0
## 452 1 1 0 0 0
## 453 1 1 0 0 0
## 454 1 1 0 0 0
## 455 0 0 0 0 0
## 456 0 0 0 0 0
## 457 1 1 0 0 0
## 458 0 0 0 0 0
## 459 0 0 0 0 0
## 460 1 1 0 0 0
## 461 0 0 0 0 0
## 462 0 0 0 0 0
## 463 1 1 0 0 0
## 464 0 0 0 0 0
## 465 0 0 0 0 0
## 466 1 1 0 0 0
## 467 1 1 0 0 0
## 468 1 1 0 0 0
## 469 0 0 0 0 0
## 470 0 0 0 0 0
## 471 1 1 0 0 0
## 472 1 1 0 0 0
## 473 1 1 0 0 0
## 474 0 0 0 0 0
## 475 0 0 0 0 0
## 476 1 1 0 0 0
## 477 1 1 0 0 0
## 478 1 1 0 0 0
## 479 1 1 0 0 0
## 480 1 1 0 0 0
## 481 1 1 0 0 0
## 482 0 0 0 0 0
## 483 0 0 0 0 0
## 484 0 0 0 0 0
## 485 0 0 0 0 0
## 486 0 0 0 0 0
## 487 0 0 0 0 0
## 488 0 0 0 0 0
## 489 0 0 0 0 0
## 490 0 0 0 0 0
## 491 0 0 0 0 0
## 492 0 0 0 0 0
## 493 0 0 0 0 0
## 494 0 0 0 0 0
## 495 0 0 0 0 0
## 496 0 0 0 0 0
## 497 0 0 0 0 0
## 498 0 0 0 0 0
## 499 0 0 0 0 0
## 500 0 0 0 0 0
## 501 0 0 0 0 0
## 502 3 0 0 0 0
## 503 3 0 0 0 0
## 504 3 0 0 0 0
## 505 3 0 0 0 0
## 506 3 0 0 0 0
## 507 3 0 0 0 0
## 508 3 0 0 0 0
## 509 3 0 0 0 0
## 510 3 0 0 0 0
## 511 3 0 0 0 0
## 512 1 0 1 0 0
## 513 1 0 1 0 0
## 514 1 1 1 0 0
## 515 1 0 1 0 0
## 516 2 1 1 0 0
## 517 2 1 0 0 0
## 518 2 1 0 0 0
## 519 2 1 0 0 0
## 520 2 1 0 0 0
## 521 2 1 0 0 0
## 522 2 0 0 0 0
## 523 2 1 1 0 0
## 524 2 1 1 0 0
## 525 1 1 1 0 0
## 526 2 1 1 0 0
## 527 2 0 0 0 0
## 528 2 1 0 0 0
## 529 2 1 0 0 0
## 530 2 0 0 0 0
## 531 2 1 0 0 0
## 532 2 1 0 0 0
## 533 2 1 0 0 0
## 534 2 0 0 0 0
## 535 2 1 0 0 0
## 536 0 0 0 0 0
## 537 0 0 0 0 0
## 538 0 0 0 0 0
## 539 0 0 0 0 0
## 540 0 0 0 0 0
## 541 0 0 0 0 0
## 542 0 0 0 0 0
## 543 0 0 0 0 0
## 544 0 0 0 0 0
## 545 0 0 0 0 0
## 546 0 0 0 0 0
## 547 0 0 0 0 0
## 548 0 0 0 0 0
## 549 0 0 0 0 0
## 550 0 0 0 0 0
## 551 0 0 0 0 0
## 552 0 0 0 0 0
## 553 0 0 0 0 0
## 554 0 0 0 0 0
## 555 0 0 0 0 0
## 556 0 0 0 0 0
## 557 0 0 0 0 0
## 558 0 0 0 0 0
## 559 0 0 0 0 0
## 560 0 0 0 0 0
## 561 0 0 0 0 0
## 562 0 0 0 0 0
## 563 0 0 0 0 0
## 564 0 0 0 0 0
## 565 0 0 0 0 0
## 566 0 0 0 0 0
## 567 0 0 0 0 0
## 568 0 0 0 0 0
## 569 0 0 0 0 0
## 570 0 0 0 0 0
## 571 0 0 0 0 0
## 572 0 0 0 0 0
## 573 0 0 0 0 0
## 574 0 0 0 0 0
## 575 0 0 0 0 0
## 576 0 0 0 0 0
## 577 0 0 0 0 0
## 578 0 0 0 0 0
## 579 0 0 0 0 0
## 580 0 0 0 0 0
## 581 0 0 0 0 0
## 582 0 0 0 0 0
## 583 0 0 0 0 0
## 584 0 0 0 0 0
## 585 0 0 0 0 0
## 586 0 0 0 0 0
## 587 0 0 0 0 0
## 588 0 0 0 0 0
## 589 0 0 0 0 0
## 590 0 0 0 0 0
## 591 0 0 0 0 0
## 592 0 0 0 0 0
## 593 0 0 0 0 0
## 594 0 0 0 0 0
## 595 0 0 0 0 0
## 596 0 0 0 0 0
## 597 2 0 1 0 0
## 598 2 0 1 0 0
## 599 0 0 0 0 0
## 600 0 0 0 0 0
## 601 0 0 0 0 0
## 602 2 0 1 0 0
## 603 0 0 0 0 0
## 604 0 0 0 0 0
## 605 0 0 0 0 0
## 606 0 0 1 0 0
## 607 0 0 0 0 0
## 608 1 0 0 0 0
## 609 1 0 1 0 0
## 610 1 0 1 0 0
## 611 0 0 0 0 0
## 612 0 0 0 0 0
## 613 0 0 0 0 0
## 614 1 0 1 0 0
## 615 0 0 0 0 0
## 616 2 0 1 0 0
## 617 2 0 1 0 0
## 618 2 0 1 0 0
## 619 2 0 1 0 0
## 620 2 0 1 0 0
## 621 2 0 1 0 0
## 622 2 0 1 0 0
## 623 2 0 1 0 0
## 624 2 0 1 0 0
## 625 2 0 1 0 0
## 626 2 0 1 0 0
## 627 2 0 1 0 0
## 628 2 0 1 0 0
## 629 2 0 1 0 0
## 630 2 0 1 0 0
## 631 2 0 1 0 0
## 632 2 0 1 0 0
## 633 2 0 1 0 0
## 634 2 0 1 0 0
## 635 2 0 1 0 0
## 636 2 0 1 0 0
## 637 2 0 1 0 0
## 638 2 0 1 0 0
## 639 2 0 1 0 0
## 640 2 0 1 0 0
## 641 2 0 1 0 0
## 642 2 0 1 0 0
## 643 2 0 1 0 0
## 644 2 0 1 0 0
## 645 2 0 1 0 0
## 646 2 0 1 0 0
## 647 2 0 1 0 0
## sclerotia fruit.pods fruit.spots seed mold.growth seed.discolor
## 1 0 0 4 0 0 0
## 2 0 0 4 0 0 0
## 3 0 0 4 0 0 0
## 4 0 0 4 0 0 0
## 5 0 0 4 0 0 0
## 6 0 0 4 0 0 0
## 7 0 0 4 0 0 0
## 8 0 0 4 0 0 0
## 9 0 0 4 0 0 0
## 10 0 0 4 0 0 0
## 11 1 0 4 0 0 0
## 12 1 0 4 0 0 0
## 13 1 0 4 0 0 0
## 14 1 0 4 0 0 0
## 15 1 0 4 0 0 0
## 16 1 0 4 0 0 0
## 17 1 0 4 0 0 0
## 18 1 0 4 0 0 0
## 19 1 0 4 0 0 0
## 20 1 0 4 0 0 0
## 21 0 3 4 0 0 0
## 22 0 3 4 0 0 0
## 23 0 3 4 0 0 0
## 24 0 3 4 0 0 0
## 25 0 3 4 0 0 0
## 26 0 3 4 0 0 0
## 27 0 3 4 0 0 0
## 28 0 3 4 0 0 0
## 29 0 3 4 0 0 0
## 30 0 3 4 0 0 0
## 31 0 3 4 0 0 0
## 32 0 <NA> <NA> <NA> <NA> <NA>
## 33 0 <NA> <NA> <NA> <NA> <NA>
## 34 0 3 4 0 0 0
## 35 0 <NA> <NA> <NA> <NA> <NA>
## 36 0 <NA> <NA> <NA> <NA> <NA>
## 37 0 3 4 0 0 0
## 38 0 3 4 0 0 0
## 39 0 <NA> <NA> <NA> <NA> <NA>
## 40 0 3 4 0 0 0
## 41 0 <NA> <NA> <NA> <NA> <NA>
## 42 0 <NA> <NA> <NA> <NA> <NA>
## 43 0 3 4 0 0 0
## 44 0 3 4 0 0 0
## 45 0 3 4 0 0 0
## 46 0 <NA> <NA> <NA> <NA> <NA>
## 47 0 3 4 0 0 0
## 48 0 <NA> <NA> <NA> <NA> <NA>
## 49 0 3 4 0 0 0
## 50 0 3 4 0 0 0
## 51 0 3 4 0 0 0
## 52 0 <NA> <NA> <NA> <NA> <NA>
## 53 0 <NA> <NA> <NA> <NA> <NA>
## 54 0 <NA> <NA> <NA> <NA> <NA>
## 55 0 <NA> <NA> <NA> <NA> <NA>
## 56 0 3 4 0 0 0
## 57 0 <NA> <NA> <NA> <NA> <NA>
## 58 0 <NA> <NA> <NA> <NA> <NA>
## 59 0 <NA> <NA> <NA> <NA> <NA>
## 60 0 <NA> <NA> <NA> <NA> <NA>
## 61 0 <NA> <NA> <NA> <NA> <NA>
## 62 0 <NA> <NA> <NA> <NA> <NA>
## 63 0 3 4 0 0 0
## 64 0 <NA> <NA> <NA> <NA> <NA>
## 65 0 <NA> <NA> <NA> <NA> <NA>
## 66 0 3 4 0 0 0
## 67 0 <NA> <NA> <NA> <NA> <NA>
## 68 0 <NA> <NA> <NA> <NA> <NA>
## 69 0 3 4 0 0 0
## 70 0 <NA> <NA> <NA> <NA> <NA>
## 71 0 0 0 0 0 0
## 72 0 0 0 0 0 0
## 73 0 0 4 0 0 0
## 74 0 0 0 0 0 0
## 75 0 0 0 0 0 0
## 76 0 0 0 0 0 0
## 77 0 0 4 0 0 0
## 78 0 0 4 0 0 0
## 79 0 0 4 0 0 0
## 80 0 0 4 0 0 0
## 81 0 0 4 0 0 0
## 82 0 0 4 0 0 0
## 83 0 0 0 0 0 0
## 84 0 0 4 0 0 0
## 85 0 0 0 0 0 0
## 86 0 0 0 0 0 0
## 87 0 0 0 0 0 0
## 88 0 0 0 0 0 0
## 89 0 0 0 0 0 0
## 90 0 0 0 0 0 0
## 91 0 0 0 0 0 0
## 92 0 0 0 0 0 0
## 93 0 0 0 0 0 0
## 94 0 0 0 0 0 0
## 95 0 0 0 0 0 0
## 96 0 0 0 0 0 0
## 97 0 0 0 0 0 0
## 98 0 0 0 0 0 0
## 99 0 0 0 0 0 0
## 100 0 0 0 0 0 0
## 101 0 0 0 1 1 0
## 102 0 0 0 1 1 0
## 103 0 0 0 1 1 0
## 104 0 0 0 1 1 0
## 105 0 0 0 1 1 0
## 106 0 0 0 1 1 0
## 107 0 0 0 1 1 0
## 108 0 0 0 1 1 0
## 109 0 0 0 1 1 0
## 110 0 0 0 1 1 0
## 111 0 0 0 0 0 0
## 112 0 0 0 0 0 0
## 113 0 0 0 0 0 0
## 114 0 0 0 0 0 0
## 115 0 0 0 0 0 0
## 116 0 0 0 0 0 0
## 117 0 0 0 0 0 0
## 118 0 0 0 0 0 0
## 119 0 0 0 0 0 0
## 120 0 0 0 0 0 0
## 121 0 0 0 0 0 0
## 122 0 0 0 0 0 0
## 123 0 0 0 0 0 0
## 124 0 0 0 0 0 0
## 125 0 0 0 0 0 0
## 126 0 0 0 0 0 0
## 127 0 0 0 0 0 0
## 128 0 0 0 0 0 0
## 129 0 0 0 0 0 0
## 130 0 0 0 0 0 0
## 131 0 0 0 0 0 0
## 132 0 0 0 0 0 0
## 133 0 0 0 0 0 0
## 134 0 0 0 0 0 0
## 135 0 0 0 0 0 0
## 136 0 0 0 0 0 0
## 137 0 0 0 0 0 0
## 138 0 0 1 0 0 0
## 139 0 0 0 0 0 0
## 140 0 0 0 0 0 0
## 141 0 0 0 0 0 0
## 142 0 0 0 0 0 0
## 143 0 0 0 0 0 0
## 144 0 0 0 0 0 0
## 145 0 0 0 0 0 0
## 146 0 0 0 0 0 0
## 147 0 0 0 0 0 0
## 148 0 0 0 0 0 0
## 149 0 0 0 0 0 0
## 150 0 0 0 0 0 0
## 151 0 0 0 0 0 0
## 152 0 0 0 0 0 0
## 153 0 0 0 0 0 0
## 154 0 0 0 0 0 0
## 155 0 0 0 0 0 0
## 156 0 0 0 0 0 0
## 157 0 0 0 0 0 0
## 158 0 0 0 0 0 0
## 159 0 0 0 0 0 0
## 160 0 0 0 0 0 0
## 161 0 0 0 0 0 0
## 162 0 0 0 1 1 1
## 163 0 0 0 0 0 0
## 164 0 0 0 0 0 0
## 165 0 0 0 1 1 1
## 166 0 0 0 0 0 0
## 167 0 0 0 1 1 1
## 168 0 0 0 0 0 0
## 169 0 0 0 1 1 1
## 170 0 0 0 0 0 0
## 171 0 1 1 1 0 1
## 172 0 1 1 1 0 1
## 173 0 0 0 1 0 1
## 174 0 0 0 1 0 1
## 175 0 0 0 1 0 1
## 176 0 1 1 1 0 1
## 177 0 0 0 1 0 1
## 178 0 0 0 1 0 1
## 179 0 1 1 1 0 1
## 180 0 0 0 1 0 1
## 181 0 1 2 0 0 0
## 182 0 1 2 1 1 1
## 183 0 1 2 1 1 0
## 184 0 0 0 0 0 0
## 185 0 1 2 1 1 1
## 186 0 1 2 0 0 0
## 187 0 1 2 1 1 0
## 188 0 0 0 1 0 1
## 189 0 1 2 1 1 0
## 190 0 1 2 1 1 1
## 191 0 1 2 0 0 0
## 192 0 0 0 1 1 0
## 193 0 1 2 1 0 1
## 194 0 1 2 1 1 0
## 195 0 1 2 0 0 0
## 196 0 1 2 0 0 0
## 197 0 1 2 1 1 0
## 198 0 1 2 0 0 0
## 199 0 1 2 1 1 0
## 200 0 1 2 1 1 0
## 201 0 0 0 0 0 0
## 202 0 0 0 0 0 0
## 203 0 0 0 0 0 0
## 204 0 0 0 0 0 0
## 205 0 0 0 0 0 0
## 206 0 0 0 0 0 0
## 207 0 0 0 0 0 0
## 208 0 0 0 0 0 0
## 209 0 0 0 0 0 0
## 210 0 0 0 0 0 0
## 211 0 0 0 0 0 0
## 212 0 0 0 0 0 0
## 213 0 0 0 0 0 0
## 214 0 0 0 0 0 0
## 215 0 0 0 1 0 1
## 216 0 0 0 0 0 0
## 217 0 0 0 0 0 0
## 218 0 0 0 0 0 0
## 219 0 0 0 0 0 0
## 220 0 0 0 0 0 0
## 221 0 0 0 0 0 0
## 222 0 0 0 0 0 0
## 223 0 0 0 0 0 0
## 224 0 0 0 0 0 0
## 225 0 0 0 0 0 0
## 226 0 0 0 0 0 0
## 227 0 0 0 0 0 0
## 228 0 0 0 0 0 0
## 229 0 0 0 0 0 0
## 230 0 0 0 0 0 0
## 231 0 0 0 0 0 0
## 232 0 0 0 0 0 0
## 233 0 0 0 0 0 0
## 234 0 0 0 1 0 1
## 235 0 0 0 0 0 0
## 236 0 0 0 0 0 0
## 237 0 0 0 0 0 0
## 238 0 0 0 0 0 0
## 239 0 0 0 0 0 0
## 240 0 0 0 0 0 0
## 241 0 0 0 0 0 0
## 242 0 0 0 0 0 0
## 243 0 0 0 0 0 0
## 244 0 0 0 0 0 0
## 245 0 0 0 0 0 0
## 246 0 0 0 0 0 0
## 247 0 0 0 0 0 0
## 248 0 0 0 0 0 0
## 249 0 0 0 0 0 0
## 250 0 0 0 0 0 0
## 251 0 1 2 1 0 0
## 252 0 0 0 0 0 0
## 253 0 0 0 0 0 0
## 254 0 0 0 0 0 0
## 255 0 1 1 0 0 0
## 256 0 0 0 0 0 0
## 257 0 1 1 0 0 0
## 258 0 1 1 0 0 0
## 259 0 0 0 0 0 0
## 260 0 1 1 0 0 0
## 261 0 1 1 0 0 0
## 262 0 0 0 0 0 0
## 263 0 1 1 0 0 0
## 264 0 1 1 0 0 0
## 265 0 1 1 0 0 0
## 266 0 1 1 0 0 0
## 267 0 1 1 0 0 0
## 268 0 1 1 0 0 0
## 269 0 1 1 0 0 0
## 270 0 1 1 0 0 0
## 271 0 0 0 0 0 0
## 272 0 1 2 1 0 1
## 273 0 1 1 0 0 0
## 274 0 1 1 0 0 0
## 275 0 0 0 0 0 0
## 276 0 0 0 0 0 0
## 277 0 1 1 0 0 0
## 278 0 0 0 0 0 0
## 279 0 1 1 0 0 0
## 280 0 1 1 0 0 0
## 281 0 1 1 0 0 0
## 282 0 0 0 0 0 0
## 283 0 1 1 0 0 0
## 284 0 0 0 0 0 0
## 285 0 0 0 0 0 0
## 286 0 0 0 0 0 0
## 287 0 1 1 0 0 0
## 288 0 1 1 0 0 0
## 289 0 1 1 0 0 0
## 290 0 1 1 0 0 0
## 308 0 0 4 0 0 0
## 309 0 0 4 0 0 0
## 310 0 0 4 0 0 0
## 311 0 0 4 0 0 0
## 312 0 0 4 0 0 0
## 313 0 0 4 0 0 0
## 314 0 0 4 0 0 0
## 315 0 0 4 0 0 0
## 316 0 0 4 0 0 0
## 317 0 0 4 0 0 0
## 318 1 0 4 0 0 0
## 319 1 0 4 0 0 0
## 320 1 0 4 0 0 0
## 321 1 0 4 0 0 0
## 322 1 0 4 0 0 0
## 323 1 0 4 0 0 0
## 324 1 0 4 0 0 0
## 325 1 0 4 0 0 0
## 326 1 0 4 0 0 0
## 327 1 0 4 0 0 0
## 328 0 3 4 0 0 0
## 329 0 3 4 0 0 0
## 330 0 3 4 0 0 0
## 331 0 3 4 0 0 0
## 332 0 3 4 0 0 0
## 333 0 3 4 0 0 0
## 334 0 3 4 0 0 0
## 335 0 3 4 0 0 0
## 336 0 3 4 0 0 0
## 337 0 3 4 0 0 0
## 338 0 3 4 0 0 0
## 339 0 3 4 0 0 0
## 340 0 3 4 0 0 0
## 341 0 3 4 0 0 0
## 342 0 <NA> <NA> <NA> <NA> <NA>
## 343 0 <NA> <NA> <NA> <NA> <NA>
## 344 0 <NA> <NA> <NA> <NA> <NA>
## 345 0 <NA> <NA> <NA> <NA> <NA>
## 346 0 <NA> <NA> <NA> <NA> <NA>
## 347 0 <NA> <NA> <NA> <NA> <NA>
## 348 0 <NA> <NA> <NA> <NA> <NA>
## 349 0 <NA> <NA> <NA> <NA> <NA>
## 350 0 <NA> <NA> <NA> <NA> <NA>
## 351 0 <NA> <NA> <NA> <NA> <NA>
## 352 0 <NA> <NA> <NA> <NA> <NA>
## 353 0 <NA> <NA> <NA> <NA> <NA>
## 354 0 <NA> <NA> <NA> <NA> <NA>
## 355 0 <NA> <NA> <NA> <NA> <NA>
## 356 0 <NA> <NA> <NA> <NA> <NA>
## 357 0 <NA> <NA> <NA> <NA> <NA>
## 358 0 <NA> <NA> <NA> <NA> <NA>
## 359 0 <NA> <NA> <NA> <NA> <NA>
## 360 0 <NA> <NA> <NA> <NA> <NA>
## 361 0 <NA> <NA> <NA> <NA> <NA>
## 362 0 <NA> <NA> <NA> <NA> <NA>
## 363 0 <NA> <NA> <NA> <NA> <NA>
## 364 0 <NA> <NA> <NA> <NA> <NA>
## 365 0 <NA> <NA> <NA> <NA> <NA>
## 366 0 <NA> <NA> <NA> <NA> <NA>
## 367 0 <NA> <NA> <NA> <NA> <NA>
## 368 0 <NA> <NA> <NA> <NA> <NA>
## 369 0 <NA> <NA> <NA> <NA> <NA>
## 370 0 <NA> <NA> <NA> <NA> <NA>
## 371 0 <NA> <NA> <NA> <NA> <NA>
## 372 0 <NA> <NA> <NA> <NA> <NA>
## 373 0 <NA> <NA> <NA> <NA> <NA>
## 374 0 <NA> <NA> <NA> <NA> <NA>
## 375 0 <NA> <NA> <NA> <NA> <NA>
## 376 0 <NA> <NA> <NA> <NA> <NA>
## 377 0 <NA> <NA> <NA> <NA> <NA>
## 378 0 <NA> <NA> <NA> <NA> <NA>
## 379 0 <NA> <NA> <NA> <NA> <NA>
## 380 0 <NA> <NA> <NA> <NA> <NA>
## 381 0 <NA> <NA> <NA> <NA> <NA>
## 382 0 <NA> <NA> <NA> <NA> <NA>
## 383 0 <NA> <NA> <NA> <NA> <NA>
## 384 0 <NA> <NA> <NA> <NA> <NA>
## 385 0 <NA> <NA> <NA> <NA> <NA>
## 386 0 0 4 0 0 0
## 387 0 0 4 0 0 0
## 388 0 0 4 0 0 0
## 389 0 0 4 0 0 0
## 390 0 0 4 0 0 0
## 391 0 0 4 0 0 0
## 392 0 0 0 0 0 0
## 393 0 0 0 0 0 0
## 394 0 0 0 0 0 0
## 395 0 0 0 0 0 0
## 396 0 0 0 0 0 0
## 397 0 0 4 0 0 0
## 398 0 0 4 0 0 0
## 399 0 0 4 0 0 0
## 400 0 0 4 0 0 0
## 401 0 0 4 0 0 0
## 402 0 0 4 0 0 0
## 403 0 0 0 0 0 0
## 404 0 0 0 0 0 0
## 405 0 0 0 0 0 0
## 406 0 0 0 0 0 0
## 407 0 0 0 0 0 0
## 408 0 0 0 0 0 0
## 409 0 0 0 0 0 0
## 410 0 0 0 0 0 0
## 411 0 0 0 0 0 0
## 412 0 0 0 0 0 0
## 413 0 0 0 0 0 0
## 414 0 0 0 0 0 0
## 415 0 0 0 0 0 0
## 416 0 0 0 0 0 0
## 417 0 0 0 0 0 0
## 418 0 0 0 0 0 0
## 419 0 0 0 0 0 0
## 420 0 0 0 1 1 0
## 421 0 0 0 1 1 0
## 422 0 0 0 1 1 0
## 423 0 0 0 1 1 0
## 424 0 0 0 1 1 0
## 425 0 0 0 1 1 0
## 426 0 0 0 1 1 0
## 427 0 0 0 1 1 0
## 428 0 0 0 1 1 0
## 429 0 0 0 1 1 0
## 430 0 0 0 0 0 0
## 431 0 0 0 0 0 0
## 432 0 0 0 0 0 0
## 433 0 0 0 0 0 0
## 434 0 0 0 0 0 0
## 435 0 0 0 0 0 0
## 436 0 0 0 0 0 0
## 437 0 0 0 0 0 0
## 438 0 0 0 0 0 0
## 439 0 1 2 0 0 0
## 440 0 0 0 0 0 0
## 441 0 0 0 0 0 0
## 442 0 0 0 0 0 0
## 443 0 0 1 0 0 0
## 444 0 1 2 0 0 0
## 445 0 0 0 0 0 0
## 446 0 0 0 0 0 0
## 447 0 0 0 0 0 0
## 448 0 0 0 0 0 0
## 449 0 0 0 0 0 0
## 450 0 0 0 0 0 0
## 451 0 0 0 0 0 0
## 452 0 0 0 0 0 0
## 453 0 0 0 0 0 0
## 454 0 0 0 0 0 0
## 455 0 0 0 0 0 0
## 456 0 0 0 0 0 0
## 457 0 0 0 0 0 0
## 458 0 0 0 0 0 0
## 459 0 0 0 0 0 0
## 460 0 0 0 0 0 0
## 461 0 0 0 0 0 0
## 462 0 0 0 0 0 0
## 463 0 0 0 0 0 0
## 464 0 0 0 0 0 0
## 465 0 0 0 0 0 0
## 466 0 0 0 0 0 0
## 467 0 0 0 0 0 0
## 468 0 0 0 0 0 0
## 469 0 0 0 0 0 0
## 470 0 0 0 0 0 0
## 471 0 0 0 0 0 0
## 472 0 0 0 0 0 0
## 473 0 0 0 0 0 0
## 474 0 0 0 0 0 0
## 475 0 0 0 0 0 0
## 476 0 0 0 0 0 0
## 477 0 0 0 0 0 0
## 478 0 0 0 0 0 0
## 479 0 0 0 0 0 0
## 480 0 0 0 0 0 0
## 481 0 0 0 0 0 0
## 482 0 0 0 0 0 0
## 483 0 0 0 0 0 0
## 484 0 0 0 0 0 0
## 485 0 0 0 0 0 0
## 486 0 0 0 0 0 0
## 487 0 0 0 0 0 0
## 488 0 0 0 0 0 0
## 489 0 0 0 0 0 0
## 490 0 0 0 0 0 0
## 491 0 0 0 0 0 0
## 492 0 0 0 1 1 1
## 493 0 0 0 0 0 0
## 494 0 0 0 1 1 1
## 495 0 0 0 0 0 0
## 496 0 0 0 1 1 1
## 497 0 0 0 1 1 1
## 498 0 0 0 1 1 1
## 499 0 0 0 0 0 0
## 500 0 0 0 1 1 1
## 501 0 0 0 0 0 0
## 502 0 1 1 1 0 1
## 503 0 1 1 1 0 1
## 504 0 1 1 1 0 1
## 505 0 1 1 1 0 1
## 506 0 1 1 1 0 1
## 507 0 1 1 1 0 1
## 508 0 0 0 1 0 1
## 509 0 0 0 1 0 1
## 510 0 0 0 1 0 1
## 511 0 1 1 1 0 1
## 512 0 0 0 1 0 1
## 513 0 0 0 1 0 1
## 514 0 1 2 1 1 0
## 515 0 0 0 1 0 1
## 516 0 1 2 1 1 0
## 517 0 1 2 1 1 0
## 518 0 1 2 1 1 0
## 519 0 1 2 1 1 0
## 520 0 1 2 1 1 0
## 521 0 1 2 1 1 0
## 522 0 1 2 0 0 0
## 523 0 1 2 0 0 0
## 524 0 1 2 0 0 0
## 525 0 1 2 0 0 0
## 526 0 1 2 0 0 0
## 527 0 1 2 0 0 0
## 528 0 1 2 1 1 0
## 529 0 1 2 1 1 0
## 530 0 1 2 0 0 0
## 531 0 1 2 1 1 0
## 532 0 1 2 1 1 0
## 533 0 1 2 0 0 0
## 534 0 1 2 0 0 0
## 535 0 1 2 0 0 0
## 536 0 0 0 0 0 0
## 537 0 0 0 0 0 0
## 538 0 0 0 0 0 0
## 539 0 0 0 0 0 0
## 540 0 0 0 0 0 0
## 541 0 0 0 0 0 0
## 542 0 0 0 0 0 0
## 543 0 0 0 0 0 0
## 544 0 0 0 0 0 0
## 545 0 0 0 0 0 0
## 546 0 0 0 0 0 0
## 547 0 0 0 0 0 0
## 548 0 0 0 0 0 0
## 549 0 0 0 0 0 0
## 550 0 0 0 0 0 0
## 551 0 0 0 0 0 0
## 552 0 0 0 0 0 0
## 553 0 0 0 0 0 0
## 554 0 0 0 1 0 1
## 555 0 0 0 0 0 0
## 556 0 0 0 1 0 1
## 557 0 0 0 0 0 0
## 558 0 0 0 1 0 0
## 559 0 0 0 1 0 1
## 560 0 0 0 1 0 1
## 561 0 0 0 0 0 1
## 562 0 0 0 1 0 1
## 563 0 0 0 1 0 1
## 564 0 0 0 0 0 0
## 565 0 0 0 1 0 1
## 566 0 0 0 0 0 0
## 567 0 0 0 0 0 0
## 568 0 0 0 0 0 0
## 569 0 0 0 0 0 0
## 570 0 0 0 0 0 0
## 571 0 0 0 0 0 0
## 572 0 0 0 0 0 0
## 573 0 0 0 0 0 0
## 574 0 0 0 0 0 0
## 575 0 0 0 0 0 0
## 576 0 0 0 0 0 0
## 577 0 0 0 0 0 0
## 578 0 0 0 0 0 0
## 579 0 0 0 0 0 0
## 580 0 0 0 0 0 0
## 581 0 0 0 0 0 0
## 582 0 0 0 0 0 0
## 583 0 0 0 0 0 0
## 584 0 0 0 0 0 0
## 585 0 0 0 0 0 0
## 586 0 0 0 0 0 0
## 587 0 0 0 0 0 0
## 588 0 0 0 0 0 0
## 589 0 0 0 0 0 0
## 590 0 0 0 0 0 0
## 591 0 0 0 0 0 0
## 592 0 0 0 0 0 0
## 593 0 0 0 0 0 0
## 594 0 0 0 0 0 0
## 595 0 0 0 0 0 0
## 596 0 0 0 0 0 0
## 597 0 1 1 0 0 0
## 598 0 1 1 0 0 0
## 599 0 0 0 0 0 0
## 600 0 0 0 0 0 0
## 601 0 0 0 0 0 0
## 602 0 1 1 0 0 0
## 603 0 0 0 0 0 0
## 604 0 0 0 0 0 0
## 605 0 0 0 0 0 0
## 606 0 1 1 0 0 0
## 607 0 0 0 0 0 0
## 608 0 0 0 0 0 0
## 609 0 1 1 0 0 0
## 610 0 1 1 0 0 0
## 611 0 0 0 0 0 0
## 612 0 0 0 0 0 0
## 613 0 0 0 0 0 0
## 614 0 0 0 0 0 0
## 615 0 0 0 0 0 0
## 616 0 1 1 0 0 0
## 617 0 1 1 0 0 0
## 618 0 1 1 0 0 0
## 619 0 1 1 0 0 0
## 620 0 1 1 0 0 0
## 621 0 1 1 0 0 0
## 622 0 1 1 0 0 0
## 623 0 1 1 0 0 0
## 624 0 1 1 0 0 0
## 625 0 1 1 0 0 0
## 626 0 1 1 0 0 0
## 627 0 1 1 0 0 0
## 628 0 1 1 0 0 0
## 629 0 1 1 0 0 0
## 630 0 1 1 0 0 0
## 631 0 1 1 0 0 0
## 632 0 1 1 0 0 0
## 633 0 1 1 0 0 0
## 634 0 1 1 0 0 0
## 635 0 1 1 0 0 0
## 636 0 1 1 0 0 0
## 637 0 1 1 0 0 0
## 638 0 1 1 0 0 0
## 639 0 1 1 0 0 0
## 640 0 1 1 0 0 0
## 641 0 1 1 0 0 0
## 642 0 1 1 0 0 0
## 643 0 1 1 0 0 0
## 644 0 1 1 0 0 0
## 645 0 1 1 0 0 0
## 646 0 1 1 0 0 0
## 647 0 1 1 0 0 0
## seed.size shriveling roots
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## 7 0 0 0
## 8 0 0 0
## 9 0 0 0
## 10 0 0 0
## 11 0 0 0
## 12 0 0 0
## 13 0 0 0
## 14 0 0 0
## 15 0 0 0
## 16 0 0 0
## 17 0 0 0
## 18 0 0 0
## 19 0 0 0
## 20 0 0 0
## 21 0 0 0
## 22 0 0 0
## 23 0 0 0
## 24 0 0 0
## 25 0 0 0
## 26 0 0 0
## 27 0 0 0
## 28 0 0 0
## 29 0 0 0
## 30 0 0 0
## 31 0 0 0
## 32 <NA> <NA> 1
## 33 <NA> <NA> 1
## 34 0 0 0
## 35 <NA> <NA> 1
## 36 <NA> <NA> 1
## 37 0 0 0
## 38 0 0 0
## 39 <NA> <NA> 1
## 40 0 0 0
## 41 <NA> <NA> 1
## 42 <NA> <NA> 1
## 43 0 0 0
## 44 0 0 0
## 45 0 0 0
## 46 <NA> <NA> 1
## 47 0 0 0
## 48 <NA> <NA> 1
## 49 0 0 0
## 50 0 0 0
## 51 0 0 0
## 52 <NA> <NA> 1
## 53 <NA> <NA> 1
## 54 <NA> <NA> 1
## 55 <NA> <NA> 1
## 56 0 0 0
## 57 <NA> <NA> 1
## 58 <NA> <NA> 1
## 59 <NA> <NA> 1
## 60 <NA> <NA> 1
## 61 <NA> <NA> 1
## 62 <NA> <NA> 1
## 63 0 0 0
## 64 <NA> <NA> 1
## 65 <NA> <NA> 1
## 66 0 0 0
## 67 <NA> <NA> 1
## 68 <NA> <NA> 1
## 69 0 0 0
## 70 <NA> <NA> 1
## 71 0 0 0
## 72 0 0 0
## 73 0 0 0
## 74 0 0 0
## 75 0 0 0
## 76 0 0 0
## 77 0 0 0
## 78 0 0 0
## 79 0 0 0
## 80 0 0 0
## 81 0 0 0
## 82 0 0 0
## 83 0 0 0
## 84 0 0 0
## 85 0 0 0
## 86 0 0 0
## 87 0 0 0
## 88 0 0 0
## 89 0 0 0
## 90 0 0 0
## 91 0 0 0
## 92 0 0 0
## 93 0 0 0
## 94 0 0 0
## 95 0 0 0
## 96 0 0 0
## 97 0 0 0
## 98 0 0 0
## 99 0 0 0
## 100 0 0 0
## 101 0 0 0
## 102 0 0 0
## 103 0 0 0
## 104 0 0 0
## 105 0 0 0
## 106 0 0 0
## 107 0 0 0
## 108 0 0 0
## 109 0 0 0
## 110 0 0 0
## 111 0 0 0
## 112 0 0 0
## 113 0 0 0
## 114 0 0 0
## 115 0 0 0
## 116 0 0 0
## 117 0 0 0
## 118 0 0 0
## 119 0 0 0
## 120 0 0 0
## 121 0 0 0
## 122 0 0 0
## 123 0 0 0
## 124 0 0 0
## 125 0 0 0
## 126 0 0 0
## 127 0 0 0
## 128 0 0 0
## 129 0 0 0
## 130 0 0 0
## 131 0 0 0
## 132 0 0 0
## 133 0 0 0
## 134 0 0 0
## 135 0 0 0
## 136 0 0 0
## 137 0 0 0
## 138 0 0 0
## 139 0 0 0
## 140 0 0 0
## 141 0 0 0
## 142 0 0 0
## 143 0 0 0
## 144 0 0 0
## 145 0 0 0
## 146 0 0 0
## 147 0 0 0
## 148 0 0 0
## 149 0 0 0
## 150 0 0 0
## 151 0 0 0
## 152 0 0 0
## 153 0 0 0
## 154 0 0 0
## 155 0 0 0
## 156 0 0 0
## 157 0 0 0
## 158 0 0 0
## 159 0 0 0
## 160 0 0 0
## 161 0 0 2
## 162 0 0 0
## 163 0 0 0
## 164 1 0 1
## 165 1 0 1
## 166 0 0 1
## 167 1 0 0
## 168 1 0 1
## 169 1 0 0
## 170 0 0 1
## 171 0 0 0
## 172 0 0 0
## 173 0 0 0
## 174 0 0 0
## 175 0 0 0
## 176 0 0 0
## 177 0 0 0
## 178 0 0 0
## 179 0 0 0
## 180 0 0 0
## 181 0 0 0
## 182 0 1 0
## 183 1 1 0
## 184 0 0 0
## 185 0 0 0
## 186 0 0 0
## 187 1 1 0
## 188 0 0 0
## 189 1 1 0
## 190 0 0 0
## 191 0 0 0
## 192 1 0 0
## 193 1 1 0
## 194 1 1 0
## 195 0 0 0
## 196 0 0 0
## 197 1 1 0
## 198 0 0 0
## 199 1 1 0
## 200 1 1 0
## 201 0 0 0
## 202 0 0 0
## 203 0 0 0
## 204 0 0 0
## 205 0 0 0
## 206 0 0 0
## 207 0 0 0
## 208 0 0 0
## 209 0 0 0
## 210 0 0 0
## 211 0 0 0
## 212 0 0 0
## 213 0 0 0
## 214 0 0 0
## 215 0 0 0
## 216 0 0 0
## 217 0 0 0
## 218 0 0 0
## 219 0 0 0
## 220 0 0 0
## 221 0 0 0
## 222 0 0 0
## 223 0 0 0
## 224 0 0 0
## 225 0 0 0
## 226 0 0 0
## 227 0 0 0
## 228 0 0 0
## 229 0 0 0
## 230 0 0 0
## 231 0 0 0
## 232 0 0 0
## 233 0 0 0
## 234 0 0 0
## 235 0 0 0
## 236 0 0 0
## 237 0 0 0
## 238 0 0 0
## 239 0 0 0
## 240 0 0 0
## 241 0 0 0
## 242 0 0 0
## 243 0 0 0
## 244 0 0 0
## 245 0 0 0
## 246 0 0 0
## 247 0 0 0
## 248 0 0 0
## 249 0 0 0
## 250 0 0 0
## 251 0 0 0
## 252 0 0 0
## 253 0 0 0
## 254 0 0 0
## 255 0 0 0
## 256 0 0 0
## 257 0 0 0
## 258 0 0 0
## 259 0 0 0
## 260 0 0 0
## 261 0 0 0
## 262 0 0 0
## 263 0 0 0
## 264 0 0 0
## 265 0 0 0
## 266 0 0 0
## 267 0 0 0
## 268 0 0 0
## 269 0 0 0
## 270 0 0 0
## 271 0 0 0
## 272 1 1 0
## 273 0 0 0
## 274 0 0 0
## 275 0 0 0
## 276 0 0 0
## 277 0 0 0
## 278 0 0 0
## 279 0 0 0
## 280 0 0 0
## 281 0 0 0
## 282 0 0 0
## 283 0 0 0
## 284 0 0 0
## 285 0 0 0
## 286 0 0 0
## 287 0 0 0
## 288 0 0 0
## 289 0 0 0
## 290 0 0 0
## 308 0 0 0
## 309 0 0 0
## 310 0 0 0
## 311 0 0 0
## 312 0 0 0
## 313 0 0 0
## 314 0 0 0
## 315 0 0 0
## 316 0 0 0
## 317 0 0 0
## 318 0 0 0
## 319 0 0 0
## 320 0 0 0
## 321 0 0 0
## 322 0 0 0
## 323 0 0 0
## 324 0 0 0
## 325 0 0 0
## 326 0 0 0
## 327 0 0 0
## 328 0 0 1
## 329 0 0 0
## 330 0 0 0
## 331 0 0 0
## 332 0 0 0
## 333 0 0 0
## 334 0 0 0
## 335 0 0 0
## 336 0 0 0
## 337 0 0 0
## 338 0 0 0
## 339 0 0 0
## 340 0 0 0
## 341 0 0 0
## 342 <NA> <NA> 1
## 343 <NA> <NA> 1
## 344 <NA> <NA> 1
## 345 <NA> <NA> 1
## 346 <NA> <NA> 1
## 347 <NA> <NA> 1
## 348 <NA> <NA> 1
## 349 <NA> <NA> 1
## 350 <NA> <NA> 1
## 351 <NA> <NA> 1
## 352 <NA> <NA> 1
## 353 <NA> <NA> 1
## 354 <NA> <NA> 1
## 355 <NA> <NA> 1
## 356 <NA> <NA> 1
## 357 <NA> <NA> 1
## 358 <NA> <NA> 1
## 359 <NA> <NA> 1
## 360 <NA> <NA> 1
## 361 <NA> <NA> 1
## 362 <NA> <NA> 1
## 363 <NA> <NA> 1
## 364 <NA> <NA> 1
## 365 <NA> <NA> 1
## 366 <NA> <NA> 1
## 367 <NA> <NA> 1
## 368 <NA> <NA> 1
## 369 <NA> <NA> 1
## 370 <NA> <NA> 1
## 371 <NA> <NA> 1
## 372 <NA> <NA> 1
## 373 <NA> <NA> 1
## 374 <NA> <NA> 1
## 375 <NA> <NA> 1
## 376 <NA> <NA> 1
## 377 <NA> <NA> 1
## 378 <NA> <NA> 1
## 379 <NA> <NA> 1
## 380 <NA> <NA> 1
## 381 <NA> <NA> 1
## 382 <NA> <NA> 1
## 383 <NA> <NA> 1
## 384 <NA> <NA> 1
## 385 <NA> <NA> 1
## 386 0 0 0
## 387 0 0 0
## 388 0 0 0
## 389 0 0 0
## 390 0 0 0
## 391 0 0 0
## 392 0 0 0
## 393 0 0 0
## 394 0 0 0
## 395 0 0 0
## 396 0 0 0
## 397 0 0 0
## 398 0 0 0
## 399 0 0 0
## 400 0 0 0
## 401 0 0 0
## 402 0 0 0
## 403 0 0 0
## 404 0 0 0
## 405 0 0 0
## 406 0 0 0
## 407 0 0 0
## 408 0 0 0
## 409 0 0 0
## 410 0 0 0
## 411 0 0 0
## 412 0 0 0
## 413 0 0 0
## 414 0 0 0
## 415 0 0 0
## 416 0 0 0
## 417 0 0 0
## 418 0 0 0
## 419 0 0 0
## 420 0 0 0
## 421 0 0 0
## 422 0 0 0
## 423 0 0 0
## 424 0 0 0
## 425 0 0 0
## 426 0 0 0
## 427 0 0 0
## 428 0 0 0
## 429 0 0 0
## 430 0 0 0
## 431 0 0 0
## 432 0 0 0
## 433 0 0 0
## 434 0 0 0
## 435 0 0 0
## 436 0 0 0
## 437 0 0 0
## 438 0 0 0
## 439 0 0 0
## 440 0 0 0
## 441 0 0 0
## 442 0 0 0
## 443 0 0 0
## 444 0 0 0
## 445 0 0 0
## 446 0 0 0
## 447 0 0 0
## 448 0 0 0
## 449 0 0 0
## 450 0 0 0
## 451 0 0 0
## 452 0 0 0
## 453 0 0 0
## 454 0 0 0
## 455 0 0 0
## 456 0 0 0
## 457 0 0 0
## 458 0 0 0
## 459 0 0 0
## 460 0 0 0
## 461 0 0 0
## 462 0 0 0
## 463 0 0 0
## 464 0 0 0
## 465 0 0 0
## 466 0 0 0
## 467 0 0 0
## 468 0 0 0
## 469 0 0 0
## 470 0 0 0
## 471 0 0 0
## 472 0 0 0
## 473 0 0 0
## 474 0 0 0
## 475 0 0 0
## 476 0 0 0
## 477 0 0 0
## 478 0 0 0
## 479 0 0 0
## 480 0 0 0
## 481 0 0 0
## 482 0 0 0
## 483 0 0 0
## 484 0 0 0
## 485 0 0 0
## 486 0 0 0
## 487 0 0 0
## 488 0 0 0
## 489 0 0 0
## 490 0 0 0
## 491 0 0 0
## 492 0 0 0
## 493 1 0 1
## 494 0 0 0
## 495 0 0 1
## 496 0 0 0
## 497 0 0 0
## 498 1 0 0
## 499 0 0 1
## 500 0 0 0
## 501 0 0 1
## 502 0 0 0
## 503 0 0 0
## 504 0 0 0
## 505 0 0 0
## 506 0 0 0
## 507 0 0 0
## 508 0 0 0
## 509 0 0 0
## 510 0 0 0
## 511 0 0 0
## 512 1 1 0
## 513 1 1 0
## 514 1 1 0
## 515 0 1 0
## 516 1 0 0
## 517 1 1 0
## 518 1 1 0
## 519 1 1 0
## 520 1 1 0
## 521 1 1 0
## 522 0 0 0
## 523 0 0 0
## 524 0 0 0
## 525 0 0 0
## 526 0 0 0
## 527 0 0 0
## 528 1 1 0
## 529 1 1 0
## 530 0 0 0
## 531 1 1 0
## 532 1 1 0
## 533 0 0 0
## 534 0 0 0
## 535 0 0 0
## 536 0 0 0
## 537 0 0 0
## 538 0 0 0
## 539 0 0 0
## 540 0 0 0
## 541 0 0 0
## 542 0 0 0
## 543 0 0 0
## 544 0 0 0
## 545 0 0 0
## 546 0 0 0
## 547 0 0 0
## 548 0 0 0
## 549 0 0 0
## 550 0 0 0
## 551 0 0 0
## 552 0 0 0
## 553 0 0 0
## 554 0 0 0
## 555 0 0 0
## 556 0 0 0
## 557 0 0 0
## 558 0 0 0
## 559 0 0 0
## 560 0 0 0
## 561 0 0 0
## 562 0 0 0
## 563 0 0 0
## 564 0 0 0
## 565 0 0 0
## 566 0 0 0
## 567 0 0 0
## 568 0 0 0
## 569 0 0 0
## 570 0 0 0
## 571 0 0 0
## 572 0 0 0
## 573 0 0 0
## 574 0 0 0
## 575 0 0 0
## 576 0 0 0
## 577 0 0 0
## 578 0 0 0
## 579 0 0 0
## 580 0 0 0
## 581 0 0 0
## 582 0 0 0
## 583 0 0 0
## 584 0 0 0
## 585 0 0 0
## 586 0 0 0
## 587 0 0 0
## 588 0 0 0
## 589 0 0 0
## 590 0 0 0
## 591 0 0 0
## 592 0 0 0
## 593 0 0 0
## 594 0 0 0
## 595 0 0 0
## 596 0 0 0
## 597 0 0 0
## 598 0 0 0
## 599 0 0 0
## 600 0 0 0
## 601 0 0 0
## 602 0 0 0
## 603 0 0 0
## 604 0 0 0
## 605 0 0 0
## 606 0 0 0
## 607 0 0 0
## 608 0 0 0
## 609 0 0 0
## 610 0 0 0
## 611 0 0 0
## 612 0 0 0
## 613 0 0 0
## 614 0 0 0
## 615 0 0 0
## 616 0 0 0
## 617 0 0 0
## 618 0 0 0
## 619 0 0 0
## 620 0 0 0
## 621 0 0 0
## 622 0 0 0
## 623 0 0 0
## 624 0 0 0
## 625 0 0 0
## 626 0 0 0
## 627 0 0 0
## 628 0 0 0
## 629 0 0 0
## 630 0 0 0
## 631 0 0 0
## 632 0 0 0
## 633 0 0 0
## 634 0 0 0
## 635 0 0 0
## 636 0 0 0
## 637 0 0 0
## 638 0 0 0
## 639 0 0 0
## 640 0 0 0
## 641 0 0 0
## 642 0 0 0
## 643 0 0 0
## 644 0 0 0
## 645 0 0 0
## 646 0 0 0
## 647 0 0 0
dim(complete)
## [1] 630 36
dim(Soybean)
## [1] 683 36
We can use a correlation plot to see which variable are colinear and can be combined or eliminated.
data <- sapply(Soybean, as.numeric)
data <- as.data.frame(data)
results <- round(cor(data, use = 'complete.obs'),2)
corrplot:: corrplot(results)
We see that plant growth, leaves, leaf.mard, and leaf.halo are are all strongly colinear. Additionally, canker.lesions, fruiting bodies, and fruit spots are all similarly colinear with mold, seed discoloration, and shriveling. These data points could likely be combined into a singular ‘health’ dummy variable.
Additionally, we can impute data using the K-nearest neighbor model for missing values, which finds the likely value of a data point by looking at the same data point when compared to other vectors. However, a simpler approach is more appropriate for some data points. We can use a variable with high correlation to the data vector in question, compute a linear regression model, and fill in the missing data. The accuracy of that depends entirely on the correlation between two data points. If a data point has no correlation with any of the other vectors (including the target vector), then it’s likely that it can be discarded altogether.