## 'data.frame': 214 obs. of 10 variables:
## $ RI : num 1.52 1.52 1.52 1.52 1.52 ...
## $ Na : num 13.6 13.9 13.5 13.2 13.3 ...
## $ Mg : num 4.49 3.6 3.55 3.69 3.62 3.61 3.6 3.61 3.58 3.6 ...
## $ Al : num 1.1 1.36 1.54 1.29 1.24 1.62 1.14 1.05 1.37 1.36 ...
## $ Si : num 71.8 72.7 73 72.6 73.1 ...
## $ K : num 0.06 0.48 0.39 0.57 0.55 0.64 0.58 0.57 0.56 0.57 ...
## $ Ca : num 8.75 7.83 7.78 8.22 8.07 8.07 8.17 8.24 8.3 8.4 ...
## $ Ba : num 0 0 0 0 0 0 0 0 0 0 ...
## $ Fe : num 0 0 0 0 0 0.26 0 0 0 0.11 ...
## $ Type: Factor w/ 6 levels "1","2","3","5",..: 1 1 1 1 1 1 1 1 1 1 ...
## [1] "Glass category 1: building_windows_float_processed "
## [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [36] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1] "Glass category 2: building_windows_non_float_processed "
## [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [36] 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1
## [71] 1 1 1 1 1 1
## [1] "Glass category 3: vehicle_windows_float_processed "
## [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1] "Glass category 5: containers"
## [1] 1 0 0 0 0 0 0 0 0 0 0 0 0
## [1] "Glass category 6: tableware"
## [1] 1 1 1 1 0 0 0 0 0
## [1] "Glass category 7: headlamps"
## [1] 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [1] "skewness for transformed RI"
## [1] 1.56566
## [1] "skewness for transformed Si"
## [1] -0.6509057
## [1] "skewness for transformed Ca"
## [1] -0.1939557
## [1] "skewness for transformed K"
## [1] 6.460089
## [1] "skewness for transformed Ba"
## [1] 3.36868
## $RI
## Box-Cox Transformation
##
## 214 data points used to estimate Lambda
##
## Input data summary:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.511 1.517 1.518 1.518 1.519 1.534
##
## Largest/Smallest: 1.02
## Sample Skewness: 1.6
##
## Estimated Lambda: -2
##
##
## $Na
## Box-Cox Transformation
##
## 214 data points used to estimate Lambda
##
## Input data summary:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 10.73 12.91 13.30 13.41 13.82 17.38
##
## Largest/Smallest: 1.62
## Sample Skewness: 0.448
##
## Estimated Lambda: -0.1
## With fudge factor, Lambda = 0 will be used for transformations
##
##
## $Mg
## Box-Cox Transformation
##
## 214 data points used to estimate Lambda
##
## Input data summary:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000 2.115 3.480 2.685 3.600 4.490
##
## Lambda could not be estimated; no transformation is applied
##
##
## $Al
## Box-Cox Transformation
##
## 214 data points used to estimate Lambda
##
## Input data summary:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.290 1.190 1.360 1.445 1.630 3.500
##
## Largest/Smallest: 12.1
## Sample Skewness: 0.895
##
## Estimated Lambda: 0.5
##
##
## $Si
## Box-Cox Transformation
##
## 214 data points used to estimate Lambda
##
## Input data summary:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 69.81 72.28 72.79 72.65 73.09 75.41
##
## Largest/Smallest: 1.08
## Sample Skewness: -0.72
##
## Estimated Lambda: 2
##
##
## $K
## Box-Cox Transformation
##
## 214 data points used to estimate Lambda
##
## Input data summary:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000 0.1225 0.5550 0.4971 0.6100 6.2100
##
## Lambda could not be estimated; no transformation is applied
##
##
## $Ca
## Box-Cox Transformation
##
## 214 data points used to estimate Lambda
##
## Input data summary:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 5.430 8.240 8.600 8.957 9.172 16.190
##
## Largest/Smallest: 2.98
## Sample Skewness: 2.02
##
## Estimated Lambda: -1.1
##
##
## $Ba
## Box-Cox Transformation
##
## 214 data points used to estimate Lambda
##
## Input data summary:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000 0.000 0.000 0.175 0.000 3.150
##
## Lambda could not be estimated; no transformation is applied
##
##
## $Fe
## Box-Cox Transformation
##
## 214 data points used to estimate Lambda
##
## Input data summary:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00000 0.00000 0.00000 0.05701 0.10000 0.51000
##
## Lambda could not be estimated; no transformation is applied
## RI Na Mg Al Si K
## 1 0.0001102115 0.005295597 0.001743199 0.0004071898 0.9999842 2.329441e-05
## 2 0.0001069841 0.005252677 0.001361385 0.0004410094 0.9999850 1.815180e-04
## 3 0.0001060694 0.005080150 0.001332929 0.0004659497 0.9999860 1.464345e-04
## 4 0.0001073436 0.005012061 0.001400038 0.0004309316 0.9999862 2.162661e-04
## 5 0.0001059414 0.004970262 0.001355867 0.0004170799 0.9999865 2.060018e-04
## 6 0.0001061040 0.004804939 0.001356203 0.0004781618 0.9999873 2.404348e-04
## Ca Ba Fe Type
## 1 0.0003204744 0 0.000000e+00 0.0003882402
## 2 0.0003080446 0 0.000000e+00 0.0003781625
## 3 0.0003056029 0 0.000000e+00 0.0003754730
## 4 0.0003109311 0 0.000000e+00 0.0003794141
## 5 0.0003062572 0 0.000000e+00 0.0003745488
## 6 0.0003071817 0 9.767664e-05 0.0003756794
## integer(0)
## Created from 214 samples and 10 variables
##
## Pre-processing:
## - Box-Cox transformation (6)
## - centered (10)
## - ignored (0)
## - principal component signal extraction (10)
## - scaled (10)
##
## Lambda estimates for Box-Cox transformation:
## -2, -0.1, 0.5, 2, -1.1, -0.4
## PCA needed 7 components to capture 95 percent of the variance
## PC1 PC2 PC3 PC4 PC5 PC6 PC7
## 1 -1.7516 -0.0866 0.1803 1.7129 -0.2080 0.3577 0.4852
## 2 -0.3364 -1.2469 0.5573 0.9179 -0.1413 0.2050 0.0370
## 3 -0.0856 -1.5730 0.6492 0.3741 -0.1057 0.4656 0.3514
## 4 -0.7794 -1.1542 0.1637 0.4750 -0.4126 0.4812 0.0815
## 5 -0.6442 -1.3439 0.5764 0.1911 -0.3405 0.5404 -0.1597
## 6 -0.7322 -1.5567 -0.7533 -1.0335 1.8054 0.0734 0.1932
## 7 -0.7503 -1.2917 0.6387 0.2039 -0.3716 0.4825 -0.3342
## 8 -0.9090 -1.2835 0.7455 0.0081 -0.4119 0.5832 -0.4864
## 9 -0.6679 -0.5951 0.0101 1.4368 -0.3187 -0.0298 0.1866
## 10 -0.9118 -1.1252 -0.0409 -0.3801 0.4754 0.3617 -0.0025
## 11 -0.6731 -1.6282 -0.5379 -1.2339 1.5988 0.1706 0.0314
## 12 -0.9454 -1.1486 0.2631 -0.2082 -0.5652 0.7434 0.0123
## 13 -0.7425 -1.6099 -0.3464 -1.1218 1.6246 0.0673 -0.2721
## 14 -1.0921 -1.1582 -0.0503 -0.7993 0.9880 0.3190 -0.2284
## 15 -0.8995 -1.2408 0.3641 -0.5699 -0.5837 0.9290 0.0094
## 'data.frame': 683 obs. of 36 variables:
## $ Class : Factor w/ 19 levels "2-4-d-injury",..: 11 11 11 11 11 11 11 11 11 11 ...
## $ date : Factor w/ 7 levels "0","1","2","3",..: 7 5 4 4 7 6 6 5 7 5 ...
## $ plant.stand : Ord.factor w/ 2 levels "0"<"1": 1 1 1 1 1 1 1 1 1 1 ...
## $ precip : Ord.factor w/ 3 levels "0"<"1"<"2": 3 3 3 3 3 3 3 3 3 3 ...
## $ temp : Ord.factor w/ 3 levels "0"<"1"<"2": 2 2 2 2 2 2 2 2 2 2 ...
## $ hail : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 2 1 1 ...
## $ crop.hist : Factor w/ 4 levels "0","1","2","3": 2 3 2 2 3 4 3 2 4 3 ...
## $ area.dam : Factor w/ 4 levels "0","1","2","3": 2 1 1 1 1 1 1 1 1 1 ...
## $ sever : Factor w/ 3 levels "0","1","2": 2 3 3 3 2 2 2 2 2 3 ...
## $ seed.tmt : Factor w/ 3 levels "0","1","2": 1 2 2 1 1 1 2 1 2 1 ...
## $ germ : Ord.factor w/ 3 levels "0"<"1"<"2": 1 2 3 2 3 2 1 3 2 3 ...
## $ plant.growth : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
## $ leaves : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
## $ leaf.halo : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 1 1 1 1 ...
## $ leaf.marg : Factor w/ 3 levels "0","1","2": 3 3 3 3 3 3 3 3 3 3 ...
## $ leaf.size : Ord.factor w/ 3 levels "0"<"1"<"2": 3 3 3 3 3 3 3 3 3 3 ...
## $ leaf.shread : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ leaf.malf : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ leaf.mild : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 1 1 1 1 ...
## $ stem : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
## $ lodging : Factor w/ 2 levels "0","1": 2 1 1 1 1 1 2 1 1 1 ...
## $ stem.cankers : Factor w/ 4 levels "0","1","2","3": 4 4 4 4 4 4 4 4 4 4 ...
## $ canker.lesion : Factor w/ 4 levels "0","1","2","3": 2 2 1 1 2 1 2 2 2 2 ...
## $ fruiting.bodies: Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
## $ ext.decay : Factor w/ 3 levels "0","1","2": 2 2 2 2 2 2 2 2 2 2 ...
## $ mycelium : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ int.discolor : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 1 1 1 1 ...
## $ sclerotia : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ fruit.pods : Factor w/ 4 levels "0","1","2","3": 1 1 1 1 1 1 1 1 1 1 ...
## $ fruit.spots : Factor w/ 4 levels "0","1","2","4": 4 4 4 4 4 4 4 4 4 4 ...
## $ seed : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ mold.growth : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ seed.discolor : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ seed.size : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ shriveling : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ roots : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 1 1 1 1 ...
## 'data.frame': 683 obs. of 19 variables:
## $ hail : num 0 0 0 0 0 0 0 1 0 0 ...
## $ sever : num 1 2 2 2 1 1 1 1 1 2 ...
## $ seed.tmt : num 0 1 1 0 0 0 1 0 1 0 ...
## $ germ : num 0 1 2 1 2 1 0 2 1 2 ...
## $ leaf.halo : num 0 0 0 0 0 0 0 0 0 0 ...
## $ leaf.marg : num 2 2 2 2 2 2 2 2 2 2 ...
## $ leaf.size : num 2 2 2 2 2 2 2 2 2 2 ...
## $ leaf.shread : num 0 0 0 0 0 0 0 0 0 0 ...
## $ leaf.malf : num 0 0 0 0 0 0 0 0 0 0 ...
## $ leaf.mild : num 0 0 0 0 0 0 0 0 0 0 ...
## $ lodging : num 1 0 0 0 0 0 1 0 0 0 ...
## $ fruiting.bodies: num 1 1 1 1 1 1 1 1 1 1 ...
## $ fruit.pods : num 0 0 0 0 0 0 0 0 0 0 ...
## $ fruit.spots : num 4 4 4 4 4 4 4 4 4 4 ...
## $ seed : num 0 0 0 0 0 0 0 0 0 0 ...
## $ mold.growth : num 0 0 0 0 0 0 0 0 0 0 ...
## $ seed.discolor : num 0 0 0 0 0 0 0 0 0 0 ...
## $ seed.size : num 0 0 0 0 0 0 0 0 0 0 ...
## $ shriveling : num 0 0 0 0 0 0 0 0 0 0 ...
## hail sever seed.tmt germ
## 0.22597865 0.73309609 0.51957295 1.04903678
## leaf.halo leaf.marg leaf.size leaf.shread
## 1.20200334 0.77295492 1.28380634 0.16466552
## leaf.malf leaf.mild lodging fruiting.bodies
## 0.07512521 0.10434783 0.07473310 0.18024263
## fruit.pods fruit.spots seed mold.growth
## 0.50417362 1.02079723 0.19458545 0.11336717
## seed.discolor seed.size shriveling
## 0.11091854 0.09983080 0.06585789
font_add_google(name = "Corben", family = "corben", regular.wt = 400, bold.wt = 700)
data(Glass) str(Glass) #create another set of Glass to perform transformations on Glass_ready<-Glass #Prepare labels for ggplot label_set<-c(“RI”,“Na”,“Mg”,“Al”,“Si”,“K”,“Ca”,“Ba”,“Fe”) label_paste<-function(x){label_set<-paste0(x," level“)} label_set<-sapply(label_set,label_paste) skew_num<-apply(Glass[,(1:9)],2,skewness) skew_num<-round(skew_num,digits=3) skew_paste<-function(x){skew_num<-paste0(”original skewness is “,x)} skew_num<-sapply(skew_num,skew_paste) plotter <- function(df, x.axis,lab_num,colorbar=‘#dee253’) {ggplot(df, aes_string(x = x.axis)) + geom_histogram(alpha=.6,color=‘gray’,fill=colorbar) + ylab(label_set[lab_num])+xlab(skew_num[lab_num])+ theme(axis.text.x = element_text(angle = 30, hjust = .9),text = element_text(family =”corben“,color=‘#249382’,size=16)) }
plotter(Glass,Glass[,1],1) plotter(Glass,Glass[,2],2) plotter(Glass,Glass[,3],3) plotter(Glass,Glass[,4],4) plotter(Glass,Glass[,5],5) plotter(Glass,Glass[,6],6) plotter(Glass,Glass[,7],7) plotter(Glass,Glass[,8],8) plotter(Glass,Glass[,9],9)
Mg_Var<-Glass\(Mg Mg_Var[Mg_Var<2]<-0 Mg_Var[Mg_Var>2]<-1 print('Glass category 1: building_windows_float_processed ' ) Mg_Var[which(Glass\)Type==1)] print(‘Glass category 2: building_windows_non_float_processed’ ) Mg_Var[which(Glass$Type==2)] print(‘Glass category 3: vehicle_windows_float_processed’ ) Mg_Var[which(Glass$Type==3)] print(‘Glass category 5: containers’) Mg_Var[which(Glass$Type==5)] print(‘Glass category 6: tableware’ ) Mg_Var[which(Glass$Type==6)] print(‘Glass category 7: headlamps’ ) Mg_Var[which(Glass$Type==7)]
Glass[,10]<-as.numeric(levels(Glass[,10]))[Glass[,10]] Glass_ready[,10]<-as.numeric(levels(Glass_ready[,10]))[Glass_ready[,10]] correl.matrix<-cor(Glass, use= “complete.obs”) corrplot(correl.matrix,method= “color” , type= “upper”)
Glass_ready\(Al<-Glass_ready\)Al^.5 #box cox transformations———————— transformed<-BoxCoxTrans(Glass\(RI) Glass_ready\)RI<-predict(transformed,Glass\(RI) print('skewness for transformed RI') skewness(Glass_ready\)RI)
transformed<-BoxCoxTrans(Glass\(Si) Glass_ready\)Si<-predict(transformed,Glass\(Si) print('skewness for transformed Si') skewness(Glass_ready\)Si)
transformed<-BoxCoxTrans(Glass\(Ca) Glass_ready\)Ca<-predict(transformed,Glass\(Ca) print('skewness for transformed Ca') skewness(Glass_ready\)Ca)
transformed<-BoxCoxTrans(Glass\(K) Glass_ready\)K<-predict(transformed,Glass\(K) print('skewness for transformed K') skewness(Glass_ready\)K)
transformed<-BoxCoxTrans(Glass\(Ba) Glass_ready\)Ba<-predict(transformed,Glass\(Ba) print('skewness for transformed Ba') skewness(Glass_ready\)Ba) #————————————
plotter(Glass,Glass[,1],1) plotter(Glass_ready,Glass_ready[,1],1,‘red’) plotter(Glass,Glass[,4],4) plotter(Glass_ready,Glass_ready[,4],4,‘red’) plotter(Glass,Glass[,5],5) plotter(Glass_ready,Glass_ready[,5],5,‘red’) plotter(Glass,Glass[,7],7) plotter(Glass_ready,Glass_ready[,7],7,‘red’) plotter(Glass,Glass[,6],6) plotter(Glass_ready,Glass_ready[,6],6,‘red’) plotter(Glass,Glass[,8],8) plotter(Glass_ready,Glass_ready[,8],8,‘red’)
transformations<-apply(Glass[,-10],2,BoxCoxTrans) transformations sp_sign_transform<-spatialSign(Glass_ready)
head(sp_sign_transform)
#any vars near zero? nearZeroVar(Glass) #no
pca_data<-preProcess(x=Glass, method = c(“BoxCox”,“center”,“scale”,“pca”)) pca_data
round(predict(pca_data,Glass)[1:15,],4)
data(Soybean) str(Soybean) variable_index<-as.data.frame(1:36) variable_index<-cbind(variable_index,variable_index) colnames(variable_index)<-c(‘variable’,‘number_missing’) variable_index[,1]<-colnames(Soybean) for(i in c(1:36)){ this<-Soybean[is.na(Soybean[,i]),] #Find how many NAs are in each column variable_index[i,2]<-length(this[,1]) } ggplot(data=variable_index,aes(x=variable,y=number_missing)) + geom_bar(alpha=.6,color=‘gray’,fill=‘#249382’,stat=‘identity’) + theme(axis.text.x = element_text(angle = 30, hjust = .9),text = element_text(family = “corben”,color=‘#249382’,size=16))+ylim(0,683) variable_lacking_index<-variable_index[variable_index[,2]>68,] Soybean_lacking_set<-Soybean[,(colnames(Soybean) %in% variable_lacking_index[,1])] defactorer<-function(x){as.numeric(levels(x))[x]} for(i in 1:19){ Soybean_lacking_set[,i]<-defactorer(Soybean_lacking_set[,i]) } str(Soybean_lacking_set) apply(Soybean_lacking_set,2,mean,na.rm=TRUE)
Soybean_lacking_setb<-cbind(Soybean\(Class,Soybean_lacking_set) colnames(Soybean_lacking_setb)[1]<- c("Class") Soybean_lacking_setb\)Class<-as.numeric(Soybean_lacking_setb$Class) correl.matrix<-cor(Soybean_lacking_setb, use= “complete.obs”) corrplot(correl.matrix,method= “color” , type= “upper”)
Soybean_lacking_set[!is.na(Soybean_lacking_set)]<-0 Soybean_lacking_set[is.na(Soybean_lacking_set)]<-1 Soybean_lacking_set<-cbind(Soybean\(Class,Soybean_lacking_set) colnames(Soybean_lacking_set)[1]<- c("Class") Soybean_lacking_set\)Class<-as.numeric(Soybean_lacking_set\(Class) Soybean\)Class<-as.numeric(Soybean$Class)
correl.matrix<-cor(Soybean_lacking_set, use= “complete.obs”) corrplot(correl.matrix,method= “color” , type= “upper”) Soybean_full_cases_vars_set<-Soybean[,!((colnames(Soybean) %in% variable_lacking_index[,1]))] for(i in 2:17){ Soybean_full_cases_vars_set[,i]<-defactorer(Soybean_full_cases_vars_set[,i]) }
correl.matrix<-cor(Soybean_full_cases_vars_set, use= “complete.obs”) corrplot(correl.matrix,method= “color” , type= “upper”)
col_label<-colnames(Soybean) plotter <- function(df, x.axis,lab_num,colorbar=‘#249382’) {ggplot(df, aes_string(x = x.axis)) + geom_histogram(alpha=.6,color=‘gray’,fill=colorbar,stat=‘count’) + ylab(col_label[lab_num])+xlab(‘’)+ theme(axis.text.x = element_text(angle = 30, hjust = .9),text = element_text(family = “corben”,color=’#dee253’,size=16)) }
#ggplot won’t accept a for loop plotter(Soybean,Soybean[,1],1) plotter(Soybean,Soybean[,2],2) plotter(Soybean,Soybean[,3],3) plotter(Soybean,Soybean[,4],4) plotter(Soybean,Soybean[,5],5) plotter(Soybean,Soybean[,6],6) plotter(Soybean,Soybean[,7],7) plotter(Soybean,Soybean[,8],8) plotter(Soybean,Soybean[,9],9) plotter(Soybean,Soybean[,10],10) plotter(Soybean,Soybean[,11],11) plotter(Soybean,Soybean[,12],12) plotter(Soybean,Soybean[,13],13) plotter(Soybean,Soybean[,14],14) plotter(Soybean,Soybean[,15],15) plotter(Soybean,Soybean[,16],16) plotter(Soybean,Soybean[,17],17) plotter(Soybean,Soybean[,18],18) plotter(Soybean,Soybean[,19],19) plotter(Soybean,Soybean[,20],20) plotter(Soybean,Soybean[,21],21) plotter(Soybean,Soybean[,22],22) plotter(Soybean,Soybean[,23],23) plotter(Soybean,Soybean[,24],24) plotter(Soybean,Soybean[,25],25) plotter(Soybean,Soybean[,26],26) plotter(Soybean,Soybean[,27],27) plotter(Soybean,Soybean[,28],28) plotter(Soybean,Soybean[,29],29) plotter(Soybean,Soybean[,30],30) plotter(Soybean,Soybean[,31],31) plotter(Soybean,Soybean[,32],32) plotter(Soybean,Soybean[,33],33) plotter(Soybean,Soybean[,34],34) plotter(Soybean,Soybean[,35],35) plotter(Soybean,Soybean[,36],36) ```