2월 24일자 출석부에만 나오는 사람들의 분포

  group mark1 mark2
15 Red 0224 NA
19 Black 0224 NA
20 Red 0224 NA
58 Red 0224 NA
Red Black
3 1

새로 들어온 사람에게만 랜덤화 적용

학번

class_roll %$%
  table(.$group, .$id %>% substr(1, 4)) %>%
  pander
  2013 2014 2015 2016 2017 2018 2019
Red 2 1 2 0 0 2 33
Black 0 0 0 1 2 3 34
class_roll %$%
  substr(.$id, 1, 4) %>%
  `>=`(2019) %>%
  ifelse("younger_19", "older_19") %>%
  factor(levels = c("younger_19", "older_19")) %>%
  table(class_roll$group, .) %>%
  pander
  younger_19 older_19
Red 33 7
Black 34 6

학번 홀짝

class_roll$id %>%
  as.numeric %>%
  `%%`(2) %>%
  factor(levels = c(1, 0), labels = c("홀", "짝")) %>%
  table(class_roll$group, .) %>%
  pander
 
Red 20 20
Black 21 19

e-mail 서비스업체

class_roll$email %>%
  strsplit("@", fixed = TRUE) %>%
  sapply("[", 2) %>%
  table(class_roll$group, .) %>%
  pander
  daum.net gmail.com hanmail.net nate.com naver.com
Red 2 3 1 1 33
Black 0 1 0 1 38

전화번호의 분포

cell_numbers <- class_roll$cell_no %>%
  substr(start = 10, stop = 13) %>%
  sapply(as.numeric)
cut_label <- paste(paste0(0:9, "000"), paste0(0:9, "999"), 
                   sep = "~")
cell_numbers %>%
  cut(labels = cut_label, 
      breaks = seq(0, 10000, by = 1000)) %>%
  table(class_roll$group, .) %>%
#   t %>%
  pander
  0000~0999 1000~1999 2000~2999 3000~3999 4000~4999 5000~5999 6000~6999 7000~7999 8000~8999 9000~9999
Red 4 2 2 2 5 7 5 5 3 5
Black 1 4 4 3 5 6 10 2 4 1
cell_numbers %>%
  hist(main = "Histogram of Cell Phine Numbers")

cell_numbers %>%
  cut(labels = cut_label, 
      breaks = seq(0, 10000, by = 1000)) %>%
  table %>%
  chisq.test
## 
##  Chi-squared test for given probabilities
## 
## data:  .
## X-squared = 13.75, df = 9, p-value = 0.1315

성씨 분포

f_name <- class_roll$name %>%
  substring(first = 1, last = 1) 
f_name %>%
  table(class_roll$group, .) %>%
  pander
 
Red 0 0 14 0 0 1 1 0 1 1 3 2 1 0 4 2 1 0 4 0 1 2 0 0 1 1
Black 3 1 11 1 1 0 1 1 0 0 5 0 0 2 1 3 0 1 3 1 0 2 1 1 0 1

많이 나오는 성씨

f_name %>%
  `%in%`(c("김", "이", "박")) %>%
  ifelse(f_name, "기타") %>%
  factor(levels = c("김", "이", "박", "기타")) %>%
  table(class_roll$group, .) %>%
  pander
  기타
Red 14 3 1 22
Black 11 5 1 23

학과

# pander(class_roll)
class_roll %$%
  table(.$group, .$dept) %>%
  pander
  간호학 금융정보통계학과 데이터과학융합스쿨 사회복지학부 소프트웨어융합대학 심리학과 언어병리학전공 일본학과 전자공학과 청각학전공 화학과
Red 29 2 3 1 1 0 0 1 0 2 1
Black 31 0 1 0 4 1 1 0 1 1 0