A Probability space: \((\Omega,\mathcal{F},P)\), \(\omega \in \Omega\) events; \(\mathcal{F}=\sigma(\Omega)\), a \(\sigma\)-algebra of \(\Omega\), namely a collection of events in \(\Omega\); \(P(\mathcal{A})\) a probability measure defined on any \(\mathcal{A}\subset \mathcal{F}\).
A random variable \(X(\omega)\) has multiple possible outcomes, say in a set \(\mathcal{X}\) (a state space). \(X^{-1}(\mathcal{X}) \subset \mathcal{F}\).
Formal definition: a random variable \(X\) is a measurable function \(X: \Omega \rightarrow \mathcal{X}\) from the sample space \(\Omega\) to another measurable space \(\mathcal{X}\). The probability of this random variable \(P(\omega \in \Omega: X(\omega) \in \mathcal{X})\).
Conditional Probability: For events \(\mathcal{A}\) and \(\mathcal{B}\) in \((\Omega,\mathcal{F},P)\) such that \(P(\mathcal{B})>0\), the conditional probability: \[P(\mathcal{A}|\mathcal{B})=\frac{P(\mathcal{A}\cap\mathcal{B})}{P(\mathcal{B})},\;\mbox{or }P(\mathcal{A}|\mathcal{B})=\frac{P(\mathcal{B}|\mathcal{A}) P(\mathcal{A})}{P(\mathcal{B})}.\]