library(mlbench)
data(Soybean)
str(Soybean)
## 'data.frame': 683 obs. of 36 variables:
## $ Class : Factor w/ 19 levels "2-4-d-injury",..: 11 11 11 11 11 11 11 11 11 11 ...
## $ date : Factor w/ 7 levels "0","1","2","3",..: 7 5 4 4 7 6 6 5 7 5 ...
## $ plant.stand : Ord.factor w/ 2 levels "0"<"1": 1 1 1 1 1 1 1 1 1 1 ...
## $ precip : Ord.factor w/ 3 levels "0"<"1"<"2": 3 3 3 3 3 3 3 3 3 3 ...
## $ temp : Ord.factor w/ 3 levels "0"<"1"<"2": 2 2 2 2 2 2 2 2 2 2 ...
## $ hail : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 2 1 1 ...
## $ crop.hist : Factor w/ 4 levels "0","1","2","3": 2 3 2 2 3 4 3 2 4 3 ...
## $ area.dam : Factor w/ 4 levels "0","1","2","3": 2 1 1 1 1 1 1 1 1 1 ...
## $ sever : Factor w/ 3 levels "0","1","2": 2 3 3 3 2 2 2 2 2 3 ...
## $ seed.tmt : Factor w/ 3 levels "0","1","2": 1 2 2 1 1 1 2 1 2 1 ...
## $ germ : Ord.factor w/ 3 levels "0"<"1"<"2": 1 2 3 2 3 2 1 3 2 3 ...
## $ plant.growth : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
## $ leaves : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
## $ leaf.halo : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 1 1 1 1 ...
## $ leaf.marg : Factor w/ 3 levels "0","1","2": 3 3 3 3 3 3 3 3 3 3 ...
## $ leaf.size : Ord.factor w/ 3 levels "0"<"1"<"2": 3 3 3 3 3 3 3 3 3 3 ...
## $ leaf.shread : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ leaf.malf : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ leaf.mild : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 1 1 1 1 ...
## $ stem : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
## $ lodging : Factor w/ 2 levels "0","1": 2 1 1 1 1 1 2 1 1 1 ...
## $ stem.cankers : Factor w/ 4 levels "0","1","2","3": 4 4 4 4 4 4 4 4 4 4 ...
## $ canker.lesion : Factor w/ 4 levels "0","1","2","3": 2 2 1 1 2 1 2 2 2 2 ...
## $ fruiting.bodies: Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
## $ ext.decay : Factor w/ 3 levels "0","1","2": 2 2 2 2 2 2 2 2 2 2 ...
## $ mycelium : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ int.discolor : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 1 1 1 1 ...
## $ sclerotia : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ fruit.pods : Factor w/ 4 levels "0","1","2","3": 1 1 1 1 1 1 1 1 1 1 ...
## $ fruit.spots : Factor w/ 4 levels "0","1","2","4": 4 4 4 4 4 4 4 4 4 4 ...
## $ seed : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ mold.growth : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ seed.discolor : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ seed.size : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ shriveling : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ roots : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 1 1 1 1 ...
Degenerate distributions are those where the predictor variable has a single unique value or a handful of unique values that occur with very low frequencies.
S1 <- Soybean[,2:36]
par(mfrow = c(3, 6))
for (i in 1:ncol(S1)) {
smoothScatter(S1[ ,i], ylab = names(S1[i]))
}
nearZeroVar(S1, names = TRUE, saveMetrics=T)
## freqRatio percentUnique zeroVar nzv
## date 1.137405 1.0248902 FALSE FALSE
## plant.stand 1.208191 0.2928258 FALSE FALSE
## precip 4.098214 0.4392387 FALSE FALSE
## temp 1.879397 0.4392387 FALSE FALSE
## hail 3.425197 0.2928258 FALSE FALSE
## crop.hist 1.004587 0.5856515 FALSE FALSE
## area.dam 1.213904 0.5856515 FALSE FALSE
## sever 1.651282 0.4392387 FALSE FALSE
## seed.tmt 1.373874 0.4392387 FALSE FALSE
## germ 1.103627 0.4392387 FALSE FALSE
## plant.growth 1.951327 0.2928258 FALSE FALSE
## leaves 7.870130 0.2928258 FALSE FALSE
## leaf.halo 1.547511 0.4392387 FALSE FALSE
## leaf.marg 1.615385 0.4392387 FALSE FALSE
## leaf.size 1.479638 0.4392387 FALSE FALSE
## leaf.shread 5.072917 0.2928258 FALSE FALSE
## leaf.malf 12.311111 0.2928258 FALSE FALSE
## leaf.mild 26.750000 0.4392387 FALSE TRUE
## stem 1.253378 0.2928258 FALSE FALSE
## lodging 12.380952 0.2928258 FALSE FALSE
## stem.cankers 1.984293 0.5856515 FALSE FALSE
## canker.lesion 1.807910 0.5856515 FALSE FALSE
## fruiting.bodies 4.548077 0.2928258 FALSE FALSE
## ext.decay 3.681481 0.4392387 FALSE FALSE
## mycelium 106.500000 0.2928258 FALSE TRUE
## int.discolor 13.204545 0.4392387 FALSE FALSE
## sclerotia 31.250000 0.2928258 FALSE TRUE
## fruit.pods 3.130769 0.5856515 FALSE FALSE
## fruit.spots 3.450000 0.5856515 FALSE FALSE
## seed 4.139130 0.2928258 FALSE FALSE
## mold.growth 7.820896 0.2928258 FALSE FALSE
## seed.discolor 8.015625 0.2928258 FALSE FALSE
## seed.size 9.016949 0.2928258 FALSE FALSE
## shriveling 14.184211 0.2928258 FALSE FALSE
## roots 6.406977 0.4392387 FALSE FALSE
There are a few degenerate and that is due to the low frequencies. Most important once are mycelium and sclerotia. The Smoothed Density Scatterplot for the variables shows one color across the chart. The variables leaf.mild and int.discolor appear to show near-zero variance.
Missing values can be handeled in different ways. The easiest way is to delete the rows. Next if the data is skewed we can use median as replacement for missing values. If the data is mormal we can use mean. For non-numberic data we can use mode. The are other different ways like doing regression to replace the missing values.One such way is using MICE. The mice() function in the mice package conducts Multivariate Imputation by Chained Equations (MICE) on multivariate datasets with missing values. The function has many imputation methods that can be applied to the data. We will be using is PMM i.e. predictive mean matching method.
Soybean1 <- mice(Soybean, method="pmm", printFlag=F, seed=112)
## Warning: Number of logged events: 1668
Soybean1 <- complete(Soybean1)
Soybean1 <- as.data.frame(Soybean1)
missmap(Soybean1, main = "Missing Values")
We can see that there is no missing values in the dataset.