Data624 Data Preprocessing Assignment4

Chapter 3

Exercise 3.2: The soybean data can also be found at the UC Irvine Machine Learning Repository. Data were collected to predict disease in 683 soybeans. The 35 predictors are mostly categorical and include information on the environmental conditions (e.g., temperature, precipitation) and plant conditions (e.g., left spots, mold growth). The outcome labels consist of 19 distinct classes. The data can be loaded via:

library(mlbench)
data(Soybean)
str(Soybean)
## 'data.frame':    683 obs. of  36 variables:
##  $ Class          : Factor w/ 19 levels "2-4-d-injury",..: 11 11 11 11 11 11 11 11 11 11 ...
##  $ date           : Factor w/ 7 levels "0","1","2","3",..: 7 5 4 4 7 6 6 5 7 5 ...
##  $ plant.stand    : Ord.factor w/ 2 levels "0"<"1": 1 1 1 1 1 1 1 1 1 1 ...
##  $ precip         : Ord.factor w/ 3 levels "0"<"1"<"2": 3 3 3 3 3 3 3 3 3 3 ...
##  $ temp           : Ord.factor w/ 3 levels "0"<"1"<"2": 2 2 2 2 2 2 2 2 2 2 ...
##  $ hail           : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 2 1 1 ...
##  $ crop.hist      : Factor w/ 4 levels "0","1","2","3": 2 3 2 2 3 4 3 2 4 3 ...
##  $ area.dam       : Factor w/ 4 levels "0","1","2","3": 2 1 1 1 1 1 1 1 1 1 ...
##  $ sever          : Factor w/ 3 levels "0","1","2": 2 3 3 3 2 2 2 2 2 3 ...
##  $ seed.tmt       : Factor w/ 3 levels "0","1","2": 1 2 2 1 1 1 2 1 2 1 ...
##  $ germ           : Ord.factor w/ 3 levels "0"<"1"<"2": 1 2 3 2 3 2 1 3 2 3 ...
##  $ plant.growth   : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
##  $ leaves         : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
##  $ leaf.halo      : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 1 1 1 1 ...
##  $ leaf.marg      : Factor w/ 3 levels "0","1","2": 3 3 3 3 3 3 3 3 3 3 ...
##  $ leaf.size      : Ord.factor w/ 3 levels "0"<"1"<"2": 3 3 3 3 3 3 3 3 3 3 ...
##  $ leaf.shread    : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
##  $ leaf.malf      : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
##  $ leaf.mild      : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 1 1 1 1 ...
##  $ stem           : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
##  $ lodging        : Factor w/ 2 levels "0","1": 2 1 1 1 1 1 2 1 1 1 ...
##  $ stem.cankers   : Factor w/ 4 levels "0","1","2","3": 4 4 4 4 4 4 4 4 4 4 ...
##  $ canker.lesion  : Factor w/ 4 levels "0","1","2","3": 2 2 1 1 2 1 2 2 2 2 ...
##  $ fruiting.bodies: Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
##  $ ext.decay      : Factor w/ 3 levels "0","1","2": 2 2 2 2 2 2 2 2 2 2 ...
##  $ mycelium       : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
##  $ int.discolor   : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 1 1 1 1 ...
##  $ sclerotia      : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
##  $ fruit.pods     : Factor w/ 4 levels "0","1","2","3": 1 1 1 1 1 1 1 1 1 1 ...
##  $ fruit.spots    : Factor w/ 4 levels "0","1","2","4": 4 4 4 4 4 4 4 4 4 4 ...
##  $ seed           : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
##  $ mold.growth    : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
##  $ seed.discolor  : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
##  $ seed.size      : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
##  $ shriveling     : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
##  $ roots          : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 1 1 1 1 ...

a. Investigate the frequency distributions for the categorical predictors. Are any of the distributions degenerate in the ways discussed earlier in this chapter?

Degenerate distributions are those where the predictor variable has a single unique value or a handful of unique values that occur with very low frequencies.

S1 <- Soybean[,2:36]
par(mfrow = c(3, 6))
for (i in 1:ncol(S1)) {
  smoothScatter(S1[ ,i], ylab = names(S1[i]))
}

nearZeroVar(S1, names = TRUE, saveMetrics=T)
##                  freqRatio percentUnique zeroVar   nzv
## date              1.137405     1.0248902   FALSE FALSE
## plant.stand       1.208191     0.2928258   FALSE FALSE
## precip            4.098214     0.4392387   FALSE FALSE
## temp              1.879397     0.4392387   FALSE FALSE
## hail              3.425197     0.2928258   FALSE FALSE
## crop.hist         1.004587     0.5856515   FALSE FALSE
## area.dam          1.213904     0.5856515   FALSE FALSE
## sever             1.651282     0.4392387   FALSE FALSE
## seed.tmt          1.373874     0.4392387   FALSE FALSE
## germ              1.103627     0.4392387   FALSE FALSE
## plant.growth      1.951327     0.2928258   FALSE FALSE
## leaves            7.870130     0.2928258   FALSE FALSE
## leaf.halo         1.547511     0.4392387   FALSE FALSE
## leaf.marg         1.615385     0.4392387   FALSE FALSE
## leaf.size         1.479638     0.4392387   FALSE FALSE
## leaf.shread       5.072917     0.2928258   FALSE FALSE
## leaf.malf        12.311111     0.2928258   FALSE FALSE
## leaf.mild        26.750000     0.4392387   FALSE  TRUE
## stem              1.253378     0.2928258   FALSE FALSE
## lodging          12.380952     0.2928258   FALSE FALSE
## stem.cankers      1.984293     0.5856515   FALSE FALSE
## canker.lesion     1.807910     0.5856515   FALSE FALSE
## fruiting.bodies   4.548077     0.2928258   FALSE FALSE
## ext.decay         3.681481     0.4392387   FALSE FALSE
## mycelium        106.500000     0.2928258   FALSE  TRUE
## int.discolor     13.204545     0.4392387   FALSE FALSE
## sclerotia        31.250000     0.2928258   FALSE  TRUE
## fruit.pods        3.130769     0.5856515   FALSE FALSE
## fruit.spots       3.450000     0.5856515   FALSE FALSE
## seed              4.139130     0.2928258   FALSE FALSE
## mold.growth       7.820896     0.2928258   FALSE FALSE
## seed.discolor     8.015625     0.2928258   FALSE FALSE
## seed.size         9.016949     0.2928258   FALSE FALSE
## shriveling       14.184211     0.2928258   FALSE FALSE
## roots             6.406977     0.4392387   FALSE FALSE

There are a few degenerate and that is due to the low frequencies. Most important once are mycelium and sclerotia. The Smoothed Density Scatterplot for the variables shows one color across the chart. The variables leaf.mild and int.discolor appear to show near-zero variance.

c. Develop a strategy for handling missing data, either by eliminating predictors or imputation.

Missing values can be handeled in different ways. The easiest way is to delete the rows. Next if the data is skewed we can use median as replacement for missing values. If the data is mormal we can use mean. For non-numberic data we can use mode. The are other different ways like doing regression to replace the missing values.One such way is using MICE. The mice() function in the mice package conducts Multivariate Imputation by Chained Equations (MICE) on multivariate datasets with missing values. The function has many imputation methods that can be applied to the data. We will be using is PMM i.e. predictive mean matching method.

Soybean1 <- mice(Soybean, method="pmm", printFlag=F, seed=112)
## Warning: Number of logged events: 1668
Soybean1 <- complete(Soybean1)
Soybean1 <- as.data.frame(Soybean1)
missmap(Soybean1, main = "Missing Values")

We can see that there is no missing values in the dataset.