## [1] "Steps" "Miles" "Floors" "Sleep" "Day" "Month"
## [1] 88
## Steps Miles Floors Sleep Day
## Min. : 114 Min. :0.050 Min. : 1.00 Min. :0.000 F :13
## 1st Qu.: 7722 1st Qu.:3.390 1st Qu.: 11.00 1st Qu.:7.383 M :13
## Median :10920 Median :4.930 Median : 16.00 Median :7.617 R :12
## Mean :10749 Mean :4.759 Mean : 20.78 Mean :7.407 Sat:13
## 3rd Qu.:13780 3rd Qu.:6.093 3rd Qu.: 27.00 3rd Qu.:8.104 Sun:13
## Max. :20122 Max. :8.790 Max. :140.00 Max. :9.333 T :12
## W :12
## Month
## Feb :28
## Jan :31
## March:29
##
##
##
##
The summary shows Steps, Miles, Floors and Sleep as numerical columns and Day and Month as categorical columns.
## [1] 10749.34
## Day Steps
## 1 F 13068.615
## 2 M 14500.846
## 3 R 10843.667
## 4 Sat 8222.538
## 5 Sun 6318.538
## 6 T 10501.583
## 7 W 11863.500
Standard deviation for steps taken for every day of the week:
## Day Steps
## 1 F 3365.953
## 2 M 5362.416
## 3 R 2105.690
## 4 Sat 3270.769
## 5 Sun 3424.365
## 6 T 2631.131
## 7 W 3441.038
## Day Sleep
## 1 F 7.591026
## 2 M 6.341026
## 3 R 7.412500
## 4 Sat 7.850000
## 5 Sun 7.238462
## 6 T 8.019444
## 7 W 7.444444
Standard deviation of sleep for every day of the week:
## Day Sleep
## 1 F 0.9029431
## 2 M 2.1613890
## 3 R 1.4411717
## 4 Sat 0.7228096
## 5 Sun 2.2390721
## 6 T 0.7544090
## 7 W 0.4347490
According to boxplot, people less active on Sunday
The result of total hours of sleep is almost the same every day.
## [1] 51
## [1] 13
## [1] 1
## upper lower
## 108.522984 -7.522984
## [1] 50.5
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
## [18] 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
## [35] 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
## [52] 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
## [69] 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
## [86] 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
The purpose of this problem is to simulate a fair coin flip, and to see how many flips it takes for the probability of a head to be approximately 0.50.
## [1] 0.4
## [1] 0.40000 0.56000 0.48900 0.50430 0.50077
## [1] 0.10000 0.06000 0.01100 0.00430 0.00077
Fitbit=read.table("~/Desktop/Fitbit.csv", header=TRUE, sep=",")
#1.a
colnames(Fitbit)
#1.b
nrow(Fitbit)
#1.c
summary(Fitbit)
#1.d
mean(Fitbit$Steps)
#1.e
aggregate(Steps~Day,Fitbit,mean)
#1.e
aggregate(Steps~Day,Fitbit,sd)
#1.f
aggregate(Sleep~Day,Fitbit,mean)
#1.f
aggregate(Sleep~Day,Fitbit,sd)
#1.g
boxplot(Fitbit$Steps ~ Fitbit$Day)
#1.h
boxplot(Fitbit$Sleep ~ Fitbit$Day)
library(dplyr, warn.conflicts = FALSE, quietly=TRUE)
#1.i
Fitbit %>% filter(Steps > 10000) %>% nrow()
#1.j
Fitbit %>% filter(Sleep < 7) %>% nrow()
#2.a
f=function(x)
{
y=(x-mean(x))/sqrt(var(x))
return(sqrt(var(y)))
}
x=c(1:100)
f(x)
#2.b
g=function(y)
{
upper=mean(y)+2*sqrt(var(y))
lower=mean(y)-2*sqrt(var(y))
return(c("upper"=upper,"lower"=lower))
}
y=c(1:100)
g(y)
#2.c
z=function(x)
{
mean = mean(x)
sd = sd(x)
r = x[x<=mean+3*sd]
x=r
mean = mean(x)
print(mean)
return(x)
}
x =c(1:100,200,300)
z(x)
#3.a
f=function(n)
{
s=sample(c("H","T"),n,replace = T)
p=length(which(s=="H"))/length(s)
return(p)
}
f(20)
#3.b
p=sapply(c(10,100,1000,10000,100000),f)
p
#3.c
abs(0.5-p)