10. This question should be answered using the Weekly data set, which is part of the ISLR package. This data is similar in nature to the Smarket data from this chapter’s lab, except that it contains 1, 089 weekly returns for 21 years, from the beginning of 1990 to the end of 2010.

(a)Produce some numerical and graphical summaries of the Weekly data. Do there appear to be any patterns?

library(ISLR)
## Warning: package 'ISLR' was built under R version 3.5.2
data(Weekly)
summary(Weekly)
##       Year           Lag1               Lag2               Lag3         
##  Min.   :1990   Min.   :-18.1950   Min.   :-18.1950   Min.   :-18.1950  
##  1st Qu.:1995   1st Qu.: -1.1540   1st Qu.: -1.1540   1st Qu.: -1.1580  
##  Median :2000   Median :  0.2410   Median :  0.2410   Median :  0.2410  
##  Mean   :2000   Mean   :  0.1506   Mean   :  0.1511   Mean   :  0.1472  
##  3rd Qu.:2005   3rd Qu.:  1.4050   3rd Qu.:  1.4090   3rd Qu.:  1.4090  
##  Max.   :2010   Max.   : 12.0260   Max.   : 12.0260   Max.   : 12.0260  
##       Lag4               Lag5              Volume       
##  Min.   :-18.1950   Min.   :-18.1950   Min.   :0.08747  
##  1st Qu.: -1.1580   1st Qu.: -1.1660   1st Qu.:0.33202  
##  Median :  0.2380   Median :  0.2340   Median :1.00268  
##  Mean   :  0.1458   Mean   :  0.1399   Mean   :1.57462  
##  3rd Qu.:  1.4090   3rd Qu.:  1.4050   3rd Qu.:2.05373  
##  Max.   : 12.0260   Max.   : 12.0260   Max.   :9.32821  
##      Today          Direction 
##  Min.   :-18.1950   Down:484  
##  1st Qu.: -1.1540   Up  :605  
##  Median :  0.2410             
##  Mean   :  0.1499             
##  3rd Qu.:  1.4050             
##  Max.   : 12.0260
pairs(Weekly)

cor(Weekly[, -9])
##               Year         Lag1        Lag2        Lag3         Lag4
## Year    1.00000000 -0.032289274 -0.03339001 -0.03000649 -0.031127923
## Lag1   -0.03228927  1.000000000 -0.07485305  0.05863568 -0.071273876
## Lag2   -0.03339001 -0.074853051  1.00000000 -0.07572091  0.058381535
## Lag3   -0.03000649  0.058635682 -0.07572091  1.00000000 -0.075395865
## Lag4   -0.03112792 -0.071273876  0.05838153 -0.07539587  1.000000000
## Lag5   -0.03051910 -0.008183096 -0.07249948  0.06065717 -0.075675027
## Volume  0.84194162 -0.064951313 -0.08551314 -0.06928771 -0.061074617
## Today  -0.03245989 -0.075031842  0.05916672 -0.07124364 -0.007825873
##                Lag5      Volume        Today
## Year   -0.030519101  0.84194162 -0.032459894
## Lag1   -0.008183096 -0.06495131 -0.075031842
## Lag2   -0.072499482 -0.08551314  0.059166717
## Lag3    0.060657175 -0.06928771 -0.071243639
## Lag4   -0.075675027 -0.06107462 -0.007825873
## Lag5    1.000000000 -0.05851741  0.011012698
## Volume -0.058517414  1.00000000 -0.033077783
## Today   0.011012698 -0.03307778  1.000000000

There appears to be a correlation between Year and Volume. When we plot “Volume”.

(b) Use the full data set to perform a logistic regression with Direction as the response and the five lag variables plus Volume as predictors. Use the summary function to print the results. Do any of the predictors appear to be statistically significant? If so,which ones?

attach(Weekly)
glm.fit = glm(Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + Volume, data = Weekly, 
    family = binomial)
summary(glm.fit)
## 
## Call:
## glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + 
##     Volume, family = binomial, data = Weekly)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6949  -1.2565   0.9913   1.0849   1.4579  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  0.26686    0.08593   3.106   0.0019 **
## Lag1        -0.04127    0.02641  -1.563   0.1181   
## Lag2         0.05844    0.02686   2.175   0.0296 * 
## Lag3        -0.01606    0.02666  -0.602   0.5469   
## Lag4        -0.02779    0.02646  -1.050   0.2937   
## Lag5        -0.01447    0.02638  -0.549   0.5833   
## Volume      -0.02274    0.03690  -0.616   0.5377   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1496.2  on 1088  degrees of freedom
## Residual deviance: 1486.4  on 1082  degrees of freedom
## AIC: 1500.4
## 
## Number of Fisher Scoring iterations: 4

Lag 2 appears to be statiscally significant with a Pr(>[Z]) of .0296.

(c) Compute the confusion matrix and overall fraction of correct predictions. Explain what the confusion matrix is telling you about the types of mistakes made by logistic regression.

glm.probs = predict(glm.fit, type = "response")
glm.pred = rep("Down", length(glm.probs))
glm.pred[glm.probs > 0.5] = "Up"
table(glm.pred, Direction)
##         Direction
## glm.pred Down  Up
##     Down   54  48
##     Up    430 557

(d) Now fit the logistic regression model using a training data period from 1990 to 2008, with Lag2 as the only predictor. Compute the confusion matrix and the overall fraction of correct predictions for the held out data (that is, the data from 2009 and 2010).

train = (Year < 2009)
Weekly.0910 = Weekly[!train, ]
glm.fit = glm(Direction ~ Lag2, data = Weekly, family = binomial, subset = train)
glm.probs = predict(glm.fit, Weekly.0910, type = "response")
glm.pred = rep("Down", length(glm.probs))
glm.pred[glm.probs > 0.5] = "Up"
Direction.0910 = Direction[!train]
table(glm.pred, Direction.0910)
##         Direction.0910
## glm.pred Down Up
##     Down    9  5
##     Up     34 56
mean(glm.pred == Direction.0910)
## [1] 0.625

(e) Repeat (d) using LDA.

library(MASS)
lda.fit = lda(Direction ~ Lag2, data = Weekly, subset = train)
lda.pred = predict(lda.fit, Weekly.0910)
table(lda.pred$class, Direction.0910)
##       Direction.0910
##        Down Up
##   Down    9  5
##   Up     34 56
mean(lda.pred$class == Direction.0910)
## [1] 0.625

(f) Repeat (d) using QDA.

qda.fit = qda(Direction ~ Lag2, data = Weekly, subset = train)
qda.class = predict(qda.fit, Weekly.0910)$class
table(qda.class, Direction.0910)
##          Direction.0910
## qda.class Down Up
##      Down    0  0
##      Up     43 61
mean(qda.class == Direction.0910)
## [1] 0.5865385

(g) Repeat (d) using KNN with K = 1.

library(class)
train.X = as.matrix(Lag2[train])
test.X = as.matrix(Lag2[!train])
train.Direction = Direction[train]
set.seed(1)
knn.pred = knn(train.X, test.X, train.Direction, k = 1)
table(knn.pred, Direction.0910)
##         Direction.0910
## knn.pred Down Up
##     Down   21 30
##     Up     22 31
mean(knn.pred == Direction.0910)
## [1] 0.5

(h)Which of these methods appears to provide the best results on this data? If we compare the test error rates, we see that logistic regression and LDA have the minimum error rates.

(i)Experiment with different combinations of predictors, including possible transformations and interactions, for each of the methods. Report the variables, method, and associated confusion matrix that appears to provide the best results on the held out data. Note that you should also experiment with values for K in the KNN classifier.

Logistic regression with Lag2:Lag1

glm.fit = glm(Direction ~ Lag2:Lag1, data = Weekly, family = binomial, subset = train)
glm.probs = predict(glm.fit, Weekly.0910, type = "response")
glm.pred = rep("Down", length(glm.probs))
glm.pred[glm.probs > 0.5] = "Up"
Direction.0910 = Direction[!train]
table(glm.pred, Direction.0910)
##         Direction.0910
## glm.pred Down Up
##     Down    1  1
##     Up     42 60
mean(glm.pred == Direction.0910)
## [1] 0.5865385

LDA with Lag2 interaction with Lag1

lda.fit = lda(Direction ~ Lag2:Lag1, data = Weekly, subset = train)
lda.pred = predict(lda.fit, Weekly.0910)
mean(lda.pred$class == Direction.0910)
## [1] 0.5769231

QDA with sqrt(abs(Lag2))

qda.fit = qda(Direction ~ Lag2 + sqrt(abs(Lag2)), data = Weekly, subset = train)
qda.class = predict(qda.fit, Weekly.0910)$class
table(qda.class, Direction.0910)
##          Direction.0910
## qda.class Down Up
##      Down   12 13
##      Up     31 48
mean(qda.class == Direction.0910)
## [1] 0.5769231

KNN k =10

knn.pred = knn(train.X, test.X, train.Direction, k = 10)
table(knn.pred, Direction.0910)
##         Direction.0910
## knn.pred Down Up
##     Down   17 18
##     Up     26 43
mean(knn.pred == Direction.0910)
## [1] 0.5769231

KNN k = 100

knn.pred = knn(train.X, test.X, train.Direction, k = 100)
table(knn.pred, Direction.0910)
##         Direction.0910
## knn.pred Down Up
##     Down    9 12
##     Up     34 49
mean(knn.pred == Direction.0910)
## [1] 0.5576923

11. In this problem, you will develop a model to predict whether a given car gets high or low gas mileage based on the Auto data set.

(a)Create a binary variable, mpg01, that contains a 1 if mpg contains a value above its median, and a 0 if mpg contains a value below its median. You can compute the median using the median() function. Note you may find it helpful to use the data.frame()function to create a single data set containing both mpg01 and the other Auto variables.

library(ISLR)
summary(Auto)
##       mpg          cylinders      displacement     horsepower   
##  Min.   : 9.00   Min.   :3.000   Min.   : 68.0   Min.   : 46.0  
##  1st Qu.:17.00   1st Qu.:4.000   1st Qu.:105.0   1st Qu.: 75.0  
##  Median :22.75   Median :4.000   Median :151.0   Median : 93.5  
##  Mean   :23.45   Mean   :5.472   Mean   :194.4   Mean   :104.5  
##  3rd Qu.:29.00   3rd Qu.:8.000   3rd Qu.:275.8   3rd Qu.:126.0  
##  Max.   :46.60   Max.   :8.000   Max.   :455.0   Max.   :230.0  
##                                                                 
##      weight      acceleration        year           origin     
##  Min.   :1613   Min.   : 8.00   Min.   :70.00   Min.   :1.000  
##  1st Qu.:2225   1st Qu.:13.78   1st Qu.:73.00   1st Qu.:1.000  
##  Median :2804   Median :15.50   Median :76.00   Median :1.000  
##  Mean   :2978   Mean   :15.54   Mean   :75.98   Mean   :1.577  
##  3rd Qu.:3615   3rd Qu.:17.02   3rd Qu.:79.00   3rd Qu.:2.000  
##  Max.   :5140   Max.   :24.80   Max.   :82.00   Max.   :3.000  
##                                                                
##                  name    
##  amc matador       :  5  
##  ford pinto        :  5  
##  toyota corolla    :  5  
##  amc gremlin       :  4  
##  amc hornet        :  4  
##  chevrolet chevette:  4  
##  (Other)           :365
attach(Auto)
mpg01 = rep(0, length(mpg))
mpg01[mpg > median(mpg)] = 1
Auto = data.frame(Auto, mpg01)

(b) Explore the data graphically in order to investigate the association between mpg01 and the other features. Which of the other features seem most likely to be useful in predicting mpg01? Scatterplots and boxplots may be useful tools to answer this question. Describe your findings.

cor(Auto[, -9])
##                     mpg  cylinders displacement horsepower     weight
## mpg           1.0000000 -0.7776175   -0.8051269 -0.7784268 -0.8322442
## cylinders    -0.7776175  1.0000000    0.9508233  0.8429834  0.8975273
## displacement -0.8051269  0.9508233    1.0000000  0.8972570  0.9329944
## horsepower   -0.7784268  0.8429834    0.8972570  1.0000000  0.8645377
## weight       -0.8322442  0.8975273    0.9329944  0.8645377  1.0000000
## acceleration  0.4233285 -0.5046834   -0.5438005 -0.6891955 -0.4168392
## year          0.5805410 -0.3456474   -0.3698552 -0.4163615 -0.3091199
## origin        0.5652088 -0.5689316   -0.6145351 -0.4551715 -0.5850054
## mpg01         0.8369392 -0.7591939   -0.7534766 -0.6670526 -0.7577566
##              acceleration       year     origin      mpg01
## mpg             0.4233285  0.5805410  0.5652088  0.8369392
## cylinders      -0.5046834 -0.3456474 -0.5689316 -0.7591939
## displacement   -0.5438005 -0.3698552 -0.6145351 -0.7534766
## horsepower     -0.6891955 -0.4163615 -0.4551715 -0.6670526
## weight         -0.4168392 -0.3091199 -0.5850054 -0.7577566
## acceleration    1.0000000  0.2903161  0.2127458  0.3468215
## year            0.2903161  1.0000000  0.1815277  0.4299042
## origin          0.2127458  0.1815277  1.0000000  0.5136984
## mpg01           0.3468215  0.4299042  0.5136984  1.0000000
pairs(Auto)

It is Anti-correlated with cylinders, weight, displacement, horsepower.

(c) Split the data into a training set and a test set.

train = (year%%2 == 0)  # if the year is even
test = !train
Auto.train = Auto[train, ]
Auto.test = Auto[test, ]
mpg01.test = mpg01[test]

(d) Perform LDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

# LDA
library(MASS)
lda.fit = lda(mpg01 ~ cylinders + weight + displacement + horsepower, data = Auto, 
    subset = train)
lda.pred = predict(lda.fit, Auto.test)
mean(lda.pred$class != mpg01.test)
## [1] 0.1263736

It has a 12.6% test error rate.

(e) Perform QDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

# QDA
qda.fit = qda(mpg01 ~ cylinders + weight + displacement + horsepower, data = Auto, 
    subset = train)
qda.pred = predict(qda.fit, Auto.test)
mean(qda.pred$class != mpg01.test)
## [1] 0.1318681

It has a 13.2% error rate.

(f) Perform logistic regression on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

# Logistic regression
glm.fit = glm(mpg01 ~ cylinders + weight + displacement + horsepower, data = Auto, 
    family = binomial, subset = train)
glm.probs = predict(glm.fit, Auto.test, type = "response")
glm.pred = rep(0, length(glm.probs))
glm.pred[glm.probs > 0.5] = 1
mean(glm.pred != mpg01.test)
## [1] 0.1208791

It has a 12.1% test error rate.

(g) Perform KNN on the training data, with several values of K, in order to predict mpg01. Use only the variables that seemed most associated with mpg01 in (b). What test errors do you obtain? Which value of K seems to perform the best on this data set?

library(class)
train.X = cbind(cylinders, weight, displacement, horsepower)[train, ]
test.X = cbind(cylinders, weight, displacement, horsepower)[test, ]
train.mpg01 = mpg01[train]
set.seed(1)
# KNN(k=1)
knn.pred = knn(train.X, test.X, train.mpg01, k = 1)
mean(knn.pred != mpg01.test)
## [1] 0.1538462
# KNN(k=10)
knn.pred = knn(train.X, test.X, train.mpg01, k = 10)
mean(knn.pred != mpg01.test)
## [1] 0.1648352
# KNN(k=100)
knn.pred = knn(train.X, test.X, train.mpg01, k = 100)
mean(knn.pred != mpg01.test)
## [1] 0.1428571

k=1, 15.4% test error rate. k=10, 16.5% test error rate. k=100, 14.3% test error rate. K of 100 seems to perform the best.

13.Using the Boston data set, fit classification models in order to predict whether a given suburb has a crime rate above or below the median. Explore logistic regression, LDA, and KNN models using various subsets of the predictors. Describe your findings.

Summary

library(MASS)
summary(Boston)
##       crim                zn             indus            chas        
##  Min.   : 0.00632   Min.   :  0.00   Min.   : 0.46   Min.   :0.00000  
##  1st Qu.: 0.08204   1st Qu.:  0.00   1st Qu.: 5.19   1st Qu.:0.00000  
##  Median : 0.25651   Median :  0.00   Median : 9.69   Median :0.00000  
##  Mean   : 3.61352   Mean   : 11.36   Mean   :11.14   Mean   :0.06917  
##  3rd Qu.: 3.67708   3rd Qu.: 12.50   3rd Qu.:18.10   3rd Qu.:0.00000  
##  Max.   :88.97620   Max.   :100.00   Max.   :27.74   Max.   :1.00000  
##       nox               rm             age              dis        
##  Min.   :0.3850   Min.   :3.561   Min.   :  2.90   Min.   : 1.130  
##  1st Qu.:0.4490   1st Qu.:5.886   1st Qu.: 45.02   1st Qu.: 2.100  
##  Median :0.5380   Median :6.208   Median : 77.50   Median : 3.207  
##  Mean   :0.5547   Mean   :6.285   Mean   : 68.57   Mean   : 3.795  
##  3rd Qu.:0.6240   3rd Qu.:6.623   3rd Qu.: 94.08   3rd Qu.: 5.188  
##  Max.   :0.8710   Max.   :8.780   Max.   :100.00   Max.   :12.127  
##       rad              tax           ptratio          black       
##  Min.   : 1.000   Min.   :187.0   Min.   :12.60   Min.   :  0.32  
##  1st Qu.: 4.000   1st Qu.:279.0   1st Qu.:17.40   1st Qu.:375.38  
##  Median : 5.000   Median :330.0   Median :19.05   Median :391.44  
##  Mean   : 9.549   Mean   :408.2   Mean   :18.46   Mean   :356.67  
##  3rd Qu.:24.000   3rd Qu.:666.0   3rd Qu.:20.20   3rd Qu.:396.23  
##  Max.   :24.000   Max.   :711.0   Max.   :22.00   Max.   :396.90  
##      lstat            medv      
##  Min.   : 1.73   Min.   : 5.00  
##  1st Qu.: 6.95   1st Qu.:17.02  
##  Median :11.36   Median :21.20  
##  Mean   :12.65   Mean   :22.53  
##  3rd Qu.:16.95   3rd Qu.:25.00  
##  Max.   :37.97   Max.   :50.00
attach(Boston)
crime01 = rep(0, length(crim))
crime01[crim > median(crim)] = 1
Boston = data.frame(Boston, crime01)

train = 1:(dim(Boston)[1]/2)
test = (dim(Boston)[1]/2 + 1):dim(Boston)[1]
Boston.train = Boston[train, ]
Boston.test = Boston[test, ]
crime01.test = crime01[test]

logistic regression

glm.fit = glm(crime01 ~ . - crime01 - crim, data = Boston, family = binomial, 
    subset = train)
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
glm.probs = predict(glm.fit, Boston.test, type = "response")
glm.pred = rep(0, length(glm.probs))
glm.pred[glm.probs > 0.5] = 1
mean(glm.pred != crime01.test)
## [1] 0.1818182

It has a 18.2% test error rate.

glm.fit = glm(crime01 ~ . - crime01 - crim - chas - tax, data = Boston, family = binomial, 
    subset = train)
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
glm.probs = predict(glm.fit, Boston.test, type = "response")
glm.pred = rep(0, length(glm.probs))
glm.pred[glm.probs > 0.5] = 1
mean(glm.pred != crime01.test)
## [1] 0.1857708

It has a 18.6% test error rate.

LDA

lda.fit = lda(crime01 ~ . - crime01 - crim, data = Boston, subset = train)
lda.pred = predict(lda.fit, Boston.test)
mean(lda.pred$class != crime01.test)
## [1] 0.1343874

It has a 13.4% test error rate.

lda.fit = lda(crime01 ~ . - crime01 - crim - chas - tax, data = Boston, subset = train)
lda.pred = predict(lda.fit, Boston.test)
mean(lda.pred$class != crime01.test)
## [1] 0.1225296

It has a 12.3% test error rate.

lda.fit = lda(crime01 ~ . - crime01 - crim - chas - tax - lstat - indus - age, 
    data = Boston, subset = train)
lda.pred = predict(lda.fit, Boston.test)
mean(lda.pred$class != crime01.test)
## [1] 0.1185771

It has a 11.9% test error rate.

KNN

library(class)
train.X = cbind(zn, indus, chas, nox, rm, age, dis, rad, tax, ptratio, black, 
    lstat, medv)[train, ]
test.X = cbind(zn, indus, chas, nox, rm, age, dis, rad, tax, ptratio, black, 
    lstat, medv)[test, ]
train.crime01 = crime01[train]
set.seed(1)

KNN(k=1)

knn.pred = knn(train.X, test.X, train.crime01, k = 1)
mean(knn.pred != crime01.test)
## [1] 0.458498

It has a 45.8% test error rate.

KNN(k=10)

knn.pred = knn(train.X, test.X, train.crime01, k = 10)
mean(knn.pred != crime01.test)
## [1] 0.1185771

It has a 11.9% test error rate.

KNN(k=100)

knn.pred = knn(train.X, test.X, train.crime01, k = 100)
mean(knn.pred != crime01.test)
## [1] 0.4901186

It has a 49% test error rate.

KNN(k=10) with subset of variables

train.X = cbind(zn, nox, rm, dis, rad, ptratio, black, medv)[train, ]
test.X = cbind(zn, nox, rm, dis, rad, ptratio, black, medv)[test, ]
knn.pred = knn(train.X, test.X, train.crime01, k = 10)
mean(knn.pred != crime01.test)
## [1] 0.2727273

It has a 27.2% test error rate.