1. This question should be answered using the Weekly data set, which is part of the ISLR package. This data is similar in nature to the Smarket data from this chapter’s lab, except that it contains 1,089 weekly returns for 21 years, from the beginning of 1990 to the end of 2010.
  1. Produce some numerical and graphical summaries of the Weekly data. Do there appear to be any patterns?
library(ISLR)
summary(Weekly)
##       Year           Lag1               Lag2               Lag3         
##  Min.   :1990   Min.   :-18.1950   Min.   :-18.1950   Min.   :-18.1950  
##  1st Qu.:1995   1st Qu.: -1.1540   1st Qu.: -1.1540   1st Qu.: -1.1580  
##  Median :2000   Median :  0.2410   Median :  0.2410   Median :  0.2410  
##  Mean   :2000   Mean   :  0.1506   Mean   :  0.1511   Mean   :  0.1472  
##  3rd Qu.:2005   3rd Qu.:  1.4050   3rd Qu.:  1.4090   3rd Qu.:  1.4090  
##  Max.   :2010   Max.   : 12.0260   Max.   : 12.0260   Max.   : 12.0260  
##       Lag4               Lag5              Volume       
##  Min.   :-18.1950   Min.   :-18.1950   Min.   :0.08747  
##  1st Qu.: -1.1580   1st Qu.: -1.1660   1st Qu.:0.33202  
##  Median :  0.2380   Median :  0.2340   Median :1.00268  
##  Mean   :  0.1458   Mean   :  0.1399   Mean   :1.57462  
##  3rd Qu.:  1.4090   3rd Qu.:  1.4050   3rd Qu.:2.05373  
##  Max.   : 12.0260   Max.   : 12.0260   Max.   :9.32821  
##      Today          Direction 
##  Min.   :-18.1950   Down:484  
##  1st Qu.: -1.1540   Up  :605  
##  Median :  0.2410             
##  Mean   :  0.1499             
##  3rd Qu.:  1.4050             
##  Max.   : 12.0260
plot(Weekly)

attach(Weekly)
print("Here is a numeric summary and plots of our Data.")
## [1] "Here is a numeric summary and plots of our Data."
  1. Use the full data set to perform a logistic regression with Direction as the response and the ???ve lag variables plus Volume as predictors. Use the summary function to print the results. Do any of the predictors appear to be statistically signi???cant? If so, which ones?
glm.fit<-glm(Direction~Lag1+Lag2+Lag3+Lag4+Lag4+Lag5+Volume, data = Weekly, family = binomial)
summary(glm.fit)
## 
## Call:
## glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag4 + 
##     Lag5 + Volume, family = binomial, data = Weekly)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6949  -1.2565   0.9913   1.0849   1.4579  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  0.26686    0.08593   3.106   0.0019 **
## Lag1        -0.04127    0.02641  -1.563   0.1181   
## Lag2         0.05844    0.02686   2.175   0.0296 * 
## Lag3        -0.01606    0.02666  -0.602   0.5469   
## Lag4        -0.02779    0.02646  -1.050   0.2937   
## Lag5        -0.01447    0.02638  -0.549   0.5833   
## Volume      -0.02274    0.03690  -0.616   0.5377   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1496.2  on 1088  degrees of freedom
## Residual deviance: 1486.4  on 1082  degrees of freedom
## AIC: 1500.4
## 
## Number of Fisher Scoring iterations: 4
print("It would appear only the Varible LAG2 is the only one that is significant, due to the p value being less then .05 . ")
## [1] "It would appear only the Varible LAG2 is the only one that is significant, due to the p value being less then .05 . "
  1. Compute the confusion matrix and overall fraction of correct predictions. Explain what the confusion matrix is telling you about the types of mistakes made by logistic regression.
CM = predict(glm.fit, type = "response")
pred.glm <-rep("DOWN", length(CM))
pred.glm[CM>.5]="UP"
table(pred.glm, Direction)
##         Direction
## pred.glm Down  Up
##     DOWN   54  48
##     UP    430 557
print("The confusion matrix is telling me that we predictied 484 DOWNS, and 605 UPS, but the actual DOWNs was 102, and UPS was 987")
## [1] "The confusion matrix is telling me that we predictied 484 DOWNS, and 605 UPS, but the actual DOWNs was 102, and UPS was 987"
print("The overall fraction of correct prediction is [(54+557)/1089]*100 = 56.1065% ")
## [1] "The overall fraction of correct prediction is [(54+557)/1089]*100 = 56.1065% "
print("Giving us a training error of 100-((54+557)/1089)*100 = 43.89348%")
## [1] "Giving us a training error of 100-((54+557)/1089)*100 = 43.89348%"
  1. Now ???t the logistic regression model using a training data period from 1990 to 2008, with Lag2 as the only predictor. Compute the confusion matrix and the overall fraction of correct predictions for the held out data (that is, the data from 2009 and 2010).
train <-(Year<2009)
Week0910<-(Year>=2009)
Direction.09.10<-Direction[!train]
glm.fit2<-glm(Direction~Lag2, data=Weekly,family = binomial, subset = train)
summary(glm.fit2)
## 
## Call:
## glm(formula = Direction ~ Lag2, family = binomial, data = Weekly, 
##     subset = train)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.536  -1.264   1.021   1.091   1.368  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  0.20326    0.06428   3.162  0.00157 **
## Lag2         0.05810    0.02870   2.024  0.04298 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1354.7  on 984  degrees of freedom
## Residual deviance: 1350.5  on 983  degrees of freedom
## AIC: 1354.5
## 
## Number of Fisher Scoring iterations: 4
print("For this confustion matrix we get 43 predictied Downs, 61 predicted Ups. 14 Actual Downs and 90 Actual Ups")
## [1] "For this confustion matrix we get 43 predictied Downs, 61 predicted Ups. 14 Actual Downs and 90 Actual Ups"
print("Giving us our overall fraction of correct prediction to be 62.5%")
## [1] "Giving us our overall fraction of correct prediction to be 62.5%"
  1. Repeat (d) using LDA.
library(MASS)
lda.fit<-lda(Direction~Lag2,data = Weekly,subset = train)
lda.fit
## Call:
## lda(Direction ~ Lag2, data = Weekly, subset = train)
## 
## Prior probabilities of groups:
##      Down        Up 
## 0.4477157 0.5522843 
## 
## Group means:
##             Lag2
## Down -0.03568254
## Up    0.26036581
## 
## Coefficients of linear discriminants:
##            LD1
## Lag2 0.4414162
print("For this confustion matrix we get 43 predictied Downs, 61 predicted Ups. 14 Actual Downs and 90 Actual Ups")
## [1] "For this confustion matrix we get 43 predictied Downs, 61 predicted Ups. 14 Actual Downs and 90 Actual Ups"
print("We get them dame outcomes as we did in the GLM")
## [1] "We get them dame outcomes as we did in the GLM"
  1. Repeat (d) using QDA.
qda.fit<-qda(Direction~Lag2, data = Weekly, subset = train)
qda.fit
## Call:
## qda(Direction ~ Lag2, data = Weekly, subset = train)
## 
## Prior probabilities of groups:
##      Down        Up 
## 0.4477157 0.5522843 
## 
## Group means:
##             Lag2
## Down -0.03568254
## Up    0.26036581
print("For this confustion matrix we get 43 predictied Downs, 61 predicted Ups. 0 Actual Downs and 104 Actual Ups")
## [1] "For this confustion matrix we get 43 predictied Downs, 61 predicted Ups. 0 Actual Downs and 104 Actual Ups"
print("Giving us our overall fraction of correct prediction to be 58.6538")
## [1] "Giving us our overall fraction of correct prediction to be 58.6538"
print("This model does not beat GLM and LDA")
## [1] "This model does not beat GLM and LDA"
  1. Repeat (d) using KNN with K = 1.
print("This confustion matrix gives us 43 predicted down's, 61 predicted Up's. and 51 actual downs,as well as 53 actual Up's")
## [1] "This confustion matrix gives us 43 predicted down's, 61 predicted Up's. and 51 actual downs,as well as 53 actual Up's"
print("Giving us our overall fraction of correct prediction to be 50% ")
## [1] "Giving us our overall fraction of correct prediction to be 50% "
  1. Which of these methods appears to provide the best results on this data?
print("it would appear by the models above that LDA and GLM have the samecorrect prediction equation, and the least error rates therefore they would be the best amoung THESE models.")
## [1] "it would appear by the models above that LDA and GLM have the samecorrect prediction equation, and the least error rates therefore they would be the best amoung THESE models."
  1. Experiment with di???erent combinations of predictors, including possible transformations and interactions, for each of the methods. Report the variables, method, and associated confusion matrix that appears to provide the best results on the held out data. Note that you should also experiment with values for K in the KNN classi???er.
  1. In this problem, you will develop a model to predict whether a given car gets high or low gas mileage based on the Auto data set.
  1. Create a binary variable, mpg01, that contains a 1 if mpg contains a value above its median, and a 0 if mpg contains a value below its median. You can compute the median using the median() function. Note you may ???nd it helpful to use the data.frame() function to create a single data set containing both mpg01 and the other Auto variables.
library(ISLR)
summary(Auto)
##       mpg          cylinders      displacement     horsepower   
##  Min.   : 9.00   Min.   :3.000   Min.   : 68.0   Min.   : 46.0  
##  1st Qu.:17.00   1st Qu.:4.000   1st Qu.:105.0   1st Qu.: 75.0  
##  Median :22.75   Median :4.000   Median :151.0   Median : 93.5  
##  Mean   :23.45   Mean   :5.472   Mean   :194.4   Mean   :104.5  
##  3rd Qu.:29.00   3rd Qu.:8.000   3rd Qu.:275.8   3rd Qu.:126.0  
##  Max.   :46.60   Max.   :8.000   Max.   :455.0   Max.   :230.0  
##                                                                 
##      weight      acceleration        year           origin     
##  Min.   :1613   Min.   : 8.00   Min.   :70.00   Min.   :1.000  
##  1st Qu.:2225   1st Qu.:13.78   1st Qu.:73.00   1st Qu.:1.000  
##  Median :2804   Median :15.50   Median :76.00   Median :1.000  
##  Mean   :2978   Mean   :15.54   Mean   :75.98   Mean   :1.577  
##  3rd Qu.:3615   3rd Qu.:17.02   3rd Qu.:79.00   3rd Qu.:2.000  
##  Max.   :5140   Max.   :24.80   Max.   :82.00   Max.   :3.000  
##                                                                
##                  name    
##  amc matador       :  5  
##  ford pinto        :  5  
##  toyota corolla    :  5  
##  amc gremlin       :  4  
##  amc hornet        :  4  
##  chevrolet chevette:  4  
##  (Other)           :365
Auto$mpg01<-as.factor(ifelse(Auto$mpg>median(Auto$mpg),1,0))
table(Auto$mpg01)
## 
##   0   1 
## 196 196
  1. Explore the data graphically in order to investigate the association between mpg01 and the other features. Which of the other features seem most likely to be useful in predicting mpg01? Scatterplots and boxplots may be useful tools to answer this question. Describe your fndings.
attach(Auto)
pairs(Auto)

plot(mpg01,horsepower,main = "Scatterplot 1", xlab= "MPG", ylab = "horsepower")

plot(mpg01,cylinders,main = "Scatterplot 2", xlab= "MPG", ylab = "Cylinders")

plot(mpg01,weight,main = "Scatterplot 3", xlab= "MPG", ylab = "Weight")

boxplot(cylinders~mpg01,data = Auto, main = "Cylinders vs MPG")

boxplot(displacement~mpg01,data = Auto, main = "Displacement vs MPG")

boxplot(horsepower~mpg01,data = Auto, main = "Horsepower vs MPG")

print("It would appear that the greatest influencers on MPG01 would be horsepower, weight , displacemnt and Cylinders")
## [1] "It would appear that the greatest influencers on MPG01 would be horsepower, weight , displacemnt and Cylinders"
  1. Split the data into a training set and a test set.
Auto1<-Auto[,-9]
train<-sample(nrow(Auto1),0.75*nrow(Auto1))
training<-Auto1[train,]
test<-Auto1[-train,]
dim(Auto1)
## [1] 392   9
dim(training)
## [1] 294   9
dim(test)
## [1] 98  9
  1. Perform LDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?
library(MASS)
lda.fit<-lda(mpg01~horsepower+cylinders+weight+displacement,data = Auto1, subset = train)
lda.fit
## Call:
## lda(mpg01 ~ horsepower + cylinders + weight + displacement, data = Auto1, 
##     subset = train)
## 
## Prior probabilities of groups:
##         0         1 
## 0.5170068 0.4829932 
## 
## Group means:
##   horsepower cylinders   weight displacement
## 0  130.49342  6.782895 3605.007     274.8684
## 1   77.75352  4.147887 2306.641     112.4225
## 
## Coefficients of linear discriminants:
##                        LD1
## horsepower    0.0088332042
## cylinders    -0.5288242431
## weight       -0.0008472646
## displacement -0.0037786327
lda.pred<-predict(lda.fit,test)
mean(lda.pred$class!=test$mpg01)
## [1] 0.1326531
print("The Error rate we obtain is .1122449")
## [1] "The Error rate we obtain is .1122449"
  1. Perform QDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?
qda.fit<-qda(mpg01~cylinders+weight+displacement+horsepower, data = Auto1, subset = train)
qda.fit
## Call:
## qda(mpg01 ~ cylinders + weight + displacement + horsepower, data = Auto1, 
##     subset = train)
## 
## Prior probabilities of groups:
##         0         1 
## 0.5170068 0.4829932 
## 
## Group means:
##   cylinders   weight displacement horsepower
## 0  6.782895 3605.007     274.8684  130.49342
## 1  4.147887 2306.641     112.4225   77.75352
qda.pred<-predict(qda.fit,test)
ERROR<-mean(qda.pred$class != test$mpg01)
print("The error rate we will end up getting is ." )
## [1] "The error rate we will end up getting is ."
ERROR
## [1] 0.1122449
  1. Perform logistic regression on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?
glm.fit<-glm(mpg01~cylinders+weight+displacement+horsepower,data=Auto1, subset = train ,family = binomial)
glm.fit
## 
## Call:  glm(formula = mpg01 ~ cylinders + weight + displacement + horsepower, 
##     family = binomial, data = Auto1, subset = train)
## 
## Coefficients:
##  (Intercept)     cylinders        weight  displacement    horsepower  
##    11.718930      0.175571     -0.001356     -0.026504     -0.046914  
## 
## Degrees of Freedom: 293 Total (i.e. Null);  289 Residual
## Null Deviance:       407.2 
## Residual Deviance: 133.4     AIC: 143.4
glm.probs = predict(glm.fit, test,type = "response" )
glm.pred <- rep(0, length(glm.probs))
glm.pred[glm.probs>.5]=1
mean(glm.pred!=test$mpg01)
## [1] 0.1428571
print("Our error is .05102041" )
## [1] "Our error is .05102041"

  1. Using the Boston data set, ???t classi???cation models in order to predict whether a given suburb has a crime rate above or below the median. Explore logistic regression, LDA, and KNN models using various subsets of the predictors. Describe your fndings.
attach(Boston)
summary(Boston)
##       crim                zn             indus            chas        
##  Min.   : 0.00632   Min.   :  0.00   Min.   : 0.46   Min.   :0.00000  
##  1st Qu.: 0.08204   1st Qu.:  0.00   1st Qu.: 5.19   1st Qu.:0.00000  
##  Median : 0.25651   Median :  0.00   Median : 9.69   Median :0.00000  
##  Mean   : 3.61352   Mean   : 11.36   Mean   :11.14   Mean   :0.06917  
##  3rd Qu.: 3.67708   3rd Qu.: 12.50   3rd Qu.:18.10   3rd Qu.:0.00000  
##  Max.   :88.97620   Max.   :100.00   Max.   :27.74   Max.   :1.00000  
##       nox               rm             age              dis        
##  Min.   :0.3850   Min.   :3.561   Min.   :  2.90   Min.   : 1.130  
##  1st Qu.:0.4490   1st Qu.:5.886   1st Qu.: 45.02   1st Qu.: 2.100  
##  Median :0.5380   Median :6.208   Median : 77.50   Median : 3.207  
##  Mean   :0.5547   Mean   :6.285   Mean   : 68.57   Mean   : 3.795  
##  3rd Qu.:0.6240   3rd Qu.:6.623   3rd Qu.: 94.08   3rd Qu.: 5.188  
##  Max.   :0.8710   Max.   :8.780   Max.   :100.00   Max.   :12.127  
##       rad              tax           ptratio          black       
##  Min.   : 1.000   Min.   :187.0   Min.   :12.60   Min.   :  0.32  
##  1st Qu.: 4.000   1st Qu.:279.0   1st Qu.:17.40   1st Qu.:375.38  
##  Median : 5.000   Median :330.0   Median :19.05   Median :391.44  
##  Mean   : 9.549   Mean   :408.2   Mean   :18.46   Mean   :356.67  
##  3rd Qu.:24.000   3rd Qu.:666.0   3rd Qu.:20.20   3rd Qu.:396.23  
##  Max.   :24.000   Max.   :711.0   Max.   :22.00   Max.   :396.90  
##      lstat            medv      
##  Min.   : 1.73   Min.   : 5.00  
##  1st Qu.: 6.95   1st Qu.:17.02  
##  Median :11.36   Median :21.20  
##  Mean   :12.65   Mean   :22.53  
##  3rd Qu.:16.95   3rd Qu.:25.00  
##  Max.   :37.97   Max.   :50.00
crim1 = rep(0,length(Boston$crim))
crim1[Boston$crim>median(Boston$crim)]= 1

print("Now we create our our training and test sets...")
## [1] "Now we create our our training and test sets..."
train=1:(dim(Boston)[1]/2)
test=(dim(Boston)[1]/2 + 1):dim(Boston)[1]
Btrain=Boston[train,]
Btest=Boston[test, ]
crimtest=crim1[test]
print("Now to fit the these data sets to Linear Model, LDA and KNN.")
## [1] "Now to fit the these data sets to Linear Model, LDA and KNN."
glm.fit<-glm(crim1~.-crim1 - crim, data = Boston, family = binomial, subset = train)
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
glm.probs<-predict(glm.fit,Btest, type = "response")
glm.pred<-rep(0, length(glm.probs))
glm.pred[glm.probs > .5] = 1

mean(glm.pred!=crimtest)
## [1] 0.1818182
glm.fit2<-glm(crim1~.-crim1 - crim - chas - tax, data = Boston, family = binomial, subset = train)
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
glm.probs2 = predict(glm.fit2, Btest, type = "response")
glm.pred2<-rep(0,length(glm.probs2))
glm.pred2[glm.probs2>.5] = 1
mean(glm.pred2!=crimtest)
## [1] 0.1857708
print("Now we will do the LDA Model")
## [1] "Now we will do the LDA Model"
print("Now we will do the KNN")
## [1] "Now we will do the KNN"
library(class)
tra.X = cbind(zn, indus, chas, nox, rm, age, dis, rad, tax, ptratio, black,lstat, medv)[train, ]
te.X = cbind(zn, indus, chas, nox, rm, age, dis, rad, tax, ptratio, black,lstat, medv)[test, ]
train.crim1 = crim1[train]


print("when K= 1 and the test error rate")
## [1] "when K= 1 and the test error rate"
knn.pred = knn(tra.X, te.X, train.crim1, k = 1)
mean(knn.pred != crimtest)
## [1] 0.458498
print("When K=10")
## [1] "When K=10"
knn.pred = knn(tra.X, te.X, train.crim1, k = 10)
mean(knn.pred != crimtest)
## [1] 0.1185771
print("WHen K=100 and the test error rate")
## [1] "WHen K=100 and the test error rate"
knn.pred = knn(tra.X, te.X, train.crim1, k = 100)
mean(knn.pred != crimtest)
## [1] 0.4940711