require(corrplot)
## Loading required package: corrplot
## corrplot 0.84 loaded
require(ISLR)
## Loading required package: ISLR
require(MASS)
## Loading required package: MASS
require(class)
## Loading required package: class

Question 10:

This question should be answered using the Weekly data set, which is part of the ISLR package. This data is similar in nature to the Smarket data from this chapter’s lab, except that it contains 1, 089 weekly returns for 21 years, from the beginning of 1990 to the end of 2010.

Part A Produce some numerical and graphical summaries of the Weekly data. Do there appear to be any patterns?

library(ISLR)
summary(Weekly)
##       Year           Lag1               Lag2               Lag3         
##  Min.   :1990   Min.   :-18.1950   Min.   :-18.1950   Min.   :-18.1950  
##  1st Qu.:1995   1st Qu.: -1.1540   1st Qu.: -1.1540   1st Qu.: -1.1580  
##  Median :2000   Median :  0.2410   Median :  0.2410   Median :  0.2410  
##  Mean   :2000   Mean   :  0.1506   Mean   :  0.1511   Mean   :  0.1472  
##  3rd Qu.:2005   3rd Qu.:  1.4050   3rd Qu.:  1.4090   3rd Qu.:  1.4090  
##  Max.   :2010   Max.   : 12.0260   Max.   : 12.0260   Max.   : 12.0260  
##       Lag4               Lag5              Volume       
##  Min.   :-18.1950   Min.   :-18.1950   Min.   :0.08747  
##  1st Qu.: -1.1580   1st Qu.: -1.1660   1st Qu.:0.33202  
##  Median :  0.2380   Median :  0.2340   Median :1.00268  
##  Mean   :  0.1458   Mean   :  0.1399   Mean   :1.57462  
##  3rd Qu.:  1.4090   3rd Qu.:  1.4050   3rd Qu.:2.05373  
##  Max.   : 12.0260   Max.   : 12.0260   Max.   :9.32821  
##      Today          Direction 
##  Min.   :-18.1950   Down:484  
##  1st Qu.: -1.1540   Up  :605  
##  Median :  0.2410             
##  Mean   :  0.1499             
##  3rd Qu.:  1.4050             
##  Max.   : 12.0260
attach(Weekly)
pairs(Weekly)

cor(Weekly[,-9])
##               Year         Lag1        Lag2        Lag3         Lag4
## Year    1.00000000 -0.032289274 -0.03339001 -0.03000649 -0.031127923
## Lag1   -0.03228927  1.000000000 -0.07485305  0.05863568 -0.071273876
## Lag2   -0.03339001 -0.074853051  1.00000000 -0.07572091  0.058381535
## Lag3   -0.03000649  0.058635682 -0.07572091  1.00000000 -0.075395865
## Lag4   -0.03112792 -0.071273876  0.05838153 -0.07539587  1.000000000
## Lag5   -0.03051910 -0.008183096 -0.07249948  0.06065717 -0.075675027
## Volume  0.84194162 -0.064951313 -0.08551314 -0.06928771 -0.061074617
## Today  -0.03245989 -0.075031842  0.05916672 -0.07124364 -0.007825873
##                Lag5      Volume        Today
## Year   -0.030519101  0.84194162 -0.032459894
## Lag1   -0.008183096 -0.06495131 -0.075031842
## Lag2   -0.072499482 -0.08551314  0.059166717
## Lag3    0.060657175 -0.06928771 -0.071243639
## Lag4   -0.075675027 -0.06107462 -0.007825873
## Lag5    1.000000000 -0.05851741  0.011012698
## Volume -0.058517414  1.00000000 -0.033077783
## Today   0.011012698 -0.03307778  1.000000000

By the looks of the graph, it looks like there is a logarithm pattern between year and volume. After looking at the correlations, I see that there is a strong correlation year and volume only. There does not look like there’s any strong correlations between the other variables.

Part B Use the full data set to perform a logistic regression with Direction as the response and the five lag variables plus Volume as predictors. Use the summary function to print the results. Do any of the predictors appear to be statistically significant? If so, which ones?

glm.fit<-glm(Direction~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + Volume, data=Weekly, family="binomial")
summary(glm.fit)
## 
## Call:
## glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + 
##     Volume, family = "binomial", data = Weekly)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6949  -1.2565   0.9913   1.0849   1.4579  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  0.26686    0.08593   3.106   0.0019 **
## Lag1        -0.04127    0.02641  -1.563   0.1181   
## Lag2         0.05844    0.02686   2.175   0.0296 * 
## Lag3        -0.01606    0.02666  -0.602   0.5469   
## Lag4        -0.02779    0.02646  -1.050   0.2937   
## Lag5        -0.01447    0.02638  -0.549   0.5833   
## Volume      -0.02274    0.03690  -0.616   0.5377   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1496.2  on 1088  degrees of freedom
## Residual deviance: 1486.4  on 1082  degrees of freedom
## AIC: 1500.4
## 
## Number of Fisher Scoring iterations: 4

The only statistically significant predictor is Lag2.

Part C Compute the confusion matrix and overall fraction of correct predictions. Explain what the confusion matrix is telling you about the types of mistakes made by logistic regression.

glm.probs<-predict(glm.fit, type="response")
glm.pred<-rep("Down", 1089)
glm.pred[glm.probs>0.5]="Up"
confustionmat<- table(glm.pred, Weekly$Direction)
confustionmat
##         
## glm.pred Down  Up
##     Down   54  48
##     Up    430 557
mean(glm.pred==Weekly$Direction)
## [1] 0.5610652

Based on the confusion matrix, we can see that our model correctly predicted that the market would go up 557 days and that it would go down 54 days, for a total of 661 correct predictions. The mean() function was used to compute the fraction of days for which the prediction was correct. In this case, the logistic regression correctly predicted the movement of the market 56.11% of the time. Meaning that our logistic regression model is working a little better than random guessing. However, these results are misleading considering the fact that we did not pull a training and testing dataset.

Part D Now fit the logistic regression model using a training data period from 1990 to 2008, with Lag2 as the only predictor. Compute the confusion matrix and the overall fraction of correct predictions for the held out data (that is, the data from 2009 and 2010).

train<-(Weekly$Year<=2008)
Weekly.2008<-Weekly[!train,]
Direction.2008<-Direction[!train]
glm.fit2<-glm(Direction~Lag2, data=Weekly, family="binomial", subset=train)
glm.probs2<-predict(glm.fit2, type="response", newdata=Weekly.2008)
glm.pred2<-rep("Down", 104)
glm.pred2[glm.probs2>0.5]="Up"
table(glm.pred2, Direction.2008)
##          Direction.2008
## glm.pred2 Down Up
##      Down    9  5
##      Up     34 56
mean(glm.pred2==Direction.2008)
## [1] 0.625

Based on the confusion matrix, we can see that our model correctly predicted that the market would go up 56 days and that it would go down 9 days, for a total of 65 correct predictions. The mean() function was used to compute the fraction of days for which the prediction was correct. In this case, the logistic regression correctly predicted the movement of the market 62.5% of the time. Meaning that our logistic regression model is working a little better than random guessing. These results are great due to the fact that we were able to test the predictions of the logistic regression on a dataset that had not see the model prior.

Part E Repeat (d) using LDA.

library(MASS)
lda.fit<-lda(Direction~Lag2, data=Weekly, subset=train)
lda.pred<-predict(lda.fit, type="response", newdata=Weekly.2008)
table(lda.pred$class, Direction.2008)
##       Direction.2008
##        Down Up
##   Down    9  5
##   Up     34 56
mean(lda.pred$class==Direction.2008)
## [1] 0.625

The confusion matrix explains that our LDA model correctly predicted that the market would go up 56 days and that it would go down 9 days, for a total of 65 correct predictions. The mean() function was used to compute the fraction of days for which the prediction was correct. In this case, the LDA model correctly predicted the movement of the market 62.5% of the time.

Part F Repeat (d) using QDA.

qda.fit<-qda(Direction~Lag2, data=Weekly, subset=train)
qda.pred<-predict(qda.fit, type="response", newdata=Weekly.2008)
table(qda.pred$class, Direction.2008)
##       Direction.2008
##        Down Up
##   Down    0  0
##   Up     43 61
mean(qda.pred$class==Direction.2008)
## [1] 0.5865385

The confusion matrix explains that our QDA model correctly predicted that the market would go up 61 days and that it would go down 0 days, for a total of 61 correct predictions. The mean() function was used to compute the fraction of days for which the prediction was correct. In this case, the LDA model correctly predicted the movement of the market 58.65% of the time. This model does not predict the Direction of the market as well as the logistic and LDA models.

Part G Repeat (d) using KNN with K=1.

library(class)
attach(Weekly)
## The following objects are masked from Weekly (pos = 3):
## 
##     Direction, Lag1, Lag2, Lag3, Lag4, Lag5, Today, Volume, Year
Xtrain=as.matrix(Lag2[train])
Xtest=as.matrix(Lag2[!train])
train.Direction=Direction[train]
set.seed(1)
knn.pred<-knn(Xtrain, Xtest, train.Direction, k=1)
table(knn.pred, Direction.2008)
##         Direction.2008
## knn.pred Down Up
##     Down   21 30
##     Up     22 31
mean(knn.pred==Direction.2008)
## [1] 0.5

The confusion matrix explains that our KNN model correctly predicted that the market would go up 31 days and that it would go down 21 days, for a total of 52 correct predictions. The mean() function was used to compute the fraction of days for which the prediction was correct. In this case, the KNN model correctly predicted the movement of the market 50% of the time.

Part H Which of these methods appears to provide the best results on this data?

The model that predicts the movement of the market the best is the logistic regrssion and LDA models.

Part I Experiment with different combinations of predictors, including possible transformations and interactions, for each of the methods. Report the variables, method, and associated confusion matrix that appears to provide the best results on the held out data. Note that you should also experiment with values for K in the KNN classifier.

glm.fit3<-glm(Direction~Lag1+Lag2+(Lag1*Lag2), data=Weekly, family="binomial", subset=train)
summary(glm.fit3)
## 
## Call:
## glm(formula = Direction ~ Lag1 + Lag2 + (Lag1 * Lag2), family = "binomial", 
##     data = Weekly, subset = train)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.573  -1.259   1.003   1.086   1.596  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  0.211419   0.064589   3.273  0.00106 **
## Lag1        -0.051505   0.030727  -1.676  0.09370 . 
## Lag2         0.053471   0.029193   1.832  0.06700 . 
## Lag1:Lag2    0.001921   0.007460   0.257  0.79680   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1354.7  on 984  degrees of freedom
## Residual deviance: 1346.9  on 981  degrees of freedom
## AIC: 1354.9
## 
## Number of Fisher Scoring iterations: 4
glm.probs3<-predict(glm.fit3, type="response", newdata=Weekly.2008)
glm.pred3<-rep("Down", 104)
glm.pred3[glm.probs3>0.5]="Up"
table(glm.pred3, Direction.2008)
##          Direction.2008
## glm.pred3 Down Up
##      Down    7  8
##      Up     36 53
mean(glm.pred3==Direction.2008)
## [1] 0.5769231
library(MASS)
lda.fit2<-lda(Direction~Lag1+Lag2+(Lag1*Lag2), data=Weekly, subset=train)
lda.pred2<-predict(lda.fit2, type="response", newdata=Weekly.2008)
table(lda.pred2$class, Direction.2008)
##       Direction.2008
##        Down Up
##   Down    7  8
##   Up     36 53
mean(lda.pred2$class==Direction.2008)
## [1] 0.5769231
qda.fit2<-qda(Direction~Lag1+Lag2+(Lag1*Lag2), data=Weekly, subset=train)
qda.pred2<-predict(qda.fit2, type="response", newdata=Weekly.2008)
table(qda.pred2$class, Direction.2008)
##       Direction.2008
##        Down Up
##   Down   23 36
##   Up     20 25
mean(qda.pred2$class==Direction.2008)
## [1] 0.4615385
Xtrain2=cbind(Weekly$Lag1, Weekly$Lag2, (Weekly$Lag1 * Weekly$Lag2))[train,]
Xtest2=cbind(Weekly$Lag1, Weekly$Lag2, (Weekly$Lag1 * Weekly$Lag2))[!train,]
train.Direction2=Weekly$Direction[train]
test.Direction2=Weekly$Direction[!train]
set.seed(1)
knn.pred2<-knn(data.frame(Xtrain2), data.frame(Xtest2), train.Direction2, k=3)
table(knn.pred2, Direction.2008)
##          Direction.2008
## knn.pred2 Down Up
##      Down   23 33
##      Up     20 28
mean(knn.pred2==Direction.2008)
## [1] 0.4903846
detach(Weekly)

Even with an interaction effect, the logistic regression and LDA models perform the best in terms of accuracy of the prediction for the direction of the market.

Question 11:

In this problem, you will develop a model to predict whether a given car gets high or low gas mileage based on the Auto data set.

Part A Create a binary variable, mpg01, that contains a 1 if mpg contains a value above its median, and a 0 if mpg contains a value below its median. You can compute the median using the median() function. Note you may find it helpful to use the data.frame() function to create a single data set containing both mpg01 and the other Auto variables.

##       mpg          cylinders      displacement     horsepower   
##  Min.   : 9.00   Min.   :3.000   Min.   : 68.0   Min.   : 46.0  
##  1st Qu.:17.00   1st Qu.:4.000   1st Qu.:105.0   1st Qu.: 75.0  
##  Median :22.75   Median :4.000   Median :151.0   Median : 93.5  
##  Mean   :23.45   Mean   :5.472   Mean   :194.4   Mean   :104.5  
##  3rd Qu.:29.00   3rd Qu.:8.000   3rd Qu.:275.8   3rd Qu.:126.0  
##  Max.   :46.60   Max.   :8.000   Max.   :455.0   Max.   :230.0  
##                                                                 
##      weight      acceleration        year           origin     
##  Min.   :1613   Min.   : 8.00   Min.   :70.00   Min.   :1.000  
##  1st Qu.:2225   1st Qu.:13.78   1st Qu.:73.00   1st Qu.:1.000  
##  Median :2804   Median :15.50   Median :76.00   Median :1.000  
##  Mean   :2978   Mean   :15.54   Mean   :75.98   Mean   :1.577  
##  3rd Qu.:3615   3rd Qu.:17.02   3rd Qu.:79.00   3rd Qu.:2.000  
##  Max.   :5140   Max.   :24.80   Max.   :82.00   Max.   :3.000  
##                                                                
##                  name    
##  amc matador       :  5  
##  ford pinto        :  5  
##  toyota corolla    :  5  
##  amc gremlin       :  4  
##  amc hornet        :  4  
##  chevrolet chevette:  4  
##  (Other)           :365
library(ISLR)
attach(Auto)
## The following objects are masked from Auto (pos = 3):
## 
##     acceleration, cylinders, displacement, horsepower, mpg, name,
##     origin, weight, year
mpg01<-as.numeric(ifelse(mpg>median(mpg), "1", "0"))
Auto=data.frame(Auto, mpg01)
head(Auto)
##   mpg cylinders displacement horsepower weight acceleration year origin
## 1  18         8          307        130   3504         12.0   70      1
## 2  15         8          350        165   3693         11.5   70      1
## 3  18         8          318        150   3436         11.0   70      1
## 4  16         8          304        150   3433         12.0   70      1
## 5  17         8          302        140   3449         10.5   70      1
## 6  15         8          429        198   4341         10.0   70      1
##                        name mpg01
## 1 chevrolet chevelle malibu     0
## 2         buick skylark 320     0
## 3        plymouth satellite     0
## 4             amc rebel sst     0
## 5               ford torino     0
## 6          ford galaxie 500     0

Part B Explore the data graphically in order to investigate the association between mpg01 and the other features. Which of the other features seem most likely to be useful in predicting mpg01? Scatterplots and boxplots may be useful tools to answer this question. Describe your findings.

cor(Auto[, -9])
##                     mpg  cylinders displacement horsepower     weight
## mpg           1.0000000 -0.7776175   -0.8051269 -0.7784268 -0.8322442
## cylinders    -0.7776175  1.0000000    0.9508233  0.8429834  0.8975273
## displacement -0.8051269  0.9508233    1.0000000  0.8972570  0.9329944
## horsepower   -0.7784268  0.8429834    0.8972570  1.0000000  0.8645377
## weight       -0.8322442  0.8975273    0.9329944  0.8645377  1.0000000
## acceleration  0.4233285 -0.5046834   -0.5438005 -0.6891955 -0.4168392
## year          0.5805410 -0.3456474   -0.3698552 -0.4163615 -0.3091199
## origin        0.5652088 -0.5689316   -0.6145351 -0.4551715 -0.5850054
## mpg01         0.8369392 -0.7591939   -0.7534766 -0.6670526 -0.7577566
##              acceleration       year     origin      mpg01
## mpg             0.4233285  0.5805410  0.5652088  0.8369392
## cylinders      -0.5046834 -0.3456474 -0.5689316 -0.7591939
## displacement   -0.5438005 -0.3698552 -0.6145351 -0.7534766
## horsepower     -0.6891955 -0.4163615 -0.4551715 -0.6670526
## weight         -0.4168392 -0.3091199 -0.5850054 -0.7577566
## acceleration    1.0000000  0.2903161  0.2127458  0.3468215
## year            0.2903161  1.0000000  0.1815277  0.4299042
## origin          0.2127458  0.1815277  1.0000000  0.5136984
## mpg01           0.3468215  0.4299042  0.5136984  1.0000000
pairs(Auto)

par(mfrow=c(2,3))
boxplot(cylinders~mpg01, data=Auto, main="Cylinders vs MPG01")
boxplot(displacement~mpg01, data=Auto, main="Displacement vs MPG01")
boxplot(horsepower~mpg01, data=Auto, main="Horsepower vs MPG01")
boxplot(weight~mpg01, data=Auto, main="Weight vs MPG01")
boxplot(acceleration~mpg01, data=Auto, main="Acceleration vs MPG01")
boxplot(year~mpg01, data=Auto, main="Year vs MPG01")

The graphs indicate that there are some association between mpg01 and cylinders, weight, horsepower, and displacement. These 4 variables show more of a distinct distinguishment between mpg01 where it equals 0 and mpg01 where it equals 1. When mpg01 equals 0, this means that the car has a low gas mileage. When mpg01 equals 1, this means that the car has high gas mileage.

Part C Split the data into a training set and a test set.

Part D Perform LDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

library(MASS)
autolda.fit<-lda(mpg01~cylinders+weight+horsepower+displacement, data =Autotrain)
autolda.pred<-predict(autolda.fit, Autotest)
table(autolda.pred$class, mpg01.test)
##    mpg01.test
##      0  1
##   0 44  3
##   1  4 47
mean(autolda.pred$class!=mpg01.test)
## [1] 0.07142857

The LDA Model for the Auto dataset has a test error rate of 7.14%. The model accurately predicts that 44 cars had low gas mileage and that 47 cars had high gas mileage.

Part E Perform QDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

autoqda.fit<-qda(mpg01~cylinders+weight+horsepower+displacement, data = Autotrain)
autoqda.pred<-predict(autoqda.fit, Autotest)
table(autoqda.pred$class, mpg01.test)
##    mpg01.test
##      0  1
##   0 46  4
##   1  2 46
mean(autoqda.pred$class!=mpg01.test)
## [1] 0.06122449

The QDA Model for the Auto dataset has a test error rate of 6.12%. The model accurately predicts that 46 cars had low gas mileage and that 46 cars had high gas mileage.

Part F Perform logistic regression on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

autoglm.fit<-glm(mpg01~cylinders+weight+displacement+horsepower, family= "binomial", data=Autotrain)
autoglm.probs<-predict(autoglm.fit, Autotest, type="response")
autoglm.pred<-rep(0,length(autoglm.probs))
autoglm.pred[autoglm.probs>0.5]=1
table(autoglm.pred, mpg01.test)
##             mpg01.test
## autoglm.pred  0  1
##            0 46  5
##            1  2 45
mean(autoglm.pred!=mpg01.test)
## [1] 0.07142857

The Logistic Model has a test error rate of 7.14%. The model accurately predicts that 46 cars had low gas mileage and that 45 cars had high gas mileage.

Part G Perform KNN on the training data, with several values of K, in order to predict mpg01. Use only the variables that seemed most associated with mpg01 in (b). What test errors do you obtain? Which value of K seems to perform the best on this data set?

library(class)
Xtrain=cbind(cylinders,weight,displacement,horsepower)[train,]
Xtest=cbind(cylinders, weight,displacement,horsepower)[test,]
train.mpg01=mpg01[train]
set.seed(1)
autoknn.pred=knn(Xtrain, Xtest, train.mpg01, k=1)
table(autoknn.pred, mpg01.test)
##             mpg01.test
## autoknn.pred  0  1
##            0 44  6
##            1  4 44
mean(autoknn.pred!=mpg01.test)
## [1] 0.1020408
autoknn.pred2=knn(Xtrain, Xtest, train.mpg01, k=5)
table(autoknn.pred2, mpg01.test)
##              mpg01.test
## autoknn.pred2  0  1
##             0 43  4
##             1  5 46
mean(autoknn.pred2!=mpg01.test)
## [1] 0.09183673
autoknn.pred3=knn(Xtrain, Xtest, train.mpg01, k=10)
table(autoknn.pred3, mpg01.test)
##              mpg01.test
## autoknn.pred3  0  1
##             0 44  4
##             1  4 46
mean(autoknn.pred3!=mpg01.test)
## [1] 0.08163265
autoknn.pred4=knn(Xtrain, Xtest, train.mpg01, k=20)
table(autoknn.pred4, mpg01.test)
##              mpg01.test
## autoknn.pred4  0  1
##             0 43  5
##             1  5 45
mean(autoknn.pred4!=mpg01.test)
## [1] 0.1020408
autoknn.pred5=knn(Xtrain, Xtest, train.mpg01, k=100)
table(autoknn.pred5, mpg01.test)
##              mpg01.test
## autoknn.pred5  0  1
##             0 43  4
##             1  5 46
mean(autoknn.pred5!=mpg01.test)
## [1] 0.09183673
detach(Auto)

The KNN model with 1 K-Fold has a test error rate of 10.20%; this model accurately predicts that 44 cars had low gas mileage and 44 cars had high gas mileage. The KNN model with 5 K-Fold has a test error rate of 9.18%; this model accurately predicts that 43 cars had low gas mileage and 46 cars had high gas mileage. The KNN model with 10 K-Fold has a test error rate of 8.16%; this model accurately predicts that 44 cars had low gas mileage and 46 cars had high gas mileage. The KNN model with 20 K-Fold has a test error rate of 10.20%; this model accurately predicts that 43 cars had low gas mileage and 45 cars had high gas mileage. The KNN model with 100 K-Fold has a test error rate of 9.18%; this model accurately predicts that 43 cars had low gas mileage and 46 car had high gas mileage. It seems like the KNN model with 10 K-Folds performs the best.

Question 13:

Using the Boston data set, fit classification models in order to predict whether a given suburb has a crime rate above or below the median. Explore logistic regression, LDA, and KNN models using various subsets of the predictors. Describe your findings.

library(MASS)
attach(Boston)
crimesub<-as.numeric(ifelse(crim>median(crim), "1", "0"))
Boston=data.frame(Boston, crimesub)
summary(Boston)
##       crim                zn             indus            chas        
##  Min.   : 0.00632   Min.   :  0.00   Min.   : 0.46   Min.   :0.00000  
##  1st Qu.: 0.08204   1st Qu.:  0.00   1st Qu.: 5.19   1st Qu.:0.00000  
##  Median : 0.25651   Median :  0.00   Median : 9.69   Median :0.00000  
##  Mean   : 3.61352   Mean   : 11.36   Mean   :11.14   Mean   :0.06917  
##  3rd Qu.: 3.67708   3rd Qu.: 12.50   3rd Qu.:18.10   3rd Qu.:0.00000  
##  Max.   :88.97620   Max.   :100.00   Max.   :27.74   Max.   :1.00000  
##       nox               rm             age              dis        
##  Min.   :0.3850   Min.   :3.561   Min.   :  2.90   Min.   : 1.130  
##  1st Qu.:0.4490   1st Qu.:5.886   1st Qu.: 45.02   1st Qu.: 2.100  
##  Median :0.5380   Median :6.208   Median : 77.50   Median : 3.207  
##  Mean   :0.5547   Mean   :6.285   Mean   : 68.57   Mean   : 3.795  
##  3rd Qu.:0.6240   3rd Qu.:6.623   3rd Qu.: 94.08   3rd Qu.: 5.188  
##  Max.   :0.8710   Max.   :8.780   Max.   :100.00   Max.   :12.127  
##       rad              tax           ptratio          black       
##  Min.   : 1.000   Min.   :187.0   Min.   :12.60   Min.   :  0.32  
##  1st Qu.: 4.000   1st Qu.:279.0   1st Qu.:17.40   1st Qu.:375.38  
##  Median : 5.000   Median :330.0   Median :19.05   Median :391.44  
##  Mean   : 9.549   Mean   :408.2   Mean   :18.46   Mean   :356.67  
##  3rd Qu.:24.000   3rd Qu.:666.0   3rd Qu.:20.20   3rd Qu.:396.23  
##  Max.   :24.000   Max.   :711.0   Max.   :22.00   Max.   :396.90  
##      lstat            medv          crimesub  
##  Min.   : 1.73   Min.   : 5.00   Min.   :0.0  
##  1st Qu.: 6.95   1st Qu.:17.02   1st Qu.:0.0  
##  Median :11.36   Median :21.20   Median :0.5  
##  Mean   :12.65   Mean   :22.53   Mean   :0.5  
##  3rd Qu.:16.95   3rd Qu.:25.00   3rd Qu.:1.0  
##  Max.   :37.97   Max.   :50.00   Max.   :1.0
set.seed(100)
Bostontrain=sample(x=nrow(Boston), size=0.75*nrow(Boston), rep=FALSE)
Bostontest= -Bostontrain
Boston.train= Boston[Bostontrain,]
Boston.test= Boston[Bostontest,]
crimesub.test=crimesub[Bostontest]
dim(Boston)
## [1] 506  15
dim(Boston.train)
## [1] 379  15
dim(Boston.test)
## [1] 127  15

Logistic Regression

Bostonglm.fit<-glm(crimesub~zn+indus+chas+nox+rm+age+dis+rad+tax+ptratio+black+lstat+medv, family="binomial", data=Boston, subset = Bostontrain)
Bostonglm.probs=predict(Bostonglm.fit, Boston.test, type="response")
Bostonglm.pred=rep(0, length(Bostonglm.probs))
Bostonglm.pred[Bostonglm.probs>0.5]=1
table(Bostonglm.pred, crimesub.test)
##               crimesub.test
## Bostonglm.pred  0  1
##              0 62  9
##              1  5 51
mean(Bostonglm.pred!=crimesub.test)
## [1] 0.1102362

The logistic regression model for the crimesub is fit against all other variables with the exception of crim and itself. The test error for this model is 11.02%. This model accurately predicts that the crime rate in 62 suburbs were below the median and that the crime rate in 51 suburbs were above the median.

LDA

library(MASS)
Bostonlda.fit<-lda(crimesub~zn+indus+chas+nox+rm+age+dis+rad+tax+ptratio+black+lstat+medv, data=Boston, subset = Bostontrain)
Bostonlda.pred<-predict(Bostonlda.fit, Boston.test)
table(Bostonlda.pred$class, crimesub.test)
##    crimesub.test
##      0  1
##   0 64 17
##   1  3 43
mean(Bostonlda.pred$class!=crimesub.test)
## [1] 0.1574803

The LDA model for the crimsub is fit against all other variables with the exception of crim and itself. The test error for this model is 15.75%. This model accurately predicts that the crime rate in 64 suburbs were below the median and that the crime rate in 43 suburbs were above the median. This model does not predict as accurately as the logistic regression model above.

KNN

Xtrain3=cbind(zn,indus,chas,nox,rm,age,dis,rad,tax,ptratio,black,lstat,medv)[Bostontrain,]
Xtest3=cbind(zn,indus,chas,nox,rm,age,dis,rad,tax,ptratio,black,lstat,medv)[Bostontest,]
train.subcrim=crimesub[Bostontrain]
set.seed(1)
# KNN Model 1 K-Fold
Bostonknn.pred=knn(Xtrain3, Xtest3, train.subcrim, k=1)
table(Bostonknn.pred, crimesub.test)
##               crimesub.test
## Bostonknn.pred  0  1
##              0 62  7
##              1  5 53
mean(Bostonknn.pred!=crimesub.test)
## [1] 0.09448819
# KNN Model 10 K-Fold
Bostonknn.pred2=knn(Xtrain3, Xtest3, train.subcrim, k=10)
table(Bostonknn.pred2, crimesub.test)
##                crimesub.test
## Bostonknn.pred2  0  1
##               0 56 11
##               1 11 49
mean(Bostonknn.pred2!=crimesub.test)
## [1] 0.1732283

I tested K-Folds of 1 and 10. The model with 1 K-Fold performed best. In the model with 1 K-Fold, the model produced a test error of 9.45%. The 1 K-Fold KNN model accurately predicts that 62 suburbs had a low crime rate and that 53 suburbs had a high crime rate.

The KNN model with 1 K-Fold performed the best in regard to the most accurately predictions and lowest test error. I believe that a key reason is due to the fact that suburbs emmulate communities or environments that are near by. Because suburbs are a geographic location variable and factor, the KNN model works best and makes sense.

Additional Proof

Bostonglm.fit<-glm(crimesub~zn+indus+chas+nox+rm+age+dis+rad+tax+ptratio+black+lstat+medv, family="binomial", data=Boston, subset = Bostontrain)
summary(Bostonglm.fit)
## 
## Call:
## glm(formula = crimesub ~ zn + indus + chas + nox + rm + age + 
##     dis + rad + tax + ptratio + black + lstat + medv, family = "binomial", 
##     data = Boston, subset = Bostontrain)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.10721  -0.11995   0.00000   0.00075   2.50479  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -36.539707   8.028067  -4.551 5.33e-06 ***
## zn           -0.102152   0.044694  -2.286  0.02228 *  
## indus        -0.066307   0.059454  -1.115  0.26474    
## chas         -0.140737   0.910947  -0.154  0.87722    
## nox          56.479353   9.926008   5.690 1.27e-08 ***
## rm           -0.667692   0.853860  -0.782  0.43423    
## age           0.013427   0.014623   0.918  0.35852    
## dis           0.787676   0.273534   2.880  0.00398 ** 
## rad           0.770994   0.186549   4.133 3.58e-05 ***
## tax          -0.006917   0.003491  -1.981  0.04758 *  
## ptratio       0.288534   0.145729   1.980  0.04771 *  
## black        -0.012426   0.006019  -2.065  0.03896 *  
## lstat         0.062479   0.058315   1.071  0.28399    
## medv          0.191587   0.080904   2.368  0.01788 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 525.28  on 378  degrees of freedom
## Residual deviance: 144.51  on 365  degrees of freedom
## AIC: 172.51
## 
## Number of Fisher Scoring iterations: 9

Based on the above glm model, the only significant variables are zn, nox, dis, rad, tax, ptratio, black, and medv. For the remainder of the models, I will only use these statistically significant variables.

Bostonglm.fit2<-glm(crimesub~zn+nox+dis+rad+tax+ptratio+black+medv, family="binomial", data=Boston, subset = Bostontrain)
Bostonglm.probs2=predict(Bostonglm.fit2, Boston.test, type="response")
Bostonglm.pred2=rep(0, length(Bostonglm.probs2))
Bostonglm.pred2[Bostonglm.probs2>0.5]=1
table(Bostonglm.pred2, crimesub.test)
##                crimesub.test
## Bostonglm.pred2  0  1
##               0 60 12
##               1  7 48
mean(Bostonglm.pred2!=crimesub.test)
## [1] 0.1496063
# LDA Model 
library(MASS)
Bostonlda.fit2<-lda(crimesub~zn+nox+dis+rad+tax+ptratio+black+medv, data=Boston, subset = Bostontrain)
Bostonlda.pred2<-predict(Bostonlda.fit2, Boston.test)
table(Bostonlda.pred2$class, crimesub.test)
##    crimesub.test
##      0  1
##   0 65 17
##   1  2 43
mean(Bostonlda.pred2$class!=crimesub.test)
## [1] 0.1496063
# KNN Model 1 K-Fold
Xtrain4=cbind(zn,nox,dis,rad,tax,ptratio,black,medv)[Bostontrain,]
Xtest4=cbind(zn,nox,dis,rad,tax,ptratio,black,medv)[Bostontest,]
train.subcrim2=crimesub[Bostontrain]
set.seed(1)
Bostonknn.pred3=knn(Xtrain4, Xtest4, train.subcrim2, k=1)
table(Bostonknn.pred3, crimesub.test)
##                crimesub.test
## Bostonknn.pred3  0  1
##               0 64  6
##               1  3 54
mean(Bostonknn.pred3!=crimesub.test)
## [1] 0.07086614
# KNN Model 10 K-Fold
Bostonknn.pred4=knn(Xtrain4, Xtest4, train.subcrim2, k=10)
table(Bostonknn.pred4, crimesub.test)
##                crimesub.test
## Bostonknn.pred4  0  1
##               0 62  9
##               1  5 51
mean(Bostonknn.pred4!=crimesub.test)
## [1] 0.1102362

Even with only significant variables to fit against crimesub, the KNN model with 1 K-Fold most accurately predicts the low or high crime rate given a suburb. The test error for the KNN model with 1 K-Fold is 7.09%.