Using R’s dplyr package, write R code that shows the average mpg and average weight based on # of cylinders and whether there is automatic transmission; show only for cars that get more than 20 mpg.
require(dplyr)
## Loading required package: dplyr
##
## Attaching package: 'dplyr'
##
## The following object is masked from 'package:stats':
##
## filter
##
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
Assign mtcars data to a table data frame
mtcars_df <- tbl_df(mtcars)
Group by # of cylendars,am
(cylendars.am <- group_by(mtcars_df, cyl, am))
## Source: local data frame [32 x 11]
## Groups: cyl, am
##
## mpg cyl disp hp drat wt qsec vs am gear carb
## 1 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## 2 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## 3 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
## 4 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## 5 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## 6 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## 7 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## 8 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
## 9 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
## 10 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
## 11 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
## 12 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
## 13 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
## 14 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
## 15 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
## 16 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
## 17 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
## 18 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
## 19 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
## 20 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
## 21 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
## 22 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
## 23 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
## 24 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
## 25 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
## 26 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
## 27 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
## 28 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
## 29 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
## 30 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
## 31 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
## 32 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
Now summarise - avergae mpg, average wt
(summary.results <- summarise(cylendars.am,
avgmpg = mean(mpg, na.rm = TRUE),
avgwt = mean(wt, na.rm = TRUE)))
## Source: local data frame [6 x 4]
## Groups: cyl
##
## cyl am avgmpg avgwt
## 1 4 0 22.90 2.935
## 2 4 1 28.07 2.042
## 3 6 0 19.12 3.389
## 4 6 1 20.57 2.755
## 5 8 0 15.05 4.104
## 6 8 1 15.40 3.370
show only for cars that get more than 20 mpg.
filter(summary.results, avgmpg > 20)
## Source: local data frame [3 x 4]
## Groups: cyl
##
## cyl am avgmpg avgwt
## 1 4 0 22.90 2.935
## 2 4 1 28.07 2.042
## 3 6 1 20.57 2.755
The above steps can be combined/chained into a single top-down step using operator “%>%”
mtcars %>%
group_by(cyl, am) %>%
summarise(avgmpg = mean(mpg), avgwt = mean(wt)) %>%
filter(avgmpg > 20)
## Source: local data frame [3 x 4]
## Groups: cyl
##
## cyl am avgmpg avgwt
## 1 4 0 22.90 2.935
## 2 4 1 28.07 2.042
## 3 6 1 20.57 2.755