Use the Linear Optimaziton method to find the most efficient way for paper recycling.
\[ 13x{15} + 12x{16} + 11x{25}+ 13x{26}+ 9x_{35} + 10x_{36}+ 13x_{45}+ 14x_{46}+ 5x_{57}+ 6x_{58} + 8x_{59} + 6x_{67}+ 8x_{68} +7x_{69}\]
x_{ij} >= 0 for all \(ij\)
newspaper : \(x_{15}+ x_{16} \leq 70\)
mixed paper \(x_{25}+ x_{26} \leq 50\)
White office paper \(x_{35}+ x_{36} \leq 30\)
cardboard \(x_{45}+ x_{46} leq 40\)
Recycle Method 1: \(0.9x_{15}+ 0.8x_{25}+ 0.95x_{35}+ 0.75x_{45}- x_{57} -x_{58} - x_{59} \geq 0\)
Recycle Method 2: \(0.85x_{16}+ 0.85x_{26}+ 0.9x_{36}+ 0.85x_{46}- x_{67} -x_{68} - x_{69} \geq 0\)
newsprint : \(0.95x_{57}+ 0.9x_{67} \geq 60\)
packaging paper: \(0.9x_{58}+ 0.95x_{68} \geq 40\)
stock paper: \(0.9x_{59}+ 0.95x_{69} \geq 50\)
#minimize
obj_fun <- c(13,12,11,13,9,10,13,14,5,6,8,6,8,7)
#constrain
constr <- matrix (c(1,1,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,1,1,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,1,1,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,1,1,0,0,0,0,0,0,
-0.95,0,-0.8,0,-0.95,0,-0.75,0,1,1,1,0,0,0,
0,-0.85,0,-85,0,-0.9,0,-0.85,0,0,0,1,1,1,
0,0,0,0,0,0,0,0,-0.95,0,0,-0.9,0,0,
0,0,0,0,0,0,0,0,0,-0.9,0,0,-0.95,0,
0,0,0,0,0,0,0,0,0,0,-0.9,0,0,-0.95), ncol=14, byrow=TRUE)
constr_dir <- c("<=",
"<=",
"<=",
"<=",
">=",
">=",
">=",
">=",
">=")
rhs <-c(70,50,30,40,0,0,-60,-40,-50) As we can see the Minimun Price for the Recycling is $3447.735 .
prod_sol <- lp("max", obj_fun, constr, constr_dir, rhs, compute.sens=TRUE)
prod_sol$objval## [1] 3447.735