Standard PA and NA-predicting models

Formulas

df.PA.standard <- lmer(bc_pa ~ PA_outcome + PA_PE + ( 1 + PA_outcome + PA_PE | cohort / id / exam_num), data = df, REML = FALSE)

df.NA.standard <- lmer(bc_na ~ NA_outcome + NA_PE + ( 1 + NA_outcome + NA_PE | cohort / id / exam_num), data = df, REML = FALSE)

Summaries

summary(df.PA.standard)
## Linear mixed model fit by maximum likelihood . t-tests use
##   Satterthwaite's method [lmerModLmerTest]
## Formula: 
## bc_pa ~ PA_outcome + PA_PE + (1 + PA_outcome + PA_PE | cohort/id/exam_num)
##    Data: df
## 
##      AIC      BIC   logLik deviance df.resid 
##  16273.8  16397.8  -8114.9  16229.8     2054 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.4160 -0.4504  0.0348  0.4830  4.8595 
## 
## Random effects:
##  Groups               Name        Variance Std.Dev. Corr       
##  exam_num:(id:cohort) (Intercept) 274.5074 16.5683             
##                       PA_outcome    2.4774  1.5740  -0.82      
##                       PA_PE        11.4498  3.3838   0.69 -0.98
##  id:cohort            (Intercept) 220.2371 14.8404             
##                       PA_outcome    3.4846  1.8667  -0.97      
##                       PA_PE         2.2237  1.4912   0.99 -0.93
##  cohort               (Intercept)  11.1589  3.3405             
##                       PA_outcome    0.2371  0.4869  -1.00      
##                       PA_PE         0.1785  0.4225   1.00 -1.00
##  Residual                         101.5956 10.0795             
## Number of obs: 2076, groups:  
## exam_num:(id:cohort), 331; id:cohort, 117; cohort, 2
## 
## Fixed effects:
##             Estimate Std. Error      df t value Pr(>|t|)  
## (Intercept)  -6.5787     3.5736  2.2976  -1.841   0.1903  
## PA_outcome    0.7470     0.4802  1.9381   1.556   0.2639  
## PA_PE         2.6194     0.5738  3.6789   4.565   0.0125 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##            (Intr) PA_tcm
## PA_outcome -0.975       
## PA_PE       0.728 -0.751
summary(df.NA.standard)
## Linear mixed model fit by maximum likelihood . t-tests use
##   Satterthwaite's method [lmerModLmerTest]
## Formula: 
## bc_na ~ NA_outcome + NA_PE + (1 + NA_outcome + NA_PE | cohort/id/exam_num)
##    Data: df
## 
##      AIC      BIC   logLik deviance df.resid 
##  16669.2  16793.2  -8312.6  16625.2     2054 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7272 -0.4977 -0.0581  0.4194  4.8726 
## 
## Random effects:
##  Groups               Name        Variance  Std.Dev. Corr       
##  exam_num:(id:cohort) (Intercept) 5.294e+02 23.00781            
##                       NA_outcome  7.384e+00  2.71744 -0.86      
##                       NA_PE       1.092e+01  3.30515  0.69 -0.96
##  id:cohort            (Intercept) 1.180e+02 10.86172            
##                       NA_outcome  8.862e-01  0.94140 -0.98      
##                       NA_PE       5.584e+00  2.36306  0.90 -0.78
##  cohort               (Intercept) 3.209e-01  0.56651            
##                       NA_outcome  6.693e-03  0.08181 1.00       
##                       NA_PE       8.377e-03  0.09153 1.00  1.00 
##  Residual                         1.146e+02 10.70615            
## Number of obs: 2076, groups:  
## exam_num:(id:cohort), 331; id:cohort, 117; cohort, 2
## 
## Fixed effects:
##             Estimate Std. Error      df t value Pr(>|t|)    
## (Intercept)   7.9061     2.2587 23.2548   3.500   0.0019 ** 
## NA_outcome   -0.8096     0.2820 17.2281  -2.871   0.0105 *  
## NA_PE        -2.5963     0.5433 36.4875  -4.779 2.86e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##            (Intr) NA_tcm
## NA_outcome -0.844       
## NA_PE       0.555 -0.553

AICs These are the winning AICs for all models tested

AIC(df.PA.standard)
## [1] 16273.76
AIC(df.NA.standard)
## [1] 16669.2

Models with confidence parameter

df.PA.conf <- lmer(bc_pa ~ PA_outcome + PA_PE*PA_confidence + ( 1 + PA_outcome + PA_PE + PA_confidence | cohort / id / exam_num), data = df, REML = FALSE)

df.NA.conf <- lmer(bc_na ~ NA_outcome + NA_PE*NA_confidence + ( 1 + NA_outcome + NA_PE + NA_confidence | cohort / id / exam_num), data = df, REML = FALSE)

Summaries

summary(df.PA.conf)
## Linear mixed model fit by maximum likelihood . t-tests use
##   Satterthwaite's method [lmerModLmerTest]
## Formula: bc_pa ~ PA_outcome + PA_PE * PA_confidence + (1 + PA_outcome +  
##     PA_PE + PA_confidence | cohort/id/exam_num)
##    Data: df
## 
##      AIC      BIC   logLik deviance df.resid 
##  16429.8  16632.7  -8178.9  16357.8     2040 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.5080 -0.4466  0.0239  0.4816  4.9006 
## 
## Random effects:
##  Groups               Name          Variance  Std.Dev. Corr             
##  exam_num:(id:cohort) (Intercept)   171.58275 13.0990                   
##                       PA_outcome      5.26333  2.2942  -0.61            
##                       PA_PE          35.88468  5.9904   0.46 -0.62      
##                       PA_confidence   0.01663  0.1289   0.11 -0.80  0.17
##  id:cohort            (Intercept)   146.11845 12.0879                   
##                       PA_outcome      1.74336  1.3204  -0.45            
##                       PA_PE          78.49881  8.8600   0.18 -0.40      
##                       PA_confidence   0.04750  0.2179  -0.34 -0.52 -0.31
##  cohort               (Intercept)    58.72064  7.6629                   
##                       PA_outcome     27.84530  5.2769   0.21            
##                       PA_PE         153.63133 12.3948   0.04  0.63      
##                       PA_confidence 124.45168 11.1558  -0.18  0.14 -0.02
##  Residual                            95.06572  9.7502                   
## Number of obs: 2076, groups:  
## exam_num:(id:cohort), 331; id:cohort, 117; cohort, 2
## 
## Fixed effects:
##                      Estimate Std. Error        df t value Pr(>|t|)   
## (Intercept)          -4.86127    5.99846   0.21563  -0.810  0.76315   
## PA_outcome            1.01244    3.76366   6.63136   0.269  0.79610   
## PA_PE                -1.07102    9.00913   0.12062  -0.119  0.96261   
## PA_confidence        -0.07012    7.88851   2.64648  -0.009  0.99353   
## PA_PE:PA_confidence   0.06478    0.02458 266.90592   2.636  0.00888 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) PA_tcm PA_PE  PA_cnf
## PA_outcome   0.152                     
## PA_PE        0.057  0.597              
## PA_confidnc -0.159  0.135 -0.022       
## PA_PE:PA_cn -0.046  0.045 -0.196 -0.002
## convergence code: 1
## unable to evaluate scaled gradient
## Model failed to converge: degenerate  Hessian with 7 negative eigenvalues
summary(df.NA.conf)
## Linear mixed model fit by maximum likelihood . t-tests use
##   Satterthwaite's method [lmerModLmerTest]
## Formula: bc_na ~ NA_outcome + NA_PE * NA_confidence + (1 + NA_outcome +  
##     NA_PE + NA_confidence | cohort/id/exam_num)
##    Data: df
## 
##      AIC      BIC   logLik deviance df.resid 
##  16702.3  16905.3  -8315.1  16630.3     2040 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9210 -0.4799 -0.0581  0.4146  4.8097 
## 
## Random effects:
##  Groups               Name          Variance  Std.Dev. Corr             
##  exam_num:(id:cohort) (Intercept)    50.51306  7.1073                   
##                       NA_outcome      3.69665  1.9227   0.99            
##                       NA_PE           5.92702  2.4345  -0.55 -0.59      
##                       NA_confidence   0.10402  0.3225  -0.85 -0.86  0.17
##  id:cohort            (Intercept)   199.60051 14.1280                   
##                       NA_outcome      0.99881  0.9994  -0.88            
##                       NA_PE          11.74417  3.4270   0.54 -0.48      
##                       NA_confidence   0.01161  0.1077  -0.87  0.52 -0.43
##  cohort               (Intercept)   245.17546 15.6581                   
##                       NA_outcome    143.87682 11.9949   0.29            
##                       NA_PE         247.63777 15.7365   0.05  0.40      
##                       NA_confidence 346.11054 18.6040   0.34  0.02 -0.14
##  Residual                           108.50228 10.4164                   
## Number of obs: 2076, groups:  
## exam_num:(id:cohort), 331; id:cohort, 117; cohort, 2
## 
## Fixed effects:
##                      Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)          12.32991   11.29431  23.21898   1.092    0.286    
## NA_outcome           -2.23785    8.49309   0.82950  -0.263    0.843    
## NA_PE                 3.56345   11.19132   0.02894   0.318    0.961    
## NA_confidence         0.11561   13.15511   0.16081   0.009    0.997    
## NA_PE:NA_confidence  -0.07650    0.01535 475.19388  -4.982 8.81e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) NA_tcm NA_PE  NA_cnf
## NA_outcome   0.275                     
## NA_PE        0.053  0.393              
## NA_confidnc  0.334  0.018 -0.140       
## NA_PE:NA_cn -0.026  0.011 -0.089 -0.001
## convergence code: 1
## unable to evaluate scaled gradient
## Model failed to converge: degenerate  Hessian with 6 negative eigenvalues

AICs These are the winning AICs for all confidence models

AIC(df.PA.conf)
## [1] 16429.77
AIC(df.NA.conf)
## [1] 16702.3

Ilustrating PE * Confidence Interaction for a sample subject with negative and positive PEs, and high and low confidence

plot 1: raw PE and Confidence variables

plot 2: raw PE * Confidence interaction

plot 3: fit values for PE * Confidence interaction (values from plot 2, multiplied by Betas from PA and NA models)

Alternate models tested (using prediction, inverse confidence, etc.)

df.PA.conf1 <- lmer(bc_pa ~ PA_outcome*PA_confidence + PA_PE + ( 1 + PA_outcome + PA_PE + PA_confidence | cohort / id / exam_num), data = df, REML = FALSE)
df.NA.conf1 <- lmer(bc_na ~ NA_outcome*NA_confidence + NA_PE + ( 1 + NA_outcome + NA_PE + NA_confidence | cohort / id / exam_num), data = df, REML = FALSE)
AIC(df.PA.conf1)
## [1] 16357.8
AIC(df.NA.conf1)
## [1] 16704.19
df.PA.conf2 <- lmer(bc_pa ~ PA_outcome*PA_inverse_conf + PA_PE + ( 1 + PA_outcome + PA_PE + PA_inverse_conf | cohort / id / exam_num), data = df, REML = FALSE)
df.NA.conf2 <- lmer(bc_na ~ NA_outcome*NA_inverse_conf + NA_PE + ( 1 + NA_outcome + NA_PE + NA_inverse_conf | cohort / id / exam_num), data = df, REML = FALSE)
AIC(df.PA.conf2)
## [1] 16345.76
AIC(df.NA.conf2)
## [1] 16748.58
df.PA.conf3 <- lmer(bc_pa ~ PA_outcome + PA_PE*PA_inverse_conf + ( 1 + PA_outcome + PA_PE + PA_inverse_conf | cohort / id / exam_num), data = df, REML = FALSE)
df.NA.conf3 <- lmer(bc_na ~ NA_outcome + NA_PE*NA_inverse_conf + ( 1 + NA_outcome + NA_PE + NA_inverse_conf | cohort / id / exam_num), data = df, REML = FALSE)
AIC(df.PA.conf3)
## [1] 16350.68
AIC(df.NA.conf3)
## [1] 16740.11
df.PA.conf4 <- lmer(bc_pa ~ PA_outcome + PA_prediction*PA_confidence + ( 1 + PA_outcome + PA_prediction + PA_confidence | cohort / id / exam_num), data = df, REML = FALSE)
df.NA.conf4 <- lmer(bc_na ~ NA_outcome + NA_prediction*NA_confidence + ( 1 + NA_outcome + NA_prediction + NA_confidence | cohort / id / exam_num), data = df, REML = FALSE)
AIC(df.PA.conf4)
## [1] 16408.67
AIC(df.NA.conf4)
## [1] 16718.73
df.PA.conf5 <- lmer(bc_pa ~ PA_PE + PA_prediction*PA_confidence + ( 1 + PA_PE + PA_prediction + PA_confidence | cohort / id / exam_num), data = df, REML = FALSE)
df.NA.conf5 <- lmer(bc_na ~ NA_PE + NA_prediction*NA_confidence + ( 1 + NA_PE + NA_prediction + NA_confidence | cohort / id / exam_num), data = df, REML = FALSE)
AIC(df.PA.conf5)
## [1] 16337.22
AIC(df.NA.conf5)
## [1] 16702.71

Models with centered confidence parameter (range: -50 to +50)

… In Progress …