__________________________________________________________________________________________________________________________
Figure 1: Drag coefficient as function of Reynolds number and particle shape (Wu and Wang, 2006)
Figure 2: Comparison of Wu and Wang (2006) formula with the method of U.S. Interagency Committee
\[ w_s=F\sqrt{\Bigg(\frac{\rho_s}{\rho}-1\Bigg)\cdot gd} \] \[ w_s=0.79\sqrt{\Bigg(\frac{2650}{1000}-1\Bigg)\cdot 9.81\cdot 0.001} \] \[ w_s=0.10\ m/s \]
\[ F=\Bigg[\frac{2}{3}+\frac{36\nu^2}{gd^3(\rho_s/\rho-1)}\Bigg]^{1/2}-\Bigg[\frac{36\nu^2}{gd^3(\rho_s/\rho-1)}\Bigg]^{1/2} \]
\[ F=\Bigg[\frac{2}{3}+\frac{36\cdot 10^{-6^{2}}}{9.81 \cdot (0.00001)^3(2650/1000-1)}\Bigg]^{1/2}-\Bigg[\frac{36\cdot 10^{-6^{2}}}{9.81 \cdot (0.00001)^3(2650/1000-1)}\Bigg]^{1/2} \] \[ F=0.00707 \]
\[ w_s=0.00707\sqrt{\Bigg(\frac{2650}{1000}-1\Bigg)\cdot 9.81\cdot 0.00001} \]
\[ w_s=8.99\cdot10^{-5} \ m/s \]
\[ w_s=\sqrt{\Bigg(13.95\cdot\frac{\nu}{d}\Bigg)^2+1.09\Bigg(\frac{\rho_s}{\rho}-1\Bigg)gd}-13.95\frac{\nu}{d} \]
\[ w_s=\sqrt{\Bigg(13.95\cdot\frac{10^{-6}}{0.001}\Bigg)^2+1.09\Bigg(\frac{2650}{1000}-1\Bigg)9.81 \cdot (0.001)}-13.95\frac{10^{-6}}{0.001} \]
\[ w_s=0.12 \ m/s \]
\[ w_s=\sqrt{\Bigg(13.95\cdot\frac{10^{-6}}{0.00001}\Bigg)^2+1.09\Bigg(\frac{2650}{1000}-1\Bigg)9.81 \cdot (0.00001)}-13.95\frac{10^{-6}}{0.00001} \] \[ w_s=6.32\cdot10^{-5}\ m/s \]
\[ M=53.5e^{-0.65S_p};N=5.65e^{-2.5S_p}; n=0.7+0.9S_p \] \[ M=53.5e^{-0.65\cdot 0.7};N=5.65e^{-2.5 \cdot 0.7}; n=0.7+0.9\cdot 0.7 \] \[ M=33.94;N=0.98; n=1.33 \]
\[ D_*^3=\Bigg(\frac{\rho_s}{\rho}-1\Bigg)\cdot g\cdot d^3/\nu^2 \]
\[ D_*^3=\Bigg(\frac{2650}{1000}-1\Bigg)\cdot 9.81\cdot (0.001)^3/10^{-6^{2}} \] \[ D_*^3=16186.5 \]
\[ w_s=\frac{M\nu}{Nd}\Bigg[\sqrt{\frac{1}{4}+\Bigg(\frac{4N}{3M^2}D_*^3\Bigg)^{1/n}}-\frac{1}{2}\Bigg]^n \] \[ w_s=\frac{33.94\cdot10^{-6}}{0.98\cdot 0.001}\Bigg[\sqrt{\frac{1}{4}+\Bigg(\frac{4\cdot0.98}{3\cdot33.94^2}16186.5\Bigg)^{1/1.33}}-\frac{1}{2}\Bigg]^{1.33} \] \[ w_s=0.12 \ m/s \]
\[ M=53.5e^{-0.65S_p};N=5.65e^{-2.5S_p}; n=0.7+0.9S_p \] \[ M=53.5e^{-0.65\cdot 0.7};N=5.65e^{-2.5 \cdot 0.7}; n=0.7+0.9\cdot 0.7 \] \[ M=33.94;N=0.23; n=1.33 \]
\[ D_*^3=\Bigg(\frac{\rho_s}{\rho}-1\Bigg)\cdot g\cdot d^3/\nu^2 \]
\[ D_*^3=\Bigg(\frac{2650}{1000}-1\Bigg)\cdot 9.81\cdot (0.00001)^3/10^{-6^{2}} \]
\[ D_*^3=0.0161865 \]
\[ w_s=\frac{M\nu}{Nd}\Bigg[\sqrt{\frac{1}{4}+\Bigg(\frac{4N}{3M^2}D_*^3\Bigg)^{1/n}}-\frac{1}{2}\Bigg]^n \]
\[ w_s=\frac{33.94\cdot10^{-6}}{0.23\cdot 0.00001}\Bigg[\sqrt{\frac{1}{4}+\Bigg(\frac{4\cdot0.23}{3\cdot 33.94^2}0.0161865\Bigg)^{1/1.33}}-\frac{1}{2}\Bigg]^{1.33} \]
\[ w_s=6.36\cdot10^{-5} \ m/s \]
\[ w_s=C_1\cdot \Delta\cdot g\cdot d^2/\nu^2+C_t \sqrt{\Delta\cdot g \cdot d} \]
\[ \Delta=\frac{\rho_s}{\rho}-1 \] \[ \Delta=\frac{2650}{1000}-1 \] \[ \Delta=1.65 \]
\[ C_1=0.055\cdot tanh\Bigg[12\cdot A^{-0.59}\cdot exp(-0.0004\cdot A)\Bigg] \]
\[ A=\Delta\cdot g \cdot d^3/\nu^2 \] \[ A=1.65\cdot 9.81 \cdot (0.001)^3/10^{-6^{2}} \] \[ A=16186.5 \]
\[ C_1=0.055\cdot tanh\Bigg[12\cdot16186.5^{-0.59}\cdot exp(-0.0004\cdot 16186.5)\Bigg] \] \[ C_1=3.343957\cdot 10^{-6} \]
\[ C_t=1.06\cdot tanh\Bigg[0.016\cdot A^{0.50}\cdot exp(-120/A)\Bigg] \]
\[ C_t=1.023381 \]
\[ w_s=3.343957\cdot 10^{-6}\cdot 1.65\cdot 9.81\cdot (0.001)^2/10^{-6}+1.023381 \sqrt{1.65\cdot 9.81 \cdot 0.001} \]
\[ w_s=0.13 \ m/s \]
\[ A=\Delta\cdot g \cdot d^3/\nu^2 \]
\[ A=1.65\cdot 9.81 \cdot (0.00001)^3/10^{-6^{2}} \]
\[ A=0.0161865 \]
\[ C_1=0.055\cdot tanh\Bigg[12\cdot 0.0161865^{-0.59}\cdot exp(-0.0004\cdot 0.0161865)\Bigg] \] \[ C_1=0.055 \]
\[ C_t=1.06\cdot tanh\Bigg[0.016 \cdot 0.0161865^{0.50}\cdot exp(-120/(0.0161865))\Bigg] \]
\[ C_t=0 \]
\[ w_s=0.055 \cdot 1.65\cdot 9.81\cdot (0.00001)^2/10^{-6}+1.025491 \sqrt{1.5\cdot 9.81 \cdot 0.00001} \]
\[ w_s=8.90\cdot10^{-5} \ m/s \]
\[ \frac{w_s}{\sqrt{\Delta gd}}=\Bigg(C+\frac{B}{S_*}\Bigg)^{-1} \]
\[ S_*=\frac{d}{4\nu}\sqrt{\Delta gd} \] \[ S_*=\frac{0.001}{4\cdot10^{-6}}\sqrt{1.65\cdot 9.81\cdot 0.001} \] \[ S_*=31.80654 \]
\[ \frac{w_s}{\sqrt{1.65\cdot 9.81\cdot 0.001}}=\Bigg(0.954+\frac{5.121}{31.80654}\Bigg)^{-1} \] \[ w_s=0.11 \ m/s \]
\[ S_*=\frac{d}{4\nu}\sqrt{\Delta gd} \] \[ S_*=\frac{0.00001}{4\cdot10^{-6}}\sqrt{1.65\cdot 9.81\cdot 0.00001} \] \[ S_*=0.03180654 \]
\[ \frac{w_s}{\sqrt{1.65\cdot 9.81\cdot 0.00001}}=\Bigg(0.954+\frac{5.121}{0.03180654}\Bigg)^{-1} \]
\[ w_s=7.85\cdot 10^{-5} \ m/s \]
\[ w_s=\frac{M\nu}{Nd}\Bigg[\sqrt{\frac{1}{4}+\Bigg(\frac{4N}{3M^2}D_*^3\Bigg)^{1/n}}-\frac{1}{2}\Bigg]^n \]
\[ \frac{w_s}{[g\cdot \nu \cdot (\rho_s-\rho)/\rho]^{1/3}}=\Bigg[\Bigg(\frac{18}{D_*^2}\Bigg)^{0.898(1+0.936D_*)/(1+D_*)}+\Bigg(\frac{0.317}{D_*}\Bigg)^{0.449}\Bigg]^-1.114 \]
#Clear R memory
rm(list=ls())
#Library for inverse function
library(GoFKernel)
## Loading required package: KernSmooth
## KernSmooth 2.23 loaded
## Copyright M. P. Wand 1997-2009
#Eq.4.34
ws<-function(dn,sp)
{
M=53.5*exp(-0.65*sp)
N=5.65*exp(-2.5*sp)
n=0.7+0.9*sp
rhos=2650
rho=1000
g=9.81
nu=1/1000000
Dstar=dn*((rhos/rho-1)*g/(nu^2))^(1/3)
ws=(M*nu)/(N*dn)*(sqrt(1/4+((4*N)/(3*(M^2))*Dstar^3)^(1/n))-0.5)^n
return(ws)
}
#Eq.4.11
ws2<-function(d)
{
rhos=2650
rho=1000
g=9.81
nu=1/1000000
Dstar=d*((rhos/rho-1)*g/(nu^2))^(1/3)
ws2=(g*nu*(rhos-rho)/rho)^(1/3)*((18/(Dstar^2))^(0.898*(1+0.936*Dstar)/(1+Dstar))+(0.317/Dstar)^0.449)^(-1.114)
return(ws2)
}
#Define the inverse function of the ws2
f.inv <- inverse(ws2,lower=0.00001,upper=0.1)
dn=seq(from=0.00002,to=0.01,by=0.0005)
#sp=1
w1=0
d1=0
#sp=0.9
w2=0
d2=0
#sp=0.7
w3=0
d3=0
#sp=0.5
w4=0
d4=0
#sp=0.3
w5=0
d5=0
i=1
#for sp=0.9
for(i in 1:length(dn) )
{
w1[i]=ws(dn[i],1)
d1[i]=f.inv(w1[i])
w2[i]=ws(dn[i],0.9)
d2[i]=f.inv(w2[i])
w3[i]=ws(dn[i],0.7)
d3[i]=f.inv(w3[i])
w4[i]=ws(dn[i],0.5)
d4[i]=f.inv(w4[i])
w5[i]=ws(dn[i],0.3)
d5[i]=f.inv(w5[i])
}
#ploting the results
plot((d1*1000),(dn*0.9*1000),type="l",pch=8,col="black",lwd=1,xlab="Fall Diameter [mm]",ylab="Sieve Diameter [mm]",log="xy")
lines((d2*1000),(dn*0.9*1000),type="l",lwd=1.2,pch=19,col="red",lty=2,cex=0.5,log="xy")
lines((d3*1000),(dn*0.9*1000),type="l",lwd=1.2,pch=13,col="blue",lty=3,cex=0.5,log="xy")
lines((d4*1000),(dn*0.9*1000),type="l",lwd=1.2,pch=17,col="darkgreen",lty=4,cex=0.5,log="xy")
lines((d5*1000),(dn*0.9*1000),type="l",lwd=1.2,pch=17,col="orange",lty=5,cex=0.5,log="xy")
#legend
legend("topleft",legend=c("Sp=1","Sp=0.9","Sp=0.7","Sp=0.5","Sp=0.3"),col=c("black","red","blue","darkgreen","orange"), lty=c(1,2,3,4,5),lwd=c(1.2,1.2,1.2,1.2,1.2),cex=1.2,border="black",bty="o",box.lwd = 1,box.col = "black",bg = "white")