We will study linear regression with a database from the

library(yarrr)

To estimate the beta weights of a linear model in R we use the lm() function. The function has two key arguments: formula and data.

  1. What are the names of the variables? And what kind of data available in the data set (integer or decimal etc.)
names(diamonds)
## [1] "weight"  "clarity" "color"   "value"
str(diamonds)
## 'data.frame':    150 obs. of  4 variables:
##  $ weight : num  9.35 11.1 8.65 10.43 10.62 ...
##  $ clarity: num  0.88 1.05 0.85 1.15 0.92 0.44 1.09 1.43 0.95 1.05 ...
##  $ color  : num  4 5 6 5 5 4 6 4 6 5 ...
##  $ value  : num  182 191 176 195 182 ...
# The values are in decimal format
  1. Can you view the data set in HTML document? If not, can you print a few data sample?

    Yes, the data can be viewed in HTML.

  2. The linear model will estimate each diamonds value using the following equation: \[ \text{Diamond value =} \beta_(intercept) + \beta_1 * weight + \beta_2* clarity + \beta_3 * color\] Here is the R-command for that formula:

diamonds.lm <- lm(formula = value ~ weight + clarity + color, data=diamonds)
  1. Print the above output and understand the coefficients.
diamonds.lm
## 
## Call:
## lm(formula = value ~ weight + clarity + color, data = diamonds)
## 
## Coefficients:
## (Intercept)       weight      clarity        color  
##    148.3354       2.1894      21.6922      -0.4549
  1. Print the summary of linear model
summary(diamonds.lm)
## 
## Call:
## lm(formula = value ~ weight + clarity + color, data = diamonds)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -10.4046  -3.5473  -0.1134   3.2552  11.0464 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 148.3354     3.6253  40.917   <2e-16 ***
## weight        2.1894     0.2000  10.948   <2e-16 ***
## clarity      21.6922     2.1429  10.123   <2e-16 ***
## color        -0.4549     0.3646  -1.248    0.214    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.672 on 146 degrees of freedom
## Multiple R-squared:  0.6373, Adjusted R-squared:  0.6298 
## F-statistic: 85.49 on 3 and 146 DF,  p-value: < 2.2e-16
  1. Calculate the fitted values of linear model diamonds.lm
fitted(diamonds.lm)
##        1        2        3        4        5        6        7        8 
## 186.0758 193.1401 182.9826 193.8424 189.2692 183.0995 193.8593 198.9261 
##        9       10       11       12       13       14       15       16 
## 192.1142 189.7465 192.1629 188.3562 190.3111 175.8357 183.5867 193.1738 
##       17       18       19       20       21       22       23       24 
## 182.4543 183.3600 186.0564 172.1894 190.8769 191.2587 191.9566 187.3536 
##       25       26       27       28       29       30       31       32 
## 195.0996 189.1340 191.6832 188.9047 198.0162 187.7150 197.4707 186.7516 
##       33       34       35       36       37       38       39       40 
## 194.0486 182.9471 197.6990 181.8749 189.0689 192.3530 181.4667 199.4478 
##       41       42       43       44       45       46       47       48 
## 192.6166 195.5992 186.2338 188.6963 180.4489 191.4205 188.6512 195.4749 
##       49       50       51       52       53       54       55       56 
## 186.4460 182.0177 183.9607 182.3691 194.3771 179.6129 198.1373 189.8638 
##       57       58       59       60       61       62       63       64 
## 189.4808 195.4418 195.2050 187.5684 195.2332 174.1453 188.9927 190.8006 
##       65       66       67       68       69       70       71       72 
## 197.1481 193.9149 187.2343 188.9602 191.7916 196.3235 202.1371 197.8254 
##       73       74       75       76       77       78       79       80 
## 194.2708 192.7675 179.0534 182.9247 196.1669 185.3859 193.3181 187.2589 
##       81       82       83       84       85       86       87       88 
## 201.0018 198.4333 184.3770 192.0118 183.3099 189.2979 190.9494 193.6273 
##       89       90       91       92       93       94       95       96 
## 196.9222 196.0434 198.0521 186.6527 178.9600 187.5789 190.2013 183.8228 
##       97       98       99      100      101      102      103      104 
## 181.8627 196.5341 194.6557 182.6076 189.7448 186.4550 203.3765 193.2738 
##      105      106      107      108      109      110      111      112 
## 187.7032 184.5395 190.0623 183.7670 182.1457 196.8296 186.3046 183.5932 
##      113      114      115      116      117      118      119      120 
## 196.1479 193.8122 201.6535 189.7461 187.3012 186.4676 189.2750 189.6210 
##      121      122      123      124      125      126      127      128 
## 190.4658 186.7303 176.4423 188.1299 187.0176 187.1431 187.2087 183.3231 
##      129      130      131      132      133      134      135      136 
## 196.9590 177.9258 181.6754 180.9373 190.5306 186.5017 198.1243 175.8418 
##      137      138      139      140      141      142      143      144 
## 195.7068 202.0438 190.5316 186.6816 183.6889 194.2321 182.3883 192.3458 
##      145      146      147      148      149      150 
## 194.7501 190.5253 189.2768 190.8429 187.7496 186.6139
  1. Add one column to the dataset “diamonds” with a column-name “value.lm” and the entries will be the fitted values.
diamonds$value.lm <- diamonds.lm$fitted.values
  1. Check the new dataset whether you inserted the new column correctly by printing a few rows of data.
diamonds.lm
## 
## Call:
## lm(formula = value ~ weight + clarity + color, data = diamonds)
## 
## Coefficients:
## (Intercept)       weight      clarity        color  
##    148.3354       2.1894      21.6922      -0.4549
  1. Plot the relationship between the “true value” (provided in the data) and linear model fitted values.
plot(x=diamonds$value,    # True values on x-axis 
     y=diamonds.lm$fitted.values)  # fitted values on y-axis

  1. Add x-label as true dieamond values, y-label as linear model fitted values and title as Regression fits of diamond values.
plot(x=diamonds$value, y=diamonds.lm$fitted.values, xlab = "True Diamond Values", ylab = "Linear Model Fitted Values", main= "Regression Fits of Diamond values")

  1. Create a straight line with following command
plot(x=diamonds$value, y=diamonds.lm$fitted.values, xlab = "True Diamond Values", ylab = "Linear Model Fitted Values", main= "Regression Fits of Diamond values")
abline(b=1,a=0, col = "red")

Explain what are these “a” and “b” presenting.

“a” represents where the line will cross the y-axis, and “b” is the slope of the line.

  1. Finally, how do you relate/ interpret the fit-plot versus the straight line?

    The straight line goes about directly though the center of most of the data, almost line a line of regression