#install.packages(readr)
#install.packages(dplyr)
library(readr)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
Data <- read_csv("~/Tsukasa/NY/CUNY/Class/Spring 2019/Programming for Social Research/YRBS1991_2017(skillsdrill).csv")
## Parsed with column specification:
## cols(
## survyear = col_double(),
## sex = col_double(),
## race4 = col_double(),
## qntaughtHIV = col_double(),
## qntaughtcondom = col_logical(),
## sexpart = col_logical()
## )
head(Data)
## # A tibble: 6 x 6
## survyear sex race4 qntaughtHIV qntaughtcondom sexpart
## <dbl> <dbl> <dbl> <dbl> <lgl> <lgl>
## 1 1 NA 3 2 NA NA
## 2 1 NA NA 1 NA NA
## 3 1 NA 1 1 NA NA
## 4 1 NA 1 2 NA NA
## 5 1 NA 4 2 NA NA
## 6 1 2 3 1 NA NA
NewData <- Data%>%
rename("race"=race4, "HIVEducation"=qntaughtHIV)%>%
mutate(race=ifelse(race==1,"White",
ifelse(race==2,"Black/African American",
ifelse(race==3,"Hispanic/Latino",
ifelse(race==4,"Other",NA)))),
HIVEducation=ifelse(HIVEducation==1,"Yes",
ifelse(HIVEducation==2,"No",NA)),
sex=ifelse(sex==1,"female",
ifelse(sex==2,"male",NA)))%>%
select(race,HIVEducation,sex)
table(NewData$HIVEducation,NewData$race)%>%
prop.table(2)%>%round(2)
##
## Black/African American Hispanic/Latino Other White
## No 0.14 0.18 0.15 0.12
## Yes 0.86 0.82 0.85 0.88