packages

cargo df desde la web y creo el objeto

df <- read.csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vQgBuSiktQ2-rhwyRVO3s0HK3b0p-Wq2v3owxNGcg-To57mHrEfmH6AhuChavjOCMvhjYvIHuNL1liP/pub?gid=474470130&single=true&output=csv")

grafica

df %>% 
 ggplot(aes(x = fct_reorder(Material, `Medida`), y = `Medida`, color=Material)) +
  geom_boxplot()+
  theme_minimal()+
  coord_flip()

cargo plantilla

df2 <- read.csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vQgBuSiktQ2-rhwyRVO3s0HK3b0p-Wq2v3owxNGcg-To57mHrEfmH6AhuChavjOCMvhjYvIHuNL1liP/pub?gid=1845685926&single=true&output=csv")

Nuevas variables de diferencias entre mediciones

Lt_diferencias <- df2 %>% 
  mutate(Chemfil = LT.LAE. - LT.Chemfil.) %>% 
  mutate(Ketac = LT.LAE. - LT.Ketac.Molar.) %>% 
  mutate(Resina= LT.LAE. - LT.Resina.)

grafica box plot

grafica

bland altman para LAE y chemfil

bland.altman.plot(df2$LT.LAE., df2$LT.Chemfil. , 
                  graph.sys = "ggplot2")

bland altman para LAE y ketac

bland.altman.plot(df2$LT.LAE.,df2$LT.Ketac.Molar. , 
                  graph.sys = "ggplot2")

bland altman para LAE y Resina

bland.altman.plot(df2$LT.LAE.,df2$LT.Resina. , 
                  graph.sys = "ggplot2")

Chemfil

bland.altman.stats(df2$LT.LAE.,df2$LT.Chemfil.)$CI.lines
lower.limit.ci.lower lower.limit.ci.upper   mean.diff.ci.lower   mean.diff.ci.upper 
          -0.7741487            0.1665095            0.3053784            0.8484677 
upper.limit.ci.lower upper.limit.ci.upper 
           0.9873367            1.9279949 

ketac

bland.altman.stats(df2$LT.LAE.,df2$LT.Ketac.Molar.)$CI.lines
lower.limit.ci.lower lower.limit.ci.upper   mean.diff.ci.lower   mean.diff.ci.upper 
         -0.67014167           0.01065676           0.11116273           0.50422189 
upper.limit.ci.lower upper.limit.ci.upper 
          0.60472786           1.28552628 

resina

bland.altman.stats(df2$LT.LAE.,df2$LT.Resina.)$CI.lines
lower.limit.ci.lower lower.limit.ci.upper   mean.diff.ci.lower   mean.diff.ci.upper 
         -1.41553123          -0.23183628          -0.05708791           0.62631868 
upper.limit.ci.lower upper.limit.ci.upper 
          0.80106705           1.98476199 

otro grafico para chemfil

Ketac-molar

resina compuesta

reformateo y abro el nuevo df

df3 <- read.csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vQgBuSiktQ2-rhwyRVO3s0HK3b0p-Wq2v3owxNGcg-To57mHrEfmH6AhuChavjOCMvhjYvIHuNL1liP/pub?gid=602806611&single=true&output=csv")

bland.altman segun materiales

df3 %>% 
ggplot(aes(x = LT_promedio, y = LT_dif, shape=Longitud)) +
  geom_point(alpha = 0.5) +
  geom_hline(yintercept = mean(df3$LT_dif), colour = "blue", size = 0.5) +
  geom_hline(yintercept = mean(df3$LT_dif) - (1.96 * sd(df3$LT_dif)), colour = "red", size = 0.5) +
  geom_hline(yintercept = mean(df3$LT_dif) + (1.96 * sd(df3$LT_dif)), colour = "red", size = 0.5) +
  labs(title = "Bland antmann", 
             x = "Mean of measurement", 
             y = "Difference", 
             shape = "Length") + 
  theme_minimal()

LS0tCnRpdGxlOiAiVGVzaXMgbWVkaWNpb25lcyBMQUUgeSBtYXRlcmlhbGVzXzIwMTkiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KI3BhY2thZ2VzCmBgYHtyfQpsaWJyYXJ5KCJ0aWR5dmVyc2UiKQpsaWJyYXJ5KCJnZ3RoZW1lcyIpCmxpYnJhcnkoImZvcmNhdHMiKQpsaWJyYXJ5KCJnZ3Bsb3QyIikKbGlicmFyeSgiQmxhbmRBbHRtYW5MZWgiKQpgYGAKI2NhcmdvIGRmIGRlc2RlIGxhIHdlYiB5IGNyZW8gZWwgb2JqZXRvCmBgYHtyfQpkZiA8LSByZWFkLmNzdigiaHR0cHM6Ly9kb2NzLmdvb2dsZS5jb20vc3ByZWFkc2hlZXRzL2QvZS8yUEFDWC0xdlFnQnVTaWt0UTItcmh3eVJWTzNzMEhLM2IwcC1XcTJ2M293eE5HY2ctVG81N21IckVmbUg2QWh1Q2hhdmpPQ012aGpZdklIdU5MMWxpUC9wdWI/Z2lkPTQ3NDQ3MDEzMCZzaW5nbGU9dHJ1ZSZvdXRwdXQ9Y3N2IikKYGBgCiNncmFmaWNhIApgYGB7cn0KZGYgJT4lIAogZ2dwbG90KGFlcyh4ID0gZmN0X3Jlb3JkZXIoTWF0ZXJpYWwsIGBNZWRpZGFgKSwgeSA9IGBNZWRpZGFgLCBjb2xvcj1NYXRlcmlhbCkpICsKICBnZW9tX2JveHBsb3QoKSsKICB0aGVtZV9taW5pbWFsKCkrCiAgY29vcmRfZmxpcCgpCmBgYAojY2FyZ28gcGxhbnRpbGxhCmBgYHtyfQpkZjIgPC0gcmVhZC5jc3YoImh0dHBzOi8vZG9jcy5nb29nbGUuY29tL3NwcmVhZHNoZWV0cy9kL2UvMlBBQ1gtMXZRZ0J1U2lrdFEyLXJod3lSVk8zczBISzNiMHAtV3EydjNvd3hOR2NnLVRvNTdtSHJFZm1INkFodUNoYXZqT0NNdmhqWXZJSHVOTDFsaVAvcHViP2dpZD0xODQ1Njg1OTI2JnNpbmdsZT10cnVlJm91dHB1dD1jc3YiKQpgYGAKI051ZXZhcyB2YXJpYWJsZXMgZGUgZGlmZXJlbmNpYXMgZW50cmUgbWVkaWNpb25lcwpgYGB7cn0KTHRfZGlmZXJlbmNpYXMgPC0gZGYyICU+JSAKCiAgbXV0YXRlKENoZW1maWwgPSBMVC5MQUUuIC0gTFQuQ2hlbWZpbC4pICU+JSAKICBtdXRhdGUoS2V0YWMgPSBMVC5MQUUuIC0gTFQuS2V0YWMuTW9sYXIuKSAlPiUgCiAgbXV0YXRlKFJlc2luYT0gTFQuTEFFLiAtIExULlJlc2luYS4pCmBgYAojZ3JhZmljYSBib3ggcGxvdApgYGB7cn0KTHRfZGlmZXJlbmNpYXMgJT4lIApnYXRoZXIoa2V5ID0gIk1hdGVyaWFsIiwgdmFsdWUgPSAiRGlmZXJlbmNpYSIsIENoZW1maWw6UmVzaW5hKQpgYGAKI2dyYWZpY2EKYGBge3J9Ckx0X2RpZmVyZW5jaWFzICU+JSAKZ2F0aGVyKGtleSA9ICJNYXRlcmlhbCIsIHZhbHVlID0gIkRpZmVyZW5jaWEiLCBDaGVtZmlsOlJlc2luYSkgJT4lIAogIGdncGxvdChhZXMoeD1NYXRlcmlhbCwgeT1EaWZlcmVuY2lhKSkrCiAgZ2VvbV9ib3hwbG90KCkrCiAgdGhlbWVfZ2V0KCkKYGBgCiNibGFuZCBhbHRtYW4gcGFyYSBMQUUgeSBjaGVtZmlsCmBgYHtyfQpibGFuZC5hbHRtYW4ucGxvdChkZjIkTFQuTEFFLiwgZGYyJExULkNoZW1maWwuICwgCiAgICAgICAgICAgICAgICAgIGdyYXBoLnN5cyA9ICJnZ3Bsb3QyIikKYGBgCiNibGFuZCBhbHRtYW4gcGFyYSBMQUUgeSBrZXRhYwpgYGB7cn0KYmxhbmQuYWx0bWFuLnBsb3QoZGYyJExULkxBRS4sZGYyJExULktldGFjLk1vbGFyLiAsIAogICAgICAgICAgICAgICAgICBncmFwaC5zeXMgPSAiZ2dwbG90MiIpCmBgYAojYmxhbmQgYWx0bWFuIHBhcmEgTEFFIHkgUmVzaW5hCmBgYHtyfQpibGFuZC5hbHRtYW4ucGxvdChkZjIkTFQuTEFFLixkZjIkTFQuUmVzaW5hLiAsIAogICAgICAgICAgICAgICAgICBncmFwaC5zeXMgPSAiZ2dwbG90MiIpCmBgYAojQ2hlbWZpbCAKYGBge3J9CmJsYW5kLmFsdG1hbi5zdGF0cyhkZjIkTFQuTEFFLixkZjIkTFQuQ2hlbWZpbC4pJENJLmxpbmVzCmBgYAoja2V0YWMKYGBge3J9CmJsYW5kLmFsdG1hbi5zdGF0cyhkZjIkTFQuTEFFLixkZjIkTFQuS2V0YWMuTW9sYXIuKSRDSS5saW5lcwpgYGAKI3Jlc2luYQpgYGB7cn0KYmxhbmQuYWx0bWFuLnN0YXRzKGRmMiRMVC5MQUUuLGRmMiRMVC5SZXNpbmEuKSRDSS5saW5lcwpgYGAKI290cm8gZ3JhZmljbyBwYXJhIGNoZW1maWwgCmBgYHtyfQpkZjIgJT4lIApnZ3Bsb3QobWFwcGluZyA9IGFlcyh4ID0gTFQuTEFFLiwgeSA9IExULkNoZW1maWwuKSkgKwogIGdlb21fcG9pbnQoY29sb3IgPSAiYmxhY2siLCBzaXplID0gMSkgKwogIGxhYnModGl0bGUgPSAiRGlhZ3JhbWEgZGUgZGlzcGVyc2nDs24iLCB4ID0gIm3DqXRvZG8gQSIsIHkgPSAibcOpdG9kbyBCIikgKwogIGdlb21fc21vb3RoKG1ldGhvZCA9ICJsbSIsIHNlID0gVFJVRSwgY29sb3IgPSAicmVkIiwgbHdkID0gMC41KSArCiAgZ2VvbV9hYmxpbmUoaW50ZXJjZXB0ID0gMCwgc2xvcGUgPSAxLCBsd2QgPSAwLjcsIGNvbCA9ICJibHVlIikgKwogIHRoZW1lKGF4aXMubGluZSA9IGVsZW1lbnRfbGluZShjb2xvdXIgPSAiYmxhY2siKSwgCiAgICAgICAgcGFuZWwuZ3JpZC5tYWpvciA9IGVsZW1lbnRfYmxhbmsoKSwgCiAgICAgICAgcGFuZWwuZ3JpZC5taW5vciA9IGVsZW1lbnRfYmxhbmsoKSwgCiAgICAgICAgcGFuZWwuYm9yZGVyID0gZWxlbWVudF9ibGFuaygpLCAKICAgICAgICBwYW5lbC5iYWNrZ3JvdW5kID0gZWxlbWVudF9ibGFuaygpKSArCiAgdGhlbWVfYncoKSArIHRoZW1lKHBsb3QudGl0bGUgPSBlbGVtZW50X3RleHQoaGp1c3QgPSAwLjUpKSAKYGBgCiNLZXRhYy1tb2xhcgpgYGB7cn0KZGYyICU+JSAKZ2dwbG90KG1hcHBpbmcgPSBhZXMoeCA9IExULkxBRS4sIHkgPSBMVC5LZXRhYy5Nb2xhci4pKSArCiAgZ2VvbV9wb2ludChjb2xvciA9ICJibGFjayIsIHNpemUgPSAxKSArCiAgbGFicyh0aXRsZSA9ICJEaWFncmFtYSBkZSBkaXNwZXJzacOzbiIsIHggPSAibcOpdG9kbyBBIiwgeSA9ICJtw6l0b2RvIEIiKSArCiAgZ2VvbV9zbW9vdGgobWV0aG9kID0gImxtIiwgc2UgPSBUUlVFLCBjb2xvciA9ICJyZWQiLCBsd2QgPSAwLjUpICsKICBnZW9tX2FibGluZShpbnRlcmNlcHQgPSAwLCBzbG9wZSA9IDEsIGx3ZCA9IDAuNywgY29sID0gImJsdWUiKSArCiAgdGhlbWUoYXhpcy5saW5lID0gZWxlbWVudF9saW5lKGNvbG91ciA9ICJibGFjayIpLCAKICAgICAgICBwYW5lbC5ncmlkLm1ham9yID0gZWxlbWVudF9ibGFuaygpLCAKICAgICAgICBwYW5lbC5ncmlkLm1pbm9yID0gZWxlbWVudF9ibGFuaygpLCAKICAgICAgICBwYW5lbC5ib3JkZXIgPSBlbGVtZW50X2JsYW5rKCksIAogICAgICAgIHBhbmVsLmJhY2tncm91bmQgPSBlbGVtZW50X2JsYW5rKCkpICsKICB0aGVtZV9idygpICsgdGhlbWUocGxvdC50aXRsZSA9IGVsZW1lbnRfdGV4dChoanVzdCA9IDAuNSkpIApgYGAKI3Jlc2luYSBjb21wdWVzdGEKYGBge3J9CmRmMiAlPiUgCmdncGxvdChtYXBwaW5nID0gYWVzKHggPSBMVC5MQUUuLCB5ID0gTFQuUmVzaW5hLikpICsKICBnZW9tX3BvaW50KGNvbG9yID0gImJsYWNrIiwgc2l6ZSA9IDEpICsKICBsYWJzKHRpdGxlID0gIkRpYWdyYW1hIGRlIGRpc3BlcnNpw7NuIiwgeCA9ICJtw6l0b2RvIEEiLCB5ID0gIm3DqXRvZG8gQiIpICsKICBnZW9tX3Ntb290aChtZXRob2QgPSAibG0iLCBzZSA9IFRSVUUsIGNvbG9yID0gInJlZCIsIGx3ZCA9IDAuNSkgKwogIGdlb21fYWJsaW5lKGludGVyY2VwdCA9IDAsIHNsb3BlID0gMSwgbHdkID0gMC43LCBjb2wgPSAiYmx1ZSIpICsKICB0aGVtZShheGlzLmxpbmUgPSBlbGVtZW50X2xpbmUoY29sb3VyID0gImJsYWNrIiksIAogICAgICAgIHBhbmVsLmdyaWQubWFqb3IgPSBlbGVtZW50X2JsYW5rKCksIAogICAgICAgIHBhbmVsLmdyaWQubWlub3IgPSBlbGVtZW50X2JsYW5rKCksIAogICAgICAgIHBhbmVsLmJvcmRlciA9IGVsZW1lbnRfYmxhbmsoKSwgCiAgICAgICAgcGFuZWwuYmFja2dyb3VuZCA9IGVsZW1lbnRfYmxhbmsoKSkgKwogIHRoZW1lX2J3KCkgKyB0aGVtZShwbG90LnRpdGxlID0gZWxlbWVudF90ZXh0KGhqdXN0ID0gMC41KSkgCmBgYAojcmVmb3JtYXRlbyB5IGFicm8gZWwgbnVldm8gZGYKYGBge3J9CmRmMyA8LSByZWFkLmNzdigiaHR0cHM6Ly9kb2NzLmdvb2dsZS5jb20vc3ByZWFkc2hlZXRzL2QvZS8yUEFDWC0xdlFnQnVTaWt0UTItcmh3eVJWTzNzMEhLM2IwcC1XcTJ2M293eE5HY2ctVG81N21IckVmbUg2QWh1Q2hhdmpPQ012aGpZdklIdU5MMWxpUC9wdWI/Z2lkPTYwMjgwNjYxMSZzaW5nbGU9dHJ1ZSZvdXRwdXQ9Y3N2IikKYGBgCiNibGFuZC5hbHRtYW4gc2VndW4gbWF0ZXJpYWxlcyAKYGBge3J9CmRmMyAlPiUgCmdncGxvdChhZXMoeCA9IExUX3Byb21lZGlvLCB5ID0gTFRfZGlmLCBzaGFwZT1Mb25naXR1ZCkpICsKICBnZW9tX3BvaW50KGFscGhhID0gMC41KSArCiAgZ2VvbV9obGluZSh5aW50ZXJjZXB0ID0gbWVhbihkZjMkTFRfZGlmKSwgY29sb3VyID0gImJsdWUiLCBzaXplID0gMC41KSArCiAgZ2VvbV9obGluZSh5aW50ZXJjZXB0ID0gbWVhbihkZjMkTFRfZGlmKSAtICgxLjk2ICogc2QoZGYzJExUX2RpZikpLCBjb2xvdXIgPSAicmVkIiwgc2l6ZSA9IDAuNSkgKwogIGdlb21faGxpbmUoeWludGVyY2VwdCA9IG1lYW4oZGYzJExUX2RpZikgKyAoMS45NiAqIHNkKGRmMyRMVF9kaWYpKSwgY29sb3VyID0gInJlZCIsIHNpemUgPSAwLjUpICsKICBsYWJzKHRpdGxlID0gIkJsYW5kIGFudG1hbm4iLCAKICAgICAgICAgICAgIHggPSAiTWVhbiBvZiBtZWFzdXJlbWVudCIsIAogICAgICAgICAgICAgeSA9ICJEaWZmZXJlbmNlIiwgCiAgICAgICAgICAgICBzaGFwZSA9ICJMZW5ndGgiKSArIAogIHRoZW1lX21pbmltYWwoKQpgYGAKCgoK