library(yarrr)

To estimate the beta weights of a linear model in R, we use the lm() function. The function has two key arguments:

formula and data

  1. What are the names of the variables? And what kind of data available in the data set (integer or decimal, etc.)
head(diamonds)
##   weight clarity color value
## 1   9.35    0.88     4 182.5
## 2  11.10    1.05     5 191.2
## 3   8.65    0.85     6 175.7
## 4  10.43    1.15     5 195.2
## 5  10.62    0.92     5 181.6
## 6  12.35    0.44     4 182.9
weight = diamonds$weight
clarity = diamonds$weight
color = diamonds$color
value = diamonds$value

Integers and decimals are available in the set.

  1. Can you view the data set in HTML document? If not, can you print a few data sample?

Yes, but using the whole data set on an HTML document would not be attractive.

If you want to show a few data samples you can do this by displaying certain rows or certain parts of data. By using head() or tail() you can display a few rows from the front of the data or some from the end of the data.

head(diamonds)
##   weight clarity color value
## 1   9.35    0.88     4 182.5
## 2  11.10    1.05     5 191.2
## 3   8.65    0.85     6 175.7
## 4  10.43    1.15     5 195.2
## 5  10.62    0.92     5 181.6
## 6  12.35    0.44     4 182.9
  1. The linear model will estimate each diamonds value using the following equation: Diamond Value = \(\beta_{intercept} +\beta_1 * weight + \beta_2 * clarity + \beta_3 * color\)

Here is the R-Command for that formula

diamonds.lm = lm(formula= value ~ weight + clarity + color, data = diamonds)
  1. Print the above output and understand the coefficients.
diamonds.lm
## 
## Call:
## lm(formula = value ~ weight + clarity + color, data = diamonds)
## 
## Coefficients:
## (Intercept)       weight      clarity        color  
##    148.3354       2.1894      21.6922      -0.4549
  1. Print the summary of linear model.
summary(diamonds.lm)
## 
## Call:
## lm(formula = value ~ weight + clarity + color, data = diamonds)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -10.4046  -3.5473  -0.1134   3.2552  11.0464 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 148.3354     3.6253  40.917   <2e-16 ***
## weight        2.1894     0.2000  10.948   <2e-16 ***
## clarity      21.6922     2.1429  10.123   <2e-16 ***
## color        -0.4549     0.3646  -1.248    0.214    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.672 on 146 degrees of freedom
## Multiple R-squared:  0.6373, Adjusted R-squared:  0.6298 
## F-statistic: 85.49 on 3 and 146 DF,  p-value: < 2.2e-16
  1. Calculate the fitted values of linear model diamonds.lm
fitted(diamonds.lm)
##        1        2        3        4        5        6        7        8 
## 186.0758 193.1401 182.9826 193.8424 189.2692 183.0995 193.8593 198.9261 
##        9       10       11       12       13       14       15       16 
## 192.1142 189.7465 192.1629 188.3562 190.3111 175.8357 183.5867 193.1738 
##       17       18       19       20       21       22       23       24 
## 182.4543 183.3600 186.0564 172.1894 190.8769 191.2587 191.9566 187.3536 
##       25       26       27       28       29       30       31       32 
## 195.0996 189.1340 191.6832 188.9047 198.0162 187.7150 197.4707 186.7516 
##       33       34       35       36       37       38       39       40 
## 194.0486 182.9471 197.6990 181.8749 189.0689 192.3530 181.4667 199.4478 
##       41       42       43       44       45       46       47       48 
## 192.6166 195.5992 186.2338 188.6963 180.4489 191.4205 188.6512 195.4749 
##       49       50       51       52       53       54       55       56 
## 186.4460 182.0177 183.9607 182.3691 194.3771 179.6129 198.1373 189.8638 
##       57       58       59       60       61       62       63       64 
## 189.4808 195.4418 195.2050 187.5684 195.2332 174.1453 188.9927 190.8006 
##       65       66       67       68       69       70       71       72 
## 197.1481 193.9149 187.2343 188.9602 191.7916 196.3235 202.1371 197.8254 
##       73       74       75       76       77       78       79       80 
## 194.2708 192.7675 179.0534 182.9247 196.1669 185.3859 193.3181 187.2589 
##       81       82       83       84       85       86       87       88 
## 201.0018 198.4333 184.3770 192.0118 183.3099 189.2979 190.9494 193.6273 
##       89       90       91       92       93       94       95       96 
## 196.9222 196.0434 198.0521 186.6527 178.9600 187.5789 190.2013 183.8228 
##       97       98       99      100      101      102      103      104 
## 181.8627 196.5341 194.6557 182.6076 189.7448 186.4550 203.3765 193.2738 
##      105      106      107      108      109      110      111      112 
## 187.7032 184.5395 190.0623 183.7670 182.1457 196.8296 186.3046 183.5932 
##      113      114      115      116      117      118      119      120 
## 196.1479 193.8122 201.6535 189.7461 187.3012 186.4676 189.2750 189.6210 
##      121      122      123      124      125      126      127      128 
## 190.4658 186.7303 176.4423 188.1299 187.0176 187.1431 187.2087 183.3231 
##      129      130      131      132      133      134      135      136 
## 196.9590 177.9258 181.6754 180.9373 190.5306 186.5017 198.1243 175.8418 
##      137      138      139      140      141      142      143      144 
## 195.7068 202.0438 190.5316 186.6816 183.6889 194.2321 182.3883 192.3458 
##      145      146      147      148      149      150 
## 194.7501 190.5253 189.2768 190.8429 187.7496 186.6139
  1. Add one column to the dataset “diamonds” with a column-name “value.lm” and the entries will be the fitted values.
diamonds$value.lm = diamonds.lm$fitted.values
  1. Check the new dataset whether you inserted the new column correctly by printing a few rows of the data.
head(diamonds)
##   weight clarity color value value.lm
## 1   9.35    0.88     4 182.5 186.0758
## 2  11.10    1.05     5 191.2 193.1401
## 3   8.65    0.85     6 175.7 182.9826
## 4  10.43    1.15     5 195.2 193.8424
## 5  10.62    0.92     5 181.6 189.2692
## 6  12.35    0.44     4 182.9 183.0995
  1. Plot the relationship between the “true value” (proved in the data) and linear model fitted values.
plot(x = diamonds$value, y = diamonds.lm$fitted.values)

  1. Add x-label as true diamond values, y-label as linear model fitted values and title as regression fits of diamonds values.
plot(x = diamonds$value, y = diamonds.lm$fitted.values, xlab="True Diamond Values", ylab = "Linear model Fitted Values", main = "Regression Fits of Diamond Values")

  1. Create a straight line with following command
plot(x = diamonds$value, y = diamonds.lm$fitted.values, xlab="True Diamond Values", ylab = "Linear model Fitted Values", main = "Regression Fits of Diamond Values",abline(b=1, a=0))

“a” and “b” are the slope and x intercept of the line.

  1. Finally, how do you relate / interpret the fit-plot versus the straight line?

This ab line is simply y = x rather than a straight horizontal line.