Load packages.

library(tidyverse)
## ── Attaching packages ────────────────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
## ✔ ggplot2 3.1.0     ✔ purrr   0.3.0
## ✔ tibble  2.0.1     ✔ dplyr   0.7.8
## ✔ tidyr   0.8.2     ✔ stringr 1.3.1
## ✔ readr   1.3.1     ✔ forcats 0.3.0
## ── Conflicts ───────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
library(DT)
library(plotly)               # This package does interactive graphs
## 
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
## 
##     last_plot
## The following object is masked from 'package:stats':
## 
##     filter
## The following object is masked from 'package:graphics':
## 
##     layout
library(rtweet)               # This package accesses Twitter data
## 
## Attaching package: 'rtweet'
## The following object is masked from 'package:purrr':
## 
##     flatten
library(lubridate)  
## 
## Attaching package: 'lubridate'
## The following object is masked from 'package:base':
## 
##     date

Access 10,000 of Trump’s Tweets

trump_tweets <- get_timeline("realDonaldTrump", n = 10000)

Create a table illustrating Trump’s hashtag usage.

trump_tweets %>%
  select(hashtags)%>%
  unnest() %>%
  mutate(hashtags = tolower(hashtags)) %>%
  count(hashtags, sort = T) %>%
  datatable()

Create a table showing the Trump’s number of tweets per day.

trump_tweets %>%
  group_by(Day = date(created_at))%>%
  summarize(tweets_per_day = n()) %>%
  datatable()

Find the average number of Trump’s Tweets per day.

trump_tweets %>%
  group_by(Day = date(created_at))%>%
  summarize(tweets_per_day = n()) %>%
  summarize(mean(tweets_per_day))

Create a gaphic displaying Trump’s average number of tweets per day.

trump_tweets %>%
  group_by(Day = date(created_at))%>%
  plot_ly(x = ~Day) %>%
  add_histogram()

Create a table illustrating the hours that Trump tweets

trump_tweets %>%
  mutate(Time = hour(with_tz(created_at, "America/New_York")))%>%
  count(Time) %>%
  datatable(options = (list(pagelength = 24)), rowname = F)

Create a histogram showing the time of day that Trump Tweets

trump_tweets %>%
  mutate(Time = hour(with_tz(created_at, "America/New_York")))%>%
  plot_ly(x = ~Time) %>%
  add_histogram() %>%
  layout(title = "When Trump Tweets",
              xaxis = list(title = "Time of Day (0 = midnight)"))

Create a table and a histogram respresenting the days of the week that Trump Tweets.

trump_tweets%>%
  mutate(Day =wday(created_at, label = T))%>%
  count(Day) %>%
  datatable( rownames = F)

Histogram

trump_tweets%>%
  mutate(Day =wday(created_at, label = T))%>%
  plot_ly(x = ~Day)%>%
  add_histogram()%>%
  layout(title = "When Trump Tweets")

Create a heatmap illustrating the times of the week and days that Trump Tweets.

trump_tweets %>%
  mutate(Time = hour(with_tz(created_at, "America/New_York"))) %>%
  mutate(Day = wday(created_at, label = T))%>%
  plot_ly(x = ~Day, y = ~Time) %>%
  add_histogram2d()%>%
  layout(title = "When Trump Tweets",
         yaxis = list(title = "Time of Day (0 = midgnight)"))

As one can see from the heatmap, it appears that Trump tweets most often Wednsdays around 8-9 in the morning.