Comments

Follow up (dry / wet) in establishing of paaA’s associative pathways and role in communal metabolism would be a significant contribution . I would like to see this reflected/updated in the thesis and/or defence

library(MetamapsDB)
library(dplyr)
library(purrr)
library(igraph)
library(ggplot2)
library(plotly)
library(magrittr)
# MetamapsDB::connect("172.18.0.2", pass="password")
# Please set this when you first initialise the password
paaA = "K02609"
koname(paaA) %>% as_tibble %>% kable
ko.ko ko.name ko.definition
ko:K02609 paaA ring-1,2-phenylacetyl-CoA epoxidase subunit PaaA [EC:1.14.13.149]

KEGG Ortholog ID for ring-1,2-phenylacetyl-CoA epoxidase subunit is: K02609.

ko2path(paaA) %>%
    rowwise %>%
    mutate(num_ko = path2ko(p.pathway) %>% nrow) %>%
    select(p.pathway:num_ko) %>% as_tibble %>% kable
p.pathway p.pathwayname num_ko
path:ko00360 Phenylalanine metabolism 75
path:ko01120 Microbial metabolism in diverse environments 1040

Associated Pathways: Phenylalanin Metabolism

Althought paaA belongs in KEGG’s Microbial Metabolism in diverse environments pathway, we will ignore this pathway for now as it has 1040 KOs associated with it.

Below are KOs found in: Phenylalanin metabolism

assoc_kos_definition = path2ko('path:ko00360') %>% map_df(koname)
assoc_kos_definition %<>% setNames(c("ko", "name", "definition"))
# knitr::kable(assoc_kos_definition)
assoc_kos = path2ko('path:ko00360') %>% pull(KO)
assoc_kos_definition %>% as_tibble %>% kable
ko name definition
ko:K18852 HPA3 D-amino-acid N-acetyltransferase [EC:2.3.1.36]
ko:K18606 HPPR hydroxyphenylpyruvate reductase [EC:1.1.1.237]
ko:K18383 K18383 trans-feruloyl-CoA hydratase / vanillin synthase [EC:4.2.1.101 4.1.2.41]
ko:K18363 padD phenylacetyl-CoA:acceptor oxidoreductase 26-kDa subunit
ko:K18362 padC phenylacetyl-CoA:acceptor oxidoreductase 27-kDa subunit
ko:K18361 padB phenylacetyl-CoA:acceptor oxidoreductase [EC:1.17.5.1 3.1.2.25]
ko:K18360 padA phenylacetyl-CoA:acceptor oxidoreductase accessory protein
ko:K18359 padH phenylglyoxylate dehydrogenase epsilon subunit [EC:1.2.1.58]
ko:K18358 padF phenylglyoxylate dehydrogenase delta subunit [EC:1.2.1.58]
ko:K18357 padE phenylglyoxylate dehydrogenase gamma subunit [EC:1.2.1.58]
ko:K18356 padI phenylglyoxylate dehydrogenase beta subunit [EC:1.2.1.58]
ko:K18355 padG phenylglyoxylate dehydrogenase alpha subunit [EC:1.2.1.58]
ko:K15866 paaG 2-(1,2-epoxy-1,2-dihydrophenyl)acetyl-CoA isomerase [EC:5.3.3.18]
ko:K15849 PAT, AAT bifunctional aspartate aminotransferase and glutamate/aspartate-prephenate aminotransferase [EC:2.6.1.1 2.6.1.78 2.6.1.79]
ko:K15517 GLYAL glycine N-phenylacetyltransferase [EC:2.3.1.192]
ko:K14455 GOT2 aspartate aminotransferase, mitochondrial [EC:2.6.1.1]
ko:K14454 GOT1 aspartate aminotransferase, cytoplasmic [EC:2.6.1.1]
ko:K13372 aauB aralkylamine dehydrogenase heavy chain [EC:1.4.9.2]
ko:K13371 aauA aralkylamine dehydrogenase light chain [EC:1.4.9.2]
ko:K13064 PTAL phenylalanine/tyrosine ammonia-lyase [EC:4.3.1.25]
ko:K12732 ARO10 phenylpyruvate decarboxylase [EC:4.1.1.-]
ko:K11358 yhdR aspartate aminotransferase [EC:2.6.1.1]
ko:K10797 enr 2-enoate reductase [EC:1.3.1.31]
ko:K10775 PAL phenylalanine ammonia-lyase [EC:4.3.1.24]
ko:K10437 PHACA phenylacetate 2-hydroxylase [EC:1.14.13.-]
ko:K07253 MIF phenylpyruvate tautomerase [EC:5.3.2.1]
ko:K05821 ARO9 aromatic amino acid aminotransferase II [EC:2.6.1.58 2.6.1.28]
ko:K05714 mhpC 2-hydroxy-6-oxonona-2,4-dienedioate hydrolase [EC:3.7.1.14]
ko:K05713 mhpB 2,3-dihydroxyphenylpropionate 1,2-dioxygenase [EC:1.13.11.16]
ko:K05712 mhpA 3-(3-hydroxy-phenyl)propionate hydroxylase [EC:1.14.13.127]
ko:K05711 hcaB 2,3-dihydroxy-2,3-dihydrophenylpropionate dehydrogenase [EC:1.3.1.87]
ko:K05710 hcaC 3-phenylpropionate/trans-cinnamate dioxygenase ferredoxin component
ko:K05709 hcaF, hcaA2 3-phenylpropionate/trans-cinnamate dioxygenase subunit beta [EC:1.14.12.19]
ko:K05708 hcaE, hcaA1 3-phenylpropionate/trans-cinnamate dioxygenase subunit alpha [EC:1.14.12.19]
ko:K04073 mhpF acetaldehyde dehydrogenase [EC:1.2.1.10]
ko:K03782 katG catalase-peroxidase [EC:1.11.1.21]
ko:K03334 IL4I1 L-amino-acid oxidase [EC:1.4.3.2]
ko:K02618 paaZ oxepin-CoA hydrolase / 3-oxo-5,6-dehydrosuberyl-CoA semialdehyde dehydrogenase [EC:3.3.2.12 1.2.1.91]
ko:K02615 paaJ 3-oxo-5,6-didehydrosuberyl-CoA/3-oxoadipyl-CoA thiolase [EC:2.3.1.223 2.3.1.174]
ko:K02614 paaI acyl-CoA thioesterase [EC:3.1.2.-]
ko:K02613 paaE ring-1,2-phenylacetyl-CoA epoxidase subunit PaaE
ko:K02612 paaD ring-1,2-phenylacetyl-CoA epoxidase subunit PaaD
ko:K02611 paaC ring-1,2-phenylacetyl-CoA epoxidase subunit PaaC [EC:1.14.13.149]
ko:K02610 paaB ring-1,2-phenylacetyl-CoA epoxidase subunit PaaB
ko:K02609 paaA ring-1,2-phenylacetyl-CoA epoxidase subunit PaaA [EC:1.14.13.149]
ko:K02554 mhpD 2-keto-4-pentenoate hydratase [EC:4.2.1.80]
ko:K01912 paaK phenylacetate-CoA ligase [EC:6.2.1.30]
ko:K01904 4CL 4-coumarate–CoA ligase [EC:6.2.1.12]
ko:K01692 paaF, echA enoyl-CoA hydratase [EC:4.2.1.17]
ko:K01666 mhpE 4-hydroxy 2-oxovalerate aldolase [EC:4.1.3.39]
ko:K01593 DDC aromatic-L-amino-acid decarboxylase [EC:4.1.1.28]
ko:K01451 hipO hippurate hydrolase [EC:3.5.1.32]
ko:K01426 E3.5.1.4, amiE amidase [EC:3.5.1.4]
ko:K00838 ARO8 aromatic amino acid aminotransferase I [EC:2.6.1.57 2.6.1.27 2.6.1.5]
ko:K00832 tyrB aromatic-amino-acid transaminase [EC:2.6.1.57]
ko:K00824 dat D-alanine transaminase [EC:2.6.1.21]
ko:K00817 hisC histidinol-phosphate aminotransferase [EC:2.6.1.9]
ko:K00815 TAT tyrosine aminotransferase [EC:2.6.1.5]
ko:K00813 aspC aspartate aminotransferase [EC:2.6.1.1]
ko:K00812 aspB aspartate aminotransferase [EC:2.6.1.1]
ko:K00811 ASP5 aspartate aminotransferase, chloroplastic [EC:2.6.1.1]
ko:K00628 GLYAT glycine N-acyltransferase / glycine N-benzoyltransferase [EC:2.3.1.13 2.3.1.71]
ko:K00588 E2.1.1.104 caffeoyl-CoA O-methyltransferase [EC:2.1.1.104]
ko:K00529 hcaD 3-phenylpropionate/trans-cinnamate dioxygenase ferredoxin reductase component [EC:1.18.1.3]
ko:K00500 phhA, PAH phenylalanine-4-hydroxylase [EC:1.14.16.1]
ko:K00487 CYP73A trans-cinnamate 4-monooxygenase [EC:1.14.13.11]
ko:K00457 HPD, hppD 4-hydroxyphenylpyruvate dioxygenase [EC:1.13.11.27]
ko:K00285 dadA D-amino-acid dehydrogenase [EC:1.4.5.1]
ko:K00276 AOC3, AOC2, tynA primary-amine oxidase [EC:1.4.3.21]
ko:K00274 MAO, aofH monoamine oxidase [EC:1.4.3.4]
ko:K00270 pdh phenylalanine dehydrogenase [EC:1.4.1.20]
ko:K00146 feaB phenylacetaldehyde dehydrogenase [EC:1.2.1.39]
ko:K00129 E1.2.1.5 aldehyde dehydrogenase (NAD(P)+) [EC:1.2.1.5]
ko:K00074 paaH, hbd, fadB, mmgB 3-hydroxybutyryl-CoA dehydrogenase [EC:1.1.1.157]
ko:K00055 E1.1.1.90 aryl-alcohol dehydrogenase [EC:1.1.1.90]

Metabolic graph of Phenylalain Metabolism

Next, lets investigate KOs belonging to Phenylalanin metabolism

metabolic_neighbourhood = grepgraph(assoc_kos)
# nitrogenMetabolism.simplified = contractMetab(nitrogenMetab)

metabolic_neighbourhood %>% contractMetab %>% prettifyGraph %>% plot()

p = metabolic_neighbourhood %>%
    contractMetab %>%
    prettifyGraph %>%
    ig2ggplot(., dfOnly=FALSE)

ggplotly(p)

Ideally, I should have the following: * contigs associated with these KOs * their abundance (gDNA) * their expression (mRNA)

But that’ll require me to run the whole pAss procedure for all KOs in this pathway like I did for nitrogen metabolism. Possible for future work

Canonical Pathways associated Phenylalain Metabolism

Lets get all the pathways associated with paaA using the graph DB

assoc_pathways = assoc_kos %>% map_df(ko2path) %>%
    select(p.pathway, p.pathwayname) %>%
    unique

num_assoc_pathways = assoc_pathways %<>%
    rowwise %>%
    mutate(count = path2ko(p.pathway) %>% nrow) %>%
    arrange(desc(count))

What if we look around the neighbouring KOs, we see they are associated with 54 pathways.

assoc_kos_extended = assoc_pathways %>%
    filter(count < 100) %>%
    pull(p.pathway) %>%
    map_df(path2ko) %>%
    pull(KO) %>%
    unique

# assoc_kos_extended %>% length

extended_metabolic_graph = grepgraph(assoc_kos_extended)

num_kos = names(V(extended_metabolic_graph)) %>% grepl("^ko", .) %>% sum
num_cpds = vcount(extended_metabolic_graph) - num_kos
# V(extended_metabolic_graph)

If we include all associated metabolic pathways we will end up with a metabolic network consisting of 3163 nodes with 1409 KOs and 1754 compounds.

Conclusion

That’s too much KOs to look at

paaA in meta-pathway

Properties about paaA

If we look at the immediate metabolic neighbourhood surrounding paaA in the meta-pathway built from abundant KOs,

It is associated with two compounds:

  • Phenylacetyl-CoA
  • 2-(1,2-Epoxy-1,2-dihydrophenyl)acetyl-CoA.

See below:

surrounding = grepgraph(paaA)
graph_topkos = grepgraph(top500kos)
# V(surrounding) %in% V(graph_topkos)

rbind(
      names(V(surrounding)) %>% grep("cpd", ., value=T) %>% map_df(cpdname) %>% as_tibble %>% rename(id=cpd) %>% select(-mass, -weight),
      names(V(surrounding)) %>% grep("ko", ., value=T) %>% map_df(koname) %>% as_tibble %>% rename(id=ko.ko, name=ko.name) %>% select(id, name)
) %>% kable
id name
cpd:C00582 Phenylacetyl-CoA;
cpd:C20062 2-(1,2-Epoxy-1,2-dihydrophenyl)acetyl-CoA
ko:K02609 paaA
  • paaA IS a highly abundant KO
  • paaA is identified as a specialist KO but dominated by 1 genus, Thermus

Now lets highlight paaA (red), in the metabolic network formed by top KOs, paaA is only connected to one other KO, phenylacetate−CoA, ligase and not connected to the main connected component of the AS metabolic network.

graph_topkos = grepgraph(top500kos) %>% contractMetab %>% prettifyGraph() #%>% plot()
graph_topkos_original = graph_topkos
vid = which(V(graph_topkos)$name %>% do.call(c,.) %in% 'ko:K02609')
# V(graph_topkos)$color[vid] =
V(graph_topkos)$color = "grey"
V(graph_topkos)$color[vid] = "red"
V(graph_topkos)$size[vid] = 10
V(graph_topkos)$name = ""
V(graph_topkos)$label = ""
graph_topkos %>% plot

If we were search around the metabolic neighbourhood of paaA, for KOs connected 2 steps away from paaA, (ignoring compounds), as shown in the figure below, we find numerous paths like the one shown below:

Figure: Third degree connected KOs

Figure: Third degree connected KOs

Red nodes are KOs and grey nodes are compounds

# path = (k1:ko {ko:"ko:K02609"})-->(c1:cpd)-->(k2:ko)-->(c2:cpd)-->(k3:ko{ko:"ko:K01692"})

query = '
MATCH
    path = (k1:ko {ko:"ko:K02609"})-->(c1:cpd)-->(k2:ko)-->(c2:cpd)-->(k3:ko)
WHERE
    id(k1) <> id(k2)
    AND id(k1) <> id(k3)
RETURN
    k2.ko as k2,
    k3.ko as k3
'
outer = dbquery(query)
outer %<>% unique

# outer$k3[outer$k3 %in% names(V(graph_topkos_original))] %>% as.character %>% unique

Neighbouring KOs

#neighbouring kos
neigh = unique(c(as.character(outer$k2), as.character(outer$k3)))
neigh %>% map_df(koname) %>% as_tibble %>% kable
ko.ko ko.name ko.definition
ko:K15866 paaG 2-(1,2-epoxy-1,2-dihydrophenyl)acetyl-CoA isomerase [EC:5.3.3.18]
ko:K02613 paaE ring-1,2-phenylacetyl-CoA epoxidase subunit PaaE
ko:K02612 paaD ring-1,2-phenylacetyl-CoA epoxidase subunit PaaD
ko:K02611 paaC ring-1,2-phenylacetyl-CoA epoxidase subunit PaaC [EC:1.14.13.149]
ko:K02610 paaB ring-1,2-phenylacetyl-CoA epoxidase subunit PaaB
ko:K18363 padD phenylacetyl-CoA:acceptor oxidoreductase 26-kDa subunit
ko:K18362 padC phenylacetyl-CoA:acceptor oxidoreductase 27-kDa subunit
ko:K18361 padB phenylacetyl-CoA:acceptor oxidoreductase [EC:1.17.5.1 3.1.2.25]
ko:K18360 padA phenylacetyl-CoA:acceptor oxidoreductase accessory protein
ko:K02614 paaI acyl-CoA thioesterase [EC:3.1.2.-]
ko:K01912 paaK phenylacetate-CoA ligase [EC:6.2.1.30]
ko:K00628 GLYAT glycine N-acyltransferase / glycine N-benzoyltransferase [EC:2.3.1.13 2.3.1.71]
ko:K02618 paaZ oxepin-CoA hydrolase / 3-oxo-5,6-dehydrosuberyl-CoA semialdehyde dehydrogenase [EC:3.3.2.12 1.2.1.91]
ko:K02615 paaJ 3-oxo-5,6-didehydrosuberyl-CoA/3-oxoadipyl-CoA thiolase [EC:2.3.1.223 2.3.1.174]
ko:K07515 HADHA enoyl-CoA hydratase / long-chain 3-hydroxyacyl-CoA dehydrogenase [EC:4.2.1.17 1.1.1.211]
ko:K07514 EHHADH enoyl-CoA hydratase / 3-hydroxyacyl-CoA dehydrogenase / 3,2-trans-enoyl-CoA isomerase [EC:4.2.1.17 1.1.1.35 5.3.3.8]
ko:K07511 ECHS1 enoyl-CoA hydratase [EC:4.2.1.17]
ko:K06446 DCAA acyl-CoA dehydrogenase [EC:1.3.99.-]
ko:K01825 fadB 3-hydroxyacyl-CoA dehydrogenase / enoyl-CoA hydratase / 3-hydroxybutyryl-CoA epimerase / enoyl-CoA isomerase [EC:1.1.1.35 4.2.1.17 5.1.2.3 5.3.3.8]
ko:K01782 fadJ 3-hydroxyacyl-CoA dehydrogenase / enoyl-CoA hydratase / 3-hydroxybutyryl-CoA epimerase [EC:1.1.1.35 4.2.1.17 5.1.2.3]
ko:K01692 paaF, echA enoyl-CoA hydratase [EC:4.2.1.17]
ko:K15517 GLYAL glycine N-phenylacetyltransferase [EC:2.3.1.192]
ko:K18359 padH phenylglyoxylate dehydrogenase epsilon subunit [EC:1.2.1.58]
ko:K18358 padF phenylglyoxylate dehydrogenase delta subunit [EC:1.2.1.58]
ko:K18357 padE phenylglyoxylate dehydrogenase gamma subunit [EC:1.2.1.58]
ko:K18356 padI phenylglyoxylate dehydrogenase beta subunit [EC:1.2.1.58]
ko:K18355 padG phenylglyoxylate dehydrogenase alpha subunit [EC:1.2.1.58]
ko:K15054 mdlB (S)-mandelate dehydrogenase [EC:1.1.99.31]
ko:K01576 mdlC benzoylformate decarboxylase [EC:4.1.1.7]
ko:K10437 PHACA phenylacetate 2-hydroxylase [EC:1.14.13.-]
ko:K01501 E3.5.5.1 nitrilase [EC:3.5.5.1]
ko:K01426 E3.5.1.4, amiE amidase [EC:3.5.1.4]
ko:K00146 feaB phenylacetaldehyde dehydrogenase [EC:1.2.1.39]
ko:K00129 E1.2.1.5 aldehyde dehydrogenase (NAD(P)+) [EC:1.2.1.5]
ko:K01451 hipO hippurate hydrolase [EC:3.5.1.32]

Let’s overlay these neighbouring KOs with those found in the meta-pathway formed by the top genomically abundant KOs.

paaa_buddies = c('ko:K02609', neigh)
around = paaa_buddies[paaa_buddies %in% names(V(graph_topkos_original))] %>% as.character %>% koname
koi = around$ko.ko %>% as.character
around %>% kable
ko.ko ko.name ko.definition
ko:K02609 paaA ring-1,2-phenylacetyl-CoA epoxidase subunit PaaA [EC:1.14.13.149]
ko:K01912 paaK phenylacetate-CoA ligase [EC:6.2.1.30]
ko:K01692 paaF, echA enoyl-CoA hydratase [EC:4.2.1.17]
graph_topkos = graph_topkos_original
vid = which(V(graph_topkos)$name %>% do.call(c,.) %in% koi)
hmmm = which(V(graph_topkos)$label %in% "5-Carboxy-2-pentenoyl-CoA;")

V(graph_topkos)$color = "grey"
V(graph_topkos)$color[vid] = "red"
V(graph_topkos)$color[hmmm] = "green"
V(graph_topkos)$size[vid] = 10
V(graph_topkos)$name = ""
V(graph_topkos)$label = ""
graph_topkos %>% plot

paaA (red) and paaK (red) another subunit, can be connected to enoyl-CoA hydratase, which is in the largest connected component via 5-Carboxy-2-pentenoyl-CoA; through

One connection through 2-(1,2-epoxy-1,2-dihydrophenyl)acetyl-CoA, which is not included in the abundant meta-pathway

query='
MATCH
    path = (k1:ko {ko:"ko:K02609"})-->(c1:cpd)-->(k2:ko { ko:"ko:K15866"})-->(c2:cpd)-->(k3:ko {ko:"ko:K01692"})
return
    k1.ko, c1.cpd, k2.ko, c2.cpd, k3.ko'
dbquery(query) %>% as_tibble %>% kable
k1.ko c1.cpd k2.ko c2.cpd k3.ko
ko:K02609 cpd:C20062 ko:K15866 cpd:C14144 ko:K01692
graph_topkos = grepgraph(c(top500kos, 'K15866')) %>% contractMetab %>% prettifyGraph() #%>% plot()
vid = which(V(graph_topkos)$name %>% do.call(c,.) %in% c(koi, 'ko:K15866'))
hmmm = which(V(graph_topkos)$label %in% "5-Carboxy-2-pentenoyl-CoA;")
# V(graph_topkos)$color[vid] =
V(graph_topkos)$color = "grey"
V(graph_topkos)$color[vid] = "red"
V(graph_topkos)$color[hmmm] = "green"
V(graph_topkos)$size[vid] = 10
V(graph_topkos)$name = ""
V(graph_topkos)$label = ""
graph_topkos %>% plot

Future Works

We should investigate the gene centric assembly for paaG and see if it is also dominated by contigs labelled as belonging to Thermus.

sessionInfo()
## R version 3.5.1 (2018-07-02)
## Platform: x86_64-conda_cos6-linux-gnu (64-bit)
## Running under: Ubuntu 16.04.5 LTS
## 
## Matrix products: default
## BLAS/LAPACK: /home/jovyan/anaconda3/envs/meta3/lib/R/lib/libRblas.so
## 
## locale:
##  [1] LC_CTYPE=C.UTF-8       LC_NUMERIC=C           LC_TIME=C.UTF-8       
##  [4] LC_COLLATE=C.UTF-8     LC_MONETARY=C.UTF-8    LC_MESSAGES=C.UTF-8   
##  [7] LC_PAPER=C.UTF-8       LC_NAME=C              LC_ADDRESS=C          
## [10] LC_TELEPHONE=C         LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C   
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] plotly_4.8.0     ggplot2_3.1.0    markdown_0.9     knitr_1.21      
##  [5] rmarkdown_1.11   magrittr_1.5     igraph_1.2.4     bindrcpp_0.2.2  
##  [9] purrr_0.2.5      dplyr_0.7.6      MetamapsDB_0.0.2
## 
## loaded via a namespace (and not attached):
##  [1] Biobase_2.42.0              httr_1.3.1                 
##  [3] tidyr_0.8.1                 viridisLite_0.3.0          
##  [5] jsonlite_1.5                shiny_1.2.0                
##  [7] assertthat_0.2.0            highr_0.7                  
##  [9] stats4_3.5.1                latticeExtra_0.6-28        
## [11] GenomeInfoDbData_1.2.0      Rsamtools_1.34.0           
## [13] yaml_2.2.0                  globals_0.12.4             
## [15] pillar_1.3.0                lattice_0.20-38            
## [17] glue_1.3.0                  digest_0.6.18              
## [19] promises_1.0.1              GenomicRanges_1.34.0       
## [21] RColorBrewer_1.1-2          XVector_0.22.0             
## [23] colorspace_1.4-0            httpuv_1.4.5.1             
## [25] htmltools_0.3.6             Matrix_1.2-15              
## [27] plyr_1.8.4                  pkgconfig_2.0.1            
## [29] ShortRead_1.40.0            listenv_0.7.0              
## [31] zlibbioc_1.28.0             xtable_1.8-3               
## [33] scales_1.0.0                later_0.8.0                
## [35] BiocParallel_1.16.2         tibble_1.4.2               
## [37] IRanges_2.16.0              withr_2.1.2                
## [39] SummarizedExperiment_1.12.0 BiocGenerics_0.28.0        
## [41] lazyeval_0.2.1              cli_1.0.0                  
## [43] mime_0.5                    RJSONIO_1.3-1.1            
## [45] crayon_1.3.4                evaluate_0.13              
## [47] future_1.11.1.1             fansi_0.2.3                
## [49] forcats_0.3.0               hwriter_1.3.2              
## [51] tools_3.5.1                 data.table_1.12.0          
## [53] matrixStats_0.54.0          stringr_1.4.0              
## [55] S4Vectors_0.20.1            munsell_0.5.0              
## [57] DelayedArray_0.8.0          Biostrings_2.50.1          
## [59] compiler_3.5.1              GenomeInfoDb_1.18.1        
## [61] rlang_0.2.1                 grid_3.5.1                 
## [63] RCurl_1.95-4.11             htmlwidgets_1.3            
## [65] crosstalk_1.0.0             labeling_0.3               
## [67] bitops_1.0-6                base64enc_0.1-3            
## [69] gtable_0.2.0                codetools_0.2-16           
## [71] R6_2.2.2                    GenomicAlignments_1.18.0   
## [73] gridExtra_2.3               zoo_1.8-4                  
## [75] lubridate_1.7.4             utf8_1.1.4                 
## [77] bindr_0.1.1                 stringi_1.2.4              
## [79] parallel_3.5.1              Rcpp_0.12.18               
## [81] tidyselect_0.2.4            xfun_0.5
# rmarkdown::render("./paaa-analysis.Rmd")