The goal of this project is to load a chess tournament file, parse its content, interpret its contents programmatically and export a csv file in a specific format suitable for SQL import.
First, we assume the file is located in a current working folder shown below.
All input and output files will be located in the current working directory.
setwd("~/Documents/DATASCIENCE/DATA607/PROJECT1")
library(tidyverse)
library(dplyr)
The strategy is to separate two distinct tasks: * load the text file from disk * Parse and extract meaningful content
For this task, the readLines command is most suitable since it returns a vector of strings. One string per line from the file.
vectorLines = readLines("tournamentinfo.txt")
## Warning in readLines("tournamentinfo.txt"): incomplete final line found on
## 'tournamentinfo.txt'
length(vectorLines)
## [1] 196
head(vectorLines)
## [1] "-----------------------------------------------------------------------------------------"
## [2] " Pair | Player Name |Total|Round|Round|Round|Round|Round|Round|Round| "
## [3] " Num | USCF ID / Rtg (Pre->Post) | Pts | 1 | 2 | 3 | 4 | 5 | 6 | 7 | "
## [4] "-----------------------------------------------------------------------------------------"
## [5] " 1 | GARY HUA |6.0 |W 39|W 21|W 18|W 14|W 7|D 12|D 4|"
## [6] " ON | 15445895 / R: 1794 ->1817 |N:2 |W |B |W |B |W |B |W |"
tail(vectorLines)
## [1] " 63 | THOMAS JOSEPH HOSMER |1.0 |L 2|L 48|D 49|L 43|L 45|H |U |"
## [2] " MI | 15057092 / R: 1175 ->1125 | |W |B |W |B |B | | |"
## [3] "-----------------------------------------------------------------------------------------"
## [4] " 64 | BEN LI |1.0 |L 22|D 30|L 31|D 49|L 46|L 42|L 54|"
## [5] " MI | 15006561 / R: 1163 ->1112 | |B |W |W |B |W |B |B |"
## [6] "-----------------------------------------------------------------------------------------"
Starting at line 5: We read the data content, ignore every third row of dashes used to separate entries. The contents prior to line 5 are preamble material that do not need to be parsed. Every third row is a line of dashes separating the players. Each entry is regarded as two lines:
The first line contains the wins/loss record and the ids of the opponents and the total points. The last line contains the state and the pre-tournament score of the player.
vecFirstRow = vectorLines[seq(5, length(vectorLines), 3)]
vecLastRow = vectorLines[seq(6, length(vectorLines), 3)]
(numPlayers = length(vecFirstRow) )
## [1] 64
Now we aggregate the raw text entries into a dataframe of length equal to numPlayers players. We trim the whitespace of the last row of each entry but handle the first row in subsequent processing. Note that stringsAsFactor is set to FALSE to ensure text can be parsed.
ds = data.frame( row1 = vecFirstRow, row2 = str_trim(vecLastRow), stringsAsFactors = FALSE)
Now we tackle the first row. The key insight is that each row is divided by pipe delimiters between relevant fields of interest. Between two pipes, we’ll also need to trim whitespace and extract text or numbers.
ds$row1 %>% str_split("\\|") -> rawFieldsListRow1 # split each row into a list of list of 11 text fields.
# Next we flatten the list of lists of fields and trim whitespace.
# Note that the entire name is easily extracted without need to parse first or last names since there
# is some variation in spelling and character usage.
# Moreover, the raw list of text fields per row is consistent in having 11 fields.
rawFieldsRow1 = str_trim(unlist(rawFieldsListRow1), side="both" )
# Now we compress the raw trimmed data fields into a data frame of 11 columns and 64 rows.
( row1data = as_tibble( matrix( rawFieldsRow1 , nrow=numPlayers, byrow=T ) ) )
## Warning: `as_tibble.matrix()` requires a matrix with column names or a `.name_repair` argument. Using compatibility `.name_repair`.
## This warning is displayed once per session.
## # A tibble: 64 x 11
## V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11
## <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
## 1 1 GARY HUA 6.0 W 39 W 21 W 18 W 14 W 7 D 12 D 4 ""
## 2 2 DAKSHESH DA… 6.0 W 63 W 58 L 4 W 17 W 16 W 20 W 7 ""
## 3 3 ADITYA BAJAJ 6.0 L 8 W 61 W 25 W 21 W 11 W 13 W 12 ""
## 4 4 PATRICK H S… 5.5 W 23 D 28 W 2 W 26 D 5 W 19 D 1 ""
## 5 5 HANSHI ZUO 5.5 W 45 W 37 D 12 D 13 D 4 W 14 W 17 ""
## 6 6 HANSEN SONG 5.0 W 34 D 29 L 11 W 35 D 10 W 27 W 21 ""
## 7 7 GARY DEE SW… 5.0 W 57 W 46 W 13 W 11 L 1 W 9 L 2 ""
## 8 8 EZEKIEL HOU… 5.0 W 3 W 32 L 14 L 9 W 47 W 28 W 19 ""
## 9 9 STEFANO LEE 5.0 W 25 L 18 W 59 W 8 W 26 L 7 W 20 ""
## 10 10 ANVIT RAO 5.0 D 16 L 19 W 55 W 31 D 6 W 25 W 18 ""
## # … with 54 more rows
# The raw tibble columns names are not informative.
# So we clean up the columns with informative labels before analyzing data.
#
row1data = plyr::rename(row1data, c("V1" = "ID", "V2"="Name", "V3" = "Points",
"V4"="Round1","V5" ="Round2" ,
"V6"="Round3", "V7"= "Round4" , "V8"="Round5",
"V9"="Round6", "V10" = "Round7"
) )
It will be necessary to further extract the identifier of each opponent. This is done on the string between consecutive pipe delimiters. Points are always stored as 2 digits and a decimal. Identifiers are always integers. We coerce the values to integers for each of processing.
row1data %>% mutate( ID = as.integer(ID)) %>%
mutate( Points = as.numeric(str_match(Points, "\\d\\.\\d+" ) ) ) %>%
mutate( Round1 = as.integer(str_match(Round1, "\\d+"))) %>%
mutate( Round2 = as.integer(str_match(Round2, "\\d+"))) %>%
mutate( Round3 = as.integer(str_match(Round3, "\\d+"))) %>%
mutate( Round4 = as.integer(str_match(Round4, "\\d+"))) %>%
mutate( Round5 = as.integer(str_match(Round5, "\\d+"))) %>%
mutate( Round6 = as.integer(str_match(Round6, "\\d+"))) %>%
mutate( Round7 = as.integer(str_match(Round7, "\\d+"))) %>%
# Useful raw data is selected into a smaller data frame.
select( ID, Name, Points, Round1, Round2, Round3, Round4, Round5, Round6, Round7) -> row1tidy
str(row1tidy)
## Classes 'tbl_df', 'tbl' and 'data.frame': 64 obs. of 10 variables:
## $ ID : int 1 2 3 4 5 6 7 8 9 10 ...
## $ Name : chr "GARY HUA" "DAKSHESH DARURI" "ADITYA BAJAJ" "PATRICK H SCHILLING" ...
## $ Points: num 6 6 6 5.5 5.5 5 5 5 5 5 ...
## $ Round1: int 39 63 8 23 45 34 57 3 25 16 ...
## $ Round2: int 21 58 61 28 37 29 46 32 18 19 ...
## $ Round3: int 18 4 25 2 12 11 13 14 59 55 ...
## $ Round4: int 14 17 21 26 13 35 11 9 8 31 ...
## $ Round5: int 7 16 11 5 4 10 1 47 26 6 ...
## $ Round6: int 12 20 13 19 14 27 9 28 7 25 ...
## $ Round7: int 4 7 12 1 17 21 2 19 20 18 ...
Let extract the raw data from the last row of the entry. The State is simply a two letter code at the beginning of the line. The player’s pretournament score is a 3-4 digit string preceding by either widespace or a letter ‘P’. We use str_match to extract the score.
state = tibble( State = as.vector( str_match( str_trim(ds$row2), "^.." ) ),
preScore = as.integer(str_match(ds$row2, "/ R:\\s+(\\d+)[P ]?" )[,2] ),
ID = seq(1:numPlayers) )
We need to join the data from the first row and second row of each player’s entry. This requires the use of inner_join. Certain datacolumns need to be renamed for clarity.
fullData = inner_join( row1tidy, state, by = "ID")
fullData = plyr::rename(fullData, c("row1tidy$ID" = "ID"))
## The following `from` values were not present in `x`: row1tidy$ID
The following display shows that data that will be used to (a) calculate the average score of opponents and (b) generate all file output.
library(knitr)
knitr::kable(head(fullData), digits=2, align=c(rep("l", 4) ) )
| ID | Name | Points | Round1 | Round2 | Round3 | Round4 | Round5 | Round6 | Round7 | State | preScore |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | GARY HUA | 6.0 | 39 | 21 | 18 | 14 | 7 | 12 | 4 | ON | 1794 |
| 2 | DAKSHESH DARURI | 6.0 | 63 | 58 | 4 | 17 | 16 | 20 | 7 | MI | 1553 |
| 3 | ADITYA BAJAJ | 6.0 | 8 | 61 | 25 | 21 | 11 | 13 | 12 | MI | 1384 |
| 4 | PATRICK H SCHILLING | 5.5 | 23 | 28 | 2 | 26 | 5 | 19 | 1 | MI | 1716 |
| 5 | HANSHI ZUO | 5.5 | 45 | 37 | 12 | 13 | 4 | 14 | 17 | MI | 1655 |
| 6 | HANSEN SONG | 5.0 | 34 | 29 | 11 | 35 | 10 | 27 | 21 | OH | 1686 |
# Returns a list of the average pretournament score of opponents of player i
# and the number of opponents during the tournament of player i
# This function excludes NA associated with matches with no opponent or score.
preTournamentAverage <- function( i ) {
s1 = fullData$preScore[ fullData$Round1[i] ]
s2 = fullData$preScore[ fullData$Round2[i] ]
s3 = fullData$preScore[ fullData$Round3[i] ]
s4 = fullData$preScore[ fullData$Round4[i] ]
s5 = fullData$preScore[ fullData$Round5[i] ]
s6 = fullData$preScore[ fullData$Round6[i] ]
s7 = fullData$preScore[ fullData$Round7[i] ]
vals = c( s1, s2, s3, s4, s5, s6, s7 )
v = mean( vals, na.rm = TRUE)
return(v)
}
We stage all the contents of the export file into a single data frame. The goal is to arrange the content and order as desired into a single data structure and then dump it to file.
ptl = map_dbl(1:numPlayers, preTournamentAverage )
names_vector = fullData$Name
points_vector = fullData$Points
prescore_vector = fullData$preScore
outputDF = tibble( Names = names_vector, State = fullData$State, Points = fullData$Points,
PreScore = fullData$preScore,
OpponentAvg = ptl )
As a sanity check, we inspect the contents of the entire file. This format preserves the order of the players in the original file.
knitr::kable(outputDF, digits=2, align=c(rep("l", 4) ) )
| Names | State | Points | PreScore | OpponentAvg |
|---|---|---|---|---|
| GARY HUA | ON | 6.0 | 1794 | 1605.29 |
| DAKSHESH DARURI | MI | 6.0 | 1553 | 1469.29 |
| ADITYA BAJAJ | MI | 6.0 | 1384 | 1563.57 |
| PATRICK H SCHILLING | MI | 5.5 | 1716 | 1573.57 |
| HANSHI ZUO | MI | 5.5 | 1655 | 1500.86 |
| HANSEN SONG | OH | 5.0 | 1686 | 1518.71 |
| GARY DEE SWATHELL | MI | 5.0 | 1649 | 1372.14 |
| EZEKIEL HOUGHTON | MI | 5.0 | 1641 | 1468.43 |
| STEFANO LEE | ON | 5.0 | 1411 | 1523.14 |
| ANVIT RAO | MI | 5.0 | 1365 | 1554.14 |
| CAMERON WILLIAM MC LEMAN | MI | 4.5 | 1712 | 1467.57 |
| KENNETH J TACK | MI | 4.5 | 1663 | 1506.17 |
| TORRANCE HENRY JR | MI | 4.5 | 1666 | 1497.86 |
| BRADLEY SHAW | MI | 4.5 | 1610 | 1515.00 |
| ZACHARY JAMES HOUGHTON | MI | 4.5 | 1220 | 1483.86 |
| MIKE NIKITIN | MI | 4.0 | 1604 | 1385.80 |
| RONALD GRZEGORCZYK | MI | 4.0 | 1629 | 1498.57 |
| DAVID SUNDEEN | MI | 4.0 | 1600 | 1480.00 |
| DIPANKAR ROY | MI | 4.0 | 1564 | 1426.29 |
| JASON ZHENG | MI | 4.0 | 1595 | 1410.86 |
| DINH DANG BUI | ON | 4.0 | 1563 | 1470.43 |
| EUGENE L MCCLURE | MI | 4.0 | 1555 | 1300.33 |
| ALAN BUI | ON | 4.0 | 1363 | 1213.86 |
| MICHAEL R ALDRICH | MI | 4.0 | 1229 | 1357.00 |
| LOREN SCHWIEBERT | MI | 3.5 | 1745 | 1363.29 |
| MAX ZHU | ON | 3.5 | 1579 | 1506.86 |
| GAURAV GIDWANI | MI | 3.5 | 1552 | 1221.67 |
| SOFIA ADINA STANESCU-BELLU | MI | 3.5 | 1507 | 1522.14 |
| CHIEDOZIE OKORIE | MI | 3.5 | 1602 | 1313.50 |
| GEORGE AVERY JONES | ON | 3.5 | 1522 | 1144.14 |
| RISHI SHETTY | MI | 3.5 | 1494 | 1259.86 |
| JOSHUA PHILIP MATHEWS | ON | 3.5 | 1441 | 1378.71 |
| JADE GE | MI | 3.5 | 1449 | 1276.86 |
| MICHAEL JEFFERY THOMAS | MI | 3.5 | 1399 | 1375.29 |
| JOSHUA DAVID LEE | MI | 3.5 | 1438 | 1149.71 |
| SIDDHARTH JHA | MI | 3.5 | 1355 | 1388.17 |
| AMIYATOSH PWNANANDAM | MI | 3.5 | 980 | 1384.80 |
| BRIAN LIU | MI | 3.0 | 1423 | 1539.17 |
| JOEL R HENDON | MI | 3.0 | 1436 | 1429.57 |
| FOREST ZHANG | MI | 3.0 | 1348 | 1390.57 |
| KYLE WILLIAM MURPHY | MI | 3.0 | 1403 | 1248.50 |
| JARED GE | MI | 3.0 | 1332 | 1149.86 |
| ROBERT GLEN VASEY | MI | 3.0 | 1283 | 1106.57 |
| JUSTIN D SCHILLING | MI | 3.0 | 1199 | 1327.00 |
| DEREK YAN | MI | 3.0 | 1242 | 1152.00 |
| JACOB ALEXANDER LAVALLEY | MI | 3.0 | 377 | 1357.71 |
| ERIC WRIGHT | MI | 2.5 | 1362 | 1392.00 |
| DANIEL KHAIN | MI | 2.5 | 1382 | 1355.80 |
| MICHAEL J MARTIN | MI | 2.5 | 1291 | 1285.80 |
| SHIVAM JHA | MI | 2.5 | 1056 | 1296.00 |
| TEJAS AYYAGARI | MI | 2.5 | 1011 | 1356.14 |
| ETHAN GUO | MI | 2.5 | 935 | 1494.57 |
| JOSE C YBARRA | MI | 2.0 | 1393 | 1345.33 |
| LARRY HODGE | MI | 2.0 | 1270 | 1206.17 |
| ALEX KONG | MI | 2.0 | 1186 | 1406.00 |
| MARISA RICCI | MI | 2.0 | 1153 | 1414.40 |
| MICHAEL LU | MI | 2.0 | 1092 | 1363.00 |
| VIRAJ MOHILE | MI | 2.0 | 917 | 1391.00 |
| SEAN M MC CORMICK | MI | 2.0 | 853 | 1319.00 |
| JULIA SHEN | MI | 1.5 | 967 | 1330.20 |
| JEZZEL FARKAS | ON | 1.5 | 955 | 1327.29 |
| ASHWIN BALAJI | MI | 1.0 | 1530 | 1186.00 |
| THOMAS JOSEPH HOSMER | MI | 1.0 | 1175 | 1350.20 |
| BEN LI | MI | 1.0 | 1163 | 1263.00 |
Write the dataframe to an output file in csv format.
readr::write_csv(outputDF, "tournament_output.csv")