suppressMessages(suppressWarnings(library(fpp2)))
suppressMessages(suppressWarnings(library(forecast)))
suppressMessages(suppressWarnings(library(fma)))
suppressMessages(suppressWarnings(library(seasonal)))
autoplot(plastics) + xlab("Time") + ylab("Sales")
decompose_plastics <- decompose(plastics, type = "multiplicative")
autoplot(decompose_plastics) + xlab("Time") + ylab("Sales")
autoplot(plastics, series="Data") + autolayer(trendcycle(decompose_plastics), series="Trend") +
autolayer(seasadj(decompose_plastics), series="Seasonally Adjusted") + xlab("Time") + ylab("Sales") +
scale_colour_manual(values=c("green","blue","red"), breaks=c("Data","Seasonally Adjusted","Trend"))
## Warning: Removed 12 rows containing missing values (geom_path).
plastics1 <- plastics
plastics1[20] <- plastics1[20] + 500
decompose_plastics1 <- decompose(plastics1, type = "multiplicative")
autoplot(plastics1, series = "Data") + autolayer(trendcycle(decompose_plastics1), series = "Trend") + autolayer(seasadj(decompose_plastics1),
series = "Seasonally Adjusted") + xlab("Time") + ylab("Sales") +
scale_color_manual(values=c("green", "blue", "red"), breaks=c("Data", "Seasonally Adjusted", "Trend"))
## Warning: Removed 12 rows containing missing values (geom_path).
plastics1[55] <- plastics1[55] + 500
decompose_plastics1 <- decompose(plastics1, type = "multiplicative")
autoplot(plastics1, series = "Data") + autolayer(trendcycle(decompose_plastics1), series = "Trend") + autolayer(seasadj(decompose_plastics1),
series = "Seasonally Adjusted") + xlab("Time") + ylab("Sales") + scale_color_manual(values=c("green", "blue", "red"), breaks=c("Data", "Seasonally Adjusted", "Trend"))
## Warning: Removed 12 rows containing missing values (geom_path).
Retails data:
retaildata <- readxl::read_excel("C:/Users/rites/Documents/GitHub/Data624_Assignment1/retail.xlsx", skip=1)
## readxl works best with a newer version of the tibble package.
## You currently have tibble v1.4.2.
## Falling back to column name repair from tibble <= v1.4.2.
## Message displays once per session.
myts <- ts(retaildata[,"A3349873A"],frequency=12, start=c(1982,4))
autoplot(myts) + xlab("Time") + ylab("Sales")
# Decompose the series using X11.
retail_x11<- seas(myts, x11 = "")
autoplot(retail_x11) + xlab("Time") + ylab("Sales")