I calculated the intra-network and inter-network signatures in order to look for differences between HIV+ well-controlled, HIV + uncontrolled, and HIV- individuals.
To cohort match, I pulled a few ADRC participants to help match ages better - the controls were originally way younger than the HIV+ individuals.
Here are the compositions of the signatures:
I did not correct resting state values for age/sex for this analysis, since I could figure out how to include them as covariates. Instead, I did a multinomial regression to see if network signature, age, and sex could predict which category a participant would fall in (HIV negative control, HIV + and well controlled, HIV + and poorly controlled.)
## # weights: 15 (8 variable)
## initial value 898.664852
## iter 10 value 798.073741
## final value 797.238119
## converged
## Call:
## multinom(formula = status ~ Inter_Signature + participant_age +
## gender_check, data = df.now)
##
## Coefficients:
## (Intercept) Inter_Signature participant_age gender_check1
## Pos_UnCon 0.2626102 0.005834297 -0.029658796 -0.7566817
## Pos_Con -0.3762992 0.059197925 0.003726935 -0.1418383
##
## Std. Errors:
## (Intercept) Inter_Signature participant_age gender_check1
## Pos_UnCon 0.3198907 0.02926576 0.006769053 0.2674785
## Pos_Con 0.2652176 0.02184857 0.005037259 0.1763387
##
## Residual Deviance: 1594.476
## AIC: 1610.476
## [1] "Exponentiated Model Coefficients"
## (Intercept) Inter_Signature participant_age gender_check1
## Pos_UnCon 1.3003197 1.005851 0.9707767 0.4692209
## Pos_Con 0.6863969 1.060985 1.0037339 0.8677615
## [1] "Model Significance Values (p)"
## (Intercept) Inter_Signature participant_age gender_check1
## Pos_UnCon 0.4116820 0.841984523 1.178498e-05 0.004670195
## Pos_Con 0.1559481 0.006739203 4.593768e-01 0.421193826
## # weights: 15 (8 variable)
## initial value 898.664852
## iter 10 value 797.312276
## final value 796.666341
## converged
## Call:
## multinom(formula = status ~ Intra_Signature + participant_age +
## gender_check, data = df.now)
##
## Coefficients:
## (Intercept) Intra_Signature participant_age gender_check1
## Pos_UnCon 0.5188570 0.1018922 -0.034532448 -0.8575605
## Pos_Con -0.1072598 0.1413068 -0.001519106 -0.2250300
##
## Std. Errors:
## (Intercept) Intra_Signature participant_age gender_check1
## Pos_UnCon 0.3608223 0.06753548 0.007537798 0.2747295
## Pos_Con 0.2920064 0.04827660 0.005559400 0.1831043
##
## Residual Deviance: 1593.333
## AIC: 1609.333
## [1] "Exponentiated Model Coefficients"
## (Intercept) Intra_Signature participant_age gender_check1
## Pos_UnCon 1.6801061 1.107264 0.966057 0.4241957
## Pos_Con 0.8982923 1.151778 0.998482 0.7984922
## [1] "Model Significance Values (p)"
## (Intercept) Intra_Signature participant_age gender_check1
## Pos_UnCon 0.1504383 0.131369989 4.622311e-06 0.001799495
## Pos_Con 0.7133804 0.003422212 7.846611e-01 0.219082335
Here are the demographics:
## Stratified by Group
## Control UnControlled
## n 391 117
## Group (%)
## Control 391 (100.0) 0 ( 0.0)
## UnControlled 0 ( 0.0) 117 (100.0)
## WellControlled 0 ( 0.0) 0 ( 0.0)
## participant_age (mean (sd)) 46.54 (16.64) 39.80 (16.76)
## gender_check = 1 (%) 115 ( 29.4) 23 ( 19.7)
## nadir_cd4 (mean (sd)) NaN (NA) 245.58 (204.90)
## MathSig (mean (sd)) 87.88 (37.73) 97.89 (37.83)
## Stratified by Group
## WellControlled p test
## n 310
## Group (%) <0.001
## Control 0 ( 0.0)
## UnControlled 0 ( 0.0)
## WellControlled 310 (100.0)
## participant_age (mean (sd)) 48.03 (14.33) <0.001
## gender_check = 1 (%) 85 ( 27.4) 0.115
## nadir_cd4 (mean (sd)) 230.31 (206.76) 0.544
## MathSig (mean (sd)) 92.05 (50.38) 0.073