Clustering Analysis- Ordination Part

#load packages

require(vegan)
## Loading required package: vegan
## Loading required package: permute
## This is vegan 2.0-6
require(ade4)
## Loading required package: ade4
## Attaching package: 'ade4'
## The following object(s) are masked from 'package:vegan':
## 
## cca
## The following object(s) are masked from 'package:base':
## 
## within
require(MASS)
## Loading required package: MASS

#preloaded dataframe

data(varespec)

#Part 1

vare.dis <- vegdist(varespec)

#What was the default dissimilarity index for vegdist()?

vare.iso <- isoMDS(vare.dis)
## initial  value 18.026495 
## iter   5 value 10.095483
## final  value 10.020469 
## converged

#create a shepards plot

stressplot(vare.iso, vare.dis)

plot of chunk unnamed-chunk-5

ordiplot(vare.iso, type = "t")
## Warning: Species scores not available

plot of chunk unnamed-chunk-5

#Part 2 #We can use raw values for metaMDS function

vare.mds <- metaMDS(varespec)
## Square root transformation
## Wisconsin double standardization
## Run 0 stress 0.1843 
## Run 1 stress 0.1948 
## Run 2 stress 0.2051 
## Run 3 stress 0.195 
## Run 4 stress 0.1826 
## ... New best solution
## ... procrustes: rmse 0.04174  max resid 0.1523 
## Run 5 stress 0.2083 
## Run 6 stress 0.1843 
## Run 7 stress 0.2092 
## Run 8 stress 0.2261 
## Run 9 stress 0.1956 
## Run 10 stress 0.1967 
## Run 11 stress 0.234 
## Run 12 stress 0.2178 
## Run 13 stress 0.1843 
## Run 14 stress 0.187 
## Run 15 stress 0.2138 
## Run 16 stress 0.212 
## Run 17 stress 0.1962 
## Run 18 stress 0.2419 
## Run 19 stress 0.1948 
## Run 20 stress 0.1976

#interpret the output, i.e. why do we transform the data? What is the purpose of the different runs #what is the “procrustes” function doing here? Can we interpret this NMDS with confidence?

ordiplot(vare.mds, type = "t")

plot of chunk unnamed-chunk-7

#Why do we have species scores this time?

#Choose an add-on, stats or clustering!