绘制热图代码
library(pheatmap)
#读入行为基因名的矩阵
mRNA_exp_heatmap<-read.delim(file="heatmap_CHX.txt",header = T,sep="\t",row.names = 1 )
head(mRNA_exp_heatmap)
## X5918_input X8845_input X5918_HS5 X8845_HS5 X5918_HS5_CHX
## PPP2R5A 54.17 40.00 42.11 35.56 77.50
## VARS2_450 35.85 48.48 18.92 20.45 34.62
## KIAA0196 24.49 31.25 18.18 24.32 30.36
## KIAA1033 50.50 56.57 48.42 35.87 61.24
## AP2A2 19.51 27.27 15.15 20.00 28.26
## WASHC4 35.90 39.44 31.94 21.33 44.44
## X8845_HS5_CHX X9128_input X11589_input X9128_HS5 X11589_HS5
## PPP2R5A 71.70 1.09 2.00 0.00 1.41
## VARS2_450 43.14 0.00 0.00 0.00 0.00
## KIAA0196 50.00 2.08 0.00 0.00 0.00
## KIAA1033 60.14 15.86 22.58 13.59 7.14
## AP2A2 43.10 0.00 0.00 0.00 0.00
## WASHC4 43.00 8.27 15.04 8.25 3.70
## X9128_HS5_CHX X11589_HS5_CHX
## PPP2R5A 10.81 9.28
## VARS2_450 2.17 0.00
## KIAA0196 5.30 4.48
## KIAA1033 22.83 21.69
## AP2A2 0.00 0.00
## WASHC4 13.27 11.38
# 对数据归一化处理
choose_matrix<-mRNA_exp_heatmap
choose_matrix=t(scale(t(choose_matrix)))
choose_matrix[choose_matrix > 1] = 1
choose_matrix[choose_matrix < -1] = -1
choose_matrix[1:5,1:5]
## X5918_input X8845_input X5918_HS5 X8845_HS5 X5918_HS5_CHX
## PPP2R5A 0.8881174 0.3920250 0.4658962 0.23658041 1.0000000
## VARS2_450 0.9875816 1.0000000 0.1020404 0.18206859 0.9232451
## KIAA0196 0.5263060 0.9391270 0.1409657 0.51592444 0.8847763
## KIAA1033 0.8002834 1.0000000 0.6949130 0.05914423 1.0000000
## AP2A2 0.4511658 0.9709303 0.1591332 0.48398601 1.0000000
#图注
ann_col = data.frame(CellType = factor(rep(c("MT","WT"),c(6,6)))) #分组
rownames(ann_col) <- colnames(choose_matrix)
ann_colors = list(CellType = c(MT = "indianred2", WT = "mediumpurple3"))#图注颜色
#绘图并保存
#pdf(file = "heatmap01.pdf",height = 5,width = 5)
pheatmap(choose_matrix,#矩阵
annotation_col = ann_col,annotation_legend=TRUE,annotation_colors = ann_colors,
cluster_rows=FALSE,
cluster_cols=FALSE,
show_colnames = FALSE,
gaps_col = 6,#分割
cellwidth = 10, cellheight =15,fontsize = 8,#大小
color = colorRampPalette(c("navy","white","firebrick3"))(1000))#颜色

#dev.off()