\[W = \begin{bmatrix} -3 \\ 1 \\ 4 \\ \end{bmatrix} \]
Suppose
S:C3→C4 is defined by
\[S =( \begin{bmatrix} X1 \\ X2 \\ X3 \\ \end{bmatrix} ) = \begin{bmatrix} 3X1 - 2X2 +5X3 \\ X1 + X2 + X3\\ 9X1 - 2X2 + 5X3 \\ 0X1 + 4X2 + 0X3 \\ \end{bmatrix} \]
compute S(w) two different ways.
w <- matrix(c(-3,1,4), nrow = 3)
w
## [,1]
## [1,] -3
## [2,] 1
## [3,] 4
s <- matrix(c(3,1,9,0,-2,1,-2,4,5,1,5,0), nrow = 4)
s
## [,1] [,2] [,3]
## [1,] 3 -2 5
## [2,] 1 1 1
## [3,] 9 -2 5
## [4,] 0 4 0
s%*%w
## [,1]
## [1,] 9
## [2,] 2
## [3,] -9
## [4,] 4
\[S = \begin{bmatrix} X1 \\ X2 \\ X3 \\ \end{bmatrix} = \begin{bmatrix} -3 \\ 1 \\ 4 \\ \end{bmatrix} \]
\(3X1 - 2X2 + 5X3\)
= \(3*-3 -2*1 +5*4\)
= 9
\(X1 + X2 + X3\)
= \(1*-3 +1*1 + 1*4\)
= 2
\(9X1 - 2X2 + 5X3\)
= \(9*-3 -2*1 +5*4\)
= -9
\(0X1 + 4X2 + 0X3\)
= \(4*1\)
= 4