setwd("~/Michigan_State/Sean")
Loading raw Michigan data, dropping previously acquired environmental covariates and summing trial successes.
MI.df = read.csv("./Data_102418/mi_data10-24-18.csv",
header = TRUE, stringsAsFactors = FALSE, sep=",")
MI.df = MI.df %>%
mutate(Long = Lat, #these appear reversed in original data
Lat = Lon,
State = "Michigan", #transect state
OBS = Hare, #overall presence (at any trial)
Counts = T.1 + T.2 + T.3 + T.4 + T.5 + T.6 + T.7 + T.8 + T.9, #Sum across trials
Trials = 9, #No NAs in this dataset all have 9 trials
Site2 = paste("M", 1:nrow(MI.df), sep=".")) %>%
select(Site2, Long, Lat, State, OBS, Counts, Trials)
dim(MI.df) #Check data
## [1] 125 7
head(MI.df)
## Site2 Long Lat State OBS Counts Trials
## 1 M.1 -88.24388 47.41681 Michigan 1 6 9
## 2 M.2 -84.58309 45.53829 Michigan 1 6 9
## 3 M.3 -84.14892 45.46854 Michigan 1 6 9
## 4 M.4 -90.07851 46.35078 Michigan 1 1 9
## 5 M.5 -86.56820 46.37911 Michigan 1 1 9
## 6 M.6 -86.75846 46.25573 Michigan 1 9 9
Loading data as above, but trials vary by transect, therefore, they are individually summed.
WI.df = read.csv("./Data_102418/wi_data10-24-18.csv",
header = TRUE, stringsAsFactors = FALSE, sep=",")
WI.Trial.df = WI.df[2:21] #pull-out transects
WI.Trial.df[WI.Trial.df >= 1] = 1 #set track counts to 1
WI.Trial.df$Counts = rowSums(WI.Trial.df, na.rm=T) #sum total successes by transect
WI.Trial.df$Trials = rowSums(is.na(WI.df[2:21])==FALSE) #count number of trials
WI.df = WI.df %>% #Basically the same as MI above
mutate(Long = Lat,
Lat = Lon,
State = "Wisconsin",
OBS = Hare,
Counts = WI.Trial.df$Counts, #Sum across trials
Trials = WI.Trial.df$Trials, #trials vary by transect
Site2 = paste("W", 1:nrow(WI.df), sep=".")) %>% #Site identifier
select(Site2, Long, Lat, State, OBS, Counts, Trials)
dim(WI.df)
## [1] 195 7
head(WI.df)
## Site2 Long Lat State OBS Counts Trials
## 1 W.1 -90.72816 44.36486 Wisconsin 1 0 8
## 2 W.2 -90.84052 44.27223 Wisconsin 0 0 6
## 3 W.3 -90.82058 44.45853 Wisconsin 1 5 8
## 4 W.4 -92.11831 45.44736 Wisconsin 0 0 6
## 5 W.5 -91.22783 45.02406 Wisconsin 0 0 6
## 6 W.6 -90.01462 44.21396 Wisconsin 0 0 8
Join data to common dataframe.
hare.df = rbind(MI.df, WI.df)
dim(hare.df)
## [1] 320 7
Hare.pnt = SpatialPointsDataFrame(hare.df[, c("Long","Lat")], hare.df)
proj4string(Hare.pnt) = "+proj=longlat +datum=NAD83 +no_defs +ellps=GRS80 +towgs84=0,0,0"
Defining domain extent, downloading state boundaries, and then creating raster versions for later plotting. Note that the “Lakes” file is used to better identify lake boundaries. A copy of this shapefile is in the folder with this script. The adress to the shapefile will need to be updated in this chunk.
World = map("world",
fill = TRUE,
plot = FALSE)
IDs = sapply(strsplit(World$names, ":"), function(x) x[1])
LL84 = "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"
WorldP = map2SpatialPolygons(World, IDs = IDs,
proj4string = CRS(projection(LL84)))
#Add a dataframe
pid = sapply(slot(WorldP, "polygons"),
function(x) slot(x, "ID"))
p.df = data.frame( ID=1:length(WorldP),
row.names = pid)
World = SpatialPolygonsDataFrame(WorldP, p.df)
World = spTransform(World, proj4string(Hare.pnt ))
World = gBuffer(World, width = 0, byid = F)
#States
States = map("state",
fill = TRUE,
plot = FALSE)
IDs = sapply(strsplit(States$names, ":"), function(x) x[1])
LL84 = "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"
StatesP = map2SpatialPolygons(States, IDs = IDs,
proj4string = CRS(projection(LL84)))
#Add a dataframe
pid = sapply(slot(StatesP, "polygons"),
function(x) slot(x, "ID"))
p.df = data.frame( ID=1:length(StatesP),
row.names = pid)
States = SpatialPolygonsDataFrame(StatesP, p.df)
States = spTransform(States, proj4string(Hare.pnt ))
Lakes = readOGR(dsn = "C:/Users/humph173/Documents/Michigan_State/Marten/ArcWork/Lakes",
layer = "Lake_2ks",
stringsAsFactors = FALSE)
## OGR data source with driver: ESRI Shapefile
## Source: "C:\Users\humph173\Documents\Michigan_State\Marten\ArcWork\Lakes", layer: "Lake_2ks"
## with 1 features
## It has 15 fields
## Integer64 fields read as strings: OBJECTID Id area InPoly_FID SimPgnFlag
LakesLL = spTransform(Lakes, proj4string(States))
Ext = c(-93.173415, -81.932841, 41.217132, 47.740649)
Domain = crop(States, Ext)
Domain$Name = str_cap_words(rownames(Domain@data))
Water0 = as(extent(Domain), "SpatialPolygons")
p.df = data.frame(ID=1:length(Water0))
Water0 = SpatialPolygonsDataFrame(Water0, p.df, match.ID = F)
proj4string(Water0) = proj4string(Domain)
Water1 = gDifference(Water0, spTransform(Lakes, proj4string(Water0)))
DomLLU = gUnaryUnion(Domain)
#Rasterized version
Ras = raster(res = 0.02, ext = extent(DomLLU),
crs = proj4string(DomLLU))
Domain.r = rasterize(DomLLU, Ras,
field = 0,
background = NA)
#Point grid version
Grd.pnt = rasterToPoints(Domain.r, spatial = TRUE)
Grd.pnt@data = Grd.pnt@data %>%
mutate(Long = Grd.pnt@coords[,1],
Lat = Grd.pnt@coords[,2]) %>%
select(-layer)
rng = seq(0, 255, 1)
mCols = brewer.pal(11, "RdYlBu")[-6]
cr0 = rev(colorRampPalette((mCols))(n = 256))
cr = colorRampPalette(c("tan", cr0),
bias = 1, space = "rgb")
MyMatrix = matrix(nrow=7, ncol=2)
rownames(MyMatrix) = rownames(coordinates(Domain))
MyMatrix[,1] = c(-89.07686, -86.11260, -91.91021, -83.82014, -91.31258, -83.46125, -89.51171)
MyMatrix[,2] = c(41.80000, 41.36514, 42.28710, 43.0, 47.5041, 41.61285, 43.63285)
levelplot(Domain.r,
margin = FALSE,
xlab = NULL,
ylab = NULL,
maxpixels = 1e5,
col.regions = cr, at = rng,
colorkey = FALSE, par.strip.text = list(fontface='bold', cex=1.5),
par.settings = list(axis.line = list(col = "black"),
strip.background = list(col = 'transparent'),
strip.border = list(col = 'transparent')),
scales = list(cex = 1.25)) +
latticeExtra::layer(sp.polygons(Domain, col = "black", lwd = 0.5)) +
latticeExtra::layer(sp.polygons(LakesLL, fill = "lightblue", col = "transparent", lwd = 0.5)) +
latticeExtra::layer(sp.polygons(Hare.pnt , col = "red", pch=factor(Hare.pnt$State), cex = 1)) +
latticeExtra::layer(sp.text(MyMatrix, txt = Domain$Name,
pos =c(1,3,3,2,2,1,1),
col="black",font=list(face="bold"), cex=1)) +
latticeExtra::layer({SpatialPolygonsRescale(layout.north.arrow(),
offset = c(-83, 45.5),
scale = 2)})
nProj = "+proj=utm +zone=16 +datum=NAD83 +units=km +no_defs +ellps=GRS80 +towgs84=0,0,0"
LakesKM = spTransform(Lakes, nProj)
FocalKM = spTransform(Water1, nProj)
DomP = spTransform(Domain, nProj)
DomPU = gUnaryUnion(DomP)
Hare.pntP = spTransform(Hare.pnt, nProj)
Grd.pntP = spTransform(Grd.pnt, nProj)
These values are scaled to correspond to the geographic projection (kilometers)
max.edge = 8 #Make the outer edge length 8km
bound.outer = 75 #Outer extension can be 75km
bdry = inla.sp2segment(DomPU) #Formatting boundary for r-INLA
mesh = inla.mesh.2d(boundary = bdry, #Boundary
loc = Hare.pntP, #Fit to point locations
max.edge = c(1, 5)*max.edge, #mesh size specifications
cutoff = 8,
min.angle = 25,
offset = c(max.edge, bound.outer))
mesh$n #number of nodes
## [1] 5551
plot(mesh, lwd=0.5)
Article (Bakka 2019): https://www.sciencedirect.com/science/article/pii/S221167531830099X See tutorial: https://haakonbakka.bitbucket.io/btopic107.html
tl = length(mesh$graph$tv[,1])
posTri = matrix(0, tl, 2)
for (t in 1:tl){
temp = mesh$loc[mesh$graph$tv[t, ], ]
posTri[t,] = colMeans(temp)[c(1,2)]
}
posTri = SpatialPoints(posTri)
proj4string(posTri) = proj4string(FocalKM)
normal = over(DomPU, posTri, returnList=T)
normal = unlist(normal)
barrier.triangles = setdiff(1:tl, normal)
poly.barrier = inla.barrier.polygon(mesh, barrier.triangles)
Red areas are barriers.
plot(mesh, main="Mesh")
plot(poly.barrier, add=T, col='red')
plot(mesh, add=T)
#Node coordinates
dd = as.data.frame(cbind(mesh$loc[,1],
mesh$loc[,2]))
names(dd) = c("Long", "Lat") #name coordinates
dd$OBS = 0 #no hare at these locations
dd$Site2 = paste("N", 1:nrow(dd), sep = ".") #to match with observation data
dd$State = "All"
dd$Spp = "Mesh"
dd$Counts = 0
dd$Trials = 0
#Hare Obs
hare.set = Hare.pntP@data %>%
mutate(Long = Hare.pntP@coords[,1],
Lat = Hare.pntP@coords[,2],
Spp = "Hare")
#Grid
grid.set = Grd.pntP@data %>%
mutate(Long = Grd.pntP@coords[,1],
Lat = Grd.pntP@coords[,2],
Spp = "Grid",
OBS = 0,
State = "All",
Counts = 0,
Trials = 0,
Site2 = paste("G", 1:nrow(Grd.pntP@data), sep = "."))
All.pnts = rbind(hare.set, dd, grid.set)
All.pnts = SpatialPointsDataFrame(All.pnts[, c("Long","Lat")], All.pnts)
proj4string(All.pnts) = nProj
Forest1km = raster("C:/Users/humph173/Documents/Michigan_State/Sean/Loop_020819/Forest1km.grd")
mSnow5Yr = raster("./Hare1/Mean5yrSnow.tif")
mxTemp = raster("./Hare1/meanTMAX.tif")
All.pnts$mSnow5yrE = extract(mSnow5Yr,
spTransform(All.pnts,
CRS(proj4string(mSnow5Yr))),
method="simple")
All.pnts$mSnow5yrE[is.na(All.pnts$mSnow5yrE)] = mean(All.pnts$mSnow5yrE, na.rm=T)
All.pnts$mxTempE = extract(mxTemp,
spTransform(All.pnts,
CRS(proj4string(mxTemp))),
method="simple")
All.pnts$mxTempE[is.na(All.pnts$mxTempE)] = mean(All.pnts$mxTempE, na.rm=T)
All.pnts$Forest1kmE = extract(Forest1km,
spTransform(All.pnts,
CRS(proj4string(Forest1km))),
method="simple")
All.pnts$Forest1kmE[is.na(All.pnts$Forest1kmE)] = mean(All.pnts$Forest1kmE, na.rm=T)
All.pnts$Forest1kmE = round(All.pnts$Forest1kmE/100, 1)
Identify locations from the U.P. based on a well-defined county boundaries
UP = readOGR(dsn = "C:/Users/humph173/Documents/Michigan_State/SLP_Beam_Diam/Counties_v17a",
layer = "MI_UP",
stringsAsFactors = FALSE)
## OGR data source with driver: ESRI Shapefile
## Source: "C:\Users\humph173\Documents\Michigan_State\SLP_Beam_Diam\Counties_v17a", layer: "MI_UP"
## with 15 features
## It has 15 fields
## Integer64 fields read as strings: OBJECTID FIPSNUM
UPp = gUnaryUnion(spTransform(UP, proj4string(All.pnts)))
All.pnts$UP = is.na(over(All.pnts, UPp))
Cleaning up labels
All.pnts$StateUP = ifelse(All.pnts$UP == FALSE, "Mich.UP", All.pnts$State)
All.pnts$StateUPW = ifelse(All.pnts$StateUP == "Mich.UP", "Wisconsin", All.pnts$StateUP)
All.pnts$Domain = over(All.pnts, DomPU)
levels(factor(All.pnts$StateUP))
## [1] "All" "Mich.UP" "Michigan" "Wisconsin"
levels(factor(All.pnts$StateUPW))
## [1] "All" "Michigan" "Wisconsin"
Hare.mod = subset(All.pnts, Spp == "Hare") #Observations only
Mesh.mod = subset(All.pnts, Spp == "Mesh" & is.na(Domain) == FALSE) #Mesh locations excluding buffer extension
HareMesh.mod = subset(All.pnts, Spp != "Grid") #Observations excluding Grid points for prediction/plotting
HareMesh.mod$ID = 1:nrow(HareMesh.mod@data)
Grd.pnts = subset(All.pnts, Spp == "Grid") #Grid loactions for prediction/plotting
Index value needs to be below 30. This suggest colineartity will not be an issue.
library(perturb)
##
## Attaching package: 'perturb'
## The following object is masked from 'package:raster':
##
## reclassify
Colin.df = HareMesh.mod@data %>% #select covariates
select(mSnow5yrE, mxTempE, Forest1kmE)
CorCov = cor(Colin.df) #calculate correlation
corrplot(CorCov) #view correlation table
CI = colldiag(CorCov) #Apply metric
CI
## Condition
## Index Variance Decomposition Proportions
## intercept mSnow5yrE mxTempE Forest1kmE
## 1 1.000 0.028 0.014 0.180 0.025
## 2 1.711 0.661 0.001 0.540 0.001
## 3 6.042 0.311 0.985 0.280 0.974
Converting each region to an integer value to be used to internally “replicate” estimates by region.
HR.df = HareMesh.mod@data
levels(factor(HR.df$StateUP)) #Level names
## [1] "All" "Mich.UP" "Michigan" "Wisconsin"
HR.df$StateUPWI = as.integer(as.factor(HR.df$StateUP)) #convert to integer
levels(factor(HR.df$StateUPWI)) #levels as integer
## [1] "1" "2" "3" "4"
#Keep U.P. Hare observations as "1", set other regions to "0"
MupSet = HR.df
MupSet$OBS2 = ifelse(MupSet$StateUPWI == "2", MupSet$OBS, 0)
#Keep Lower MI Hare observations as "1", set other regions to "0"
MSet = HR.df
MSet$OBS2 = ifelse(MSet$StateUPWI == "3", MSet$OBS, 0)
#Keep Wisconsin Hare observations as "1", set other regions to "0"
WSet = HR.df
WSet$OBS2 = ifelse(WSet$StateUPWI == "4", WSet$OBS, 0)
MupSet$Rep = 1 #Renumbering from 1-3 instead of 2-4
MSet$Rep = 2
WSet$Rep = 3
HR.df = rbind(MupSet, MSet, WSet) #Join data
HR.df %>% #Count of hare observations by region
group_by(Rep) %>%
summarise(Cnt = sum(OBS2))
## # A tibble: 3 x 2
## Rep Cnt
## <dbl> <dbl>
## 1 1 38
## 2 2 38
## 3 3 53
Relating observations to mesh locations as a matrix and defining flat spatial priors.
#Relate mesh for detection level
locs = cbind(Hare.mod@coords[,1], Hare.mod@coords[,2]) #point locations
A.det = inla.spde.make.A(mesh, #the mesh
alpha = 2, #default setting
loc=locs) #our locations
#Relate mesh for covariate level
locs = cbind(HR.df[,"Long"], HR.df[,"Lat"])
A.env = inla.spde.make.A(mesh,
alpha = 2,
loc=locs)
#Prior for barrier model
barrier.model = inla.barrier.pcmatern(mesh, #mesh
barrier.triangles = barrier.triangles, #Lake boundaries
prior.range = c(1000, 0.5), #0.5 probabilty of effect within 1000 km
prior.sigma = c(1, 0.01))
#Same as above, but without barriers
spde = inla.spde2.pcmatern(mesh,
prior.range = c(1000, 0.5),
prior.sigma = c(1, 0.01))
#Create index to track locations of mesh nodes
field.det = inla.spde.make.index("field.det", spde$n.spde) #index for detection level
field.det.c = inla.spde.make.index("field.det.c", spde$n.spde) #copy of above to pass to covariate level
field.env = inla.spde.make.index("field.env", spde$n.spde) #index for covariate level
locs = cbind(HareMesh.mod@coords[,1], HareMesh.mod@coords[,2])
A.base = inla.spde.make.A(mesh,
alpha = 2,
loc=locs)
field.base = inla.spde.make.index("field.base", spde$n.spde)
HR.df2 = HareMesh.mod@data
base.lst = list(c(field.base,
list(intercept3 = 1)),
list(XX = HR.df2[,"Long"])) #Placeholder only
base.stk = inla.stack(data = list(Y = HR.df2$OBS), #Standard model for comparison
A = list(A.base, 1),
effects = base.lst,
tag = "base.0")
Need to use list objects rather than data frames.
#Detection level
DT.df = Hare.mod@data
DT.lst = list(c(field.det, #Spatial index
list(intercept1 = 1)), #Intercept
list(XX = DT.df[,"Lat"], #List of variables/covariates (placeholder for detection)
Site = DT.df[,"Site2"])) #Site identifier (to allow sites to idependently vary)
detect.stk = inla.stack(data = list(Y = DT.df$Counts, #Number of successes
Field.trials = DT.df$Trials), #trials
A = list(A.det, 1), #Projection matrix
effects = DT.lst, #Spatial index and covariates
tag = "det.0") #just a name/tag
jdetect.stk = inla.stack(data = list(Y = cbind(DT.df$Counts, NA), #"NA" = space for next model level
Field.trials = DT.df$Trials), #as above
A = list(A.det, 1),
effects = DT.lst,
tag = "jdet.0")
###Environment/covariate level
HR.lst = list(c(field.env, #index for covariate level
field.det.c, #copy of field from detection level
list(intercept2 = 1)), #intercept
list(mSnw5yr = round(HR.df[,"mSnow5yrE"], 3), #Snow weeks
mMxTemp = round(HR.df[,"mxTempE"], 3), #Temperature
Forest = HR.df[,"Forest1kmE"], #Forest
Region = HR.df[,"Rep"])) #Region identifier
env.stk = inla.stack(data = list(Y = HR.df$OBS, #Standard model for comparison
Field.trials = rep(1, dim(HR.df)[1])), #1 trial
A = list(A.env, 1),
effects = HR.lst,
tag = "env.0")
jenv.stk = inla.stack(data = list(Y = cbind(NA, HR.df$OBS2), #NA = space for detection level
Field.trials = rep(1, dim(HR.df)[1])),
A = list(A.env, 1),
effects = HR.lst,
tag = "jenv.0")
#Combine detection and covariate levels
Joint.stk = inla.stack(jdetect.stk, jenv.stk)
#Save data to run in HPCC
#save(list=c("Joint.stk", "barrier.model", "spde"), file="./HPC/Feb10/Comb_0210.RData") #File for HPCC
The joint models are computationaly expensive, so there were ran on the HPCC.
Site.prior = list(theta=list(prior = "normal", param=c(0, 3))) #Prior for site effect
Reg.prior = list(theta=list(prior = "normal", param=c(0, 3))) #prior for region
JFrm0 = Y ~ -1 + intercept1 + #intercept (detection level)
intercept2 + #Intercept (covariate level)
f(field.det, #spatial index (detection)
model=barrier.model) + #change "barrier.model" to "spde" for no-barrier version.
f(field.det.c, #Shared spatial field to account for correlation between model levels
copy = "field.det", #copied from detection level of model
fixed = FALSE) +
f(field.env, #spatial index for covariate level
model=barrier.model) +
f(Site, #Site identifier
model="iid",
hyper=Site.prior) + #site prior
f(mMxTemp, #temperature
model="rw1", #random walk of order 1
replicate = Region, #replicate for each region
hyper = Reg.prior) + #prior
f(mSnw5yr, #weekly snowfall
model="rw1",
replicate = Region,
hyper = Reg.prior) +
f(Forest, #Forest
model="iid",
replicate = Region,
hyper = Reg.prior)
#thetaJ = JModel.full$internal.summary.hyperpar$mean #from initial run (to speed up model)
thetaJ = c(1.1935975, 3.7979780, -2.1432853, 6.6863289, -0.6710575, -0.1090578, -0.9891725, 0.6587151, 1)
JModel.full = inla(JFrm0, #formula
data = inla.stack.data(Joint.stk), #data list object
family = c("binomial","binomial"), #families for detection and covariate levels
verbose = FALSE, #Show running process
Ntrials = inla.stack.data(Joint.stk)$Field.trials, #number trials (varies for detection level)
control.fixed = list(prec = 0.001, #priors for intercept
prec.intercept = 0.0001),
control.predictor = list(
A = inla.stack.A(Joint.stk), #data again
compute = TRUE, #estimate fitted values
link = 1), #transform fitted values from logit
control.mode = list(restart = TRUE, theta = thetaJ), #to speed up
control.inla = list(strategy="gaussian", #to speed up
int.strategy = "eb"),
control.results = list(return.marginals.random = TRUE, #results to report
return.marginals.predictor = TRUE),
control.compute=list(dic = TRUE, cpo = TRUE, waic = TRUE)) #calculate indicies for comparison
load("~/Michigan_State/Sean/HPC/Feb10/Full_0210_RES.RData")
summary(JModel.full)
##
## Call:
## c("inla(formula = JFrm0, family = c(\"binomial\", \"binomial\"), data = inla.stack.data(Joint.stk), ", " Ntrials = inla.stack.data(Joint.stk)$Field.trials, verbose = TRUE, ", " control.compute = list(dic = TRUE, cpo = TRUE, waic = TRUE), ", " control.predictor = list(A = inla.stack.A(Joint.stk), compute = TRUE, ", " link = 1), control.inla = list(strategy = \"gaussian\", ", " int.strategy = \"eb\"), control.results = list(return.marginals.random = TRUE, ", " return.marginals.predictor = TRUE), control.fixed = list(prec = 0.001, ", " prec.intercept = 1e-04), control.mode = list(restart = TRUE, ", " theta = thetaJ), num.threads = 8)")
##
## Time used:
## Pre-processing Running inla Post-processing Total
## 4.4073 16567.9072 6.2731 16578.5876
##
## Fixed effects:
## mean sd 0.025quant 0.5quant 0.975quant mode kld
## intercept1 -4.2962 0.5153 -5.3080 -4.2963 -3.2854 -4.2962 0
## intercept2 -7.8112 0.5426 -8.8766 -7.8112 -6.7467 -7.8112 0
##
## Random effects:
## Name Model
## field.det RGeneric2
## field.env RGeneric2
## Site IID model
## mMxTemp RW1 model
## mSnw5yr RW1 model
## Forest RW1 model
## field.det.c Copy
##
## Model hyperparameters:
## mean sd 0.025quant 0.5quant 0.975quant
## Theta1 for field.det 1.1318 0.1286 0.8887 1.1277 1.3942
## Theta2 for field.det 3.9663 0.2198 3.5218 3.9713 4.3876
## Theta1 for field.env -1.9256 0.9071 -4.0266 -1.7800 -0.5826
## Theta2 for field.env 6.4645 0.6470 5.3985 6.3888 7.9019
## Precision for Site 0.4169 0.1159 0.2327 0.4027 0.6848
## Precision for mMxTemp 0.6397 0.2478 0.2805 0.5985 1.2386
## Precision for mSnw5yr 1.0801 0.4197 0.4977 1.0004 2.1206
## Precision for Forest 1.7988 0.7076 0.7745 1.6816 3.5102
## Beta for field.det.c 0.4968 0.0692 0.3626 0.4961 0.6342
## mode
## Theta1 for field.det 1.1128
## Theta2 for field.det 3.9890
## Theta1 for field.env -1.1864
## Theta2 for field.env 6.1023
## Precision for Site 0.3757
## Precision for mMxTemp 0.5223
## Precision for mSnw5yr 0.8630
## Precision for Forest 1.4636
## Beta for field.det.c 0.4934
##
## Expected number of effective parameters(std dev): 317.82(0.00)
## Number of equivalent replicates : 56.42
##
## Deviance Information Criterion (DIC) ...............: 2049.43
## Deviance Information Criterion (DIC, saturated) ....: NULL
## Effective number of parameters .....................: 459.23
##
## Watanabe-Akaike information criterion (WAIC) ...: 2285.58
## Effective number of parameters .................: 454.01
##
## Marginal log-Likelihood: -35119.18
## CPO and PIT are computed
##
## Posterior marginals for linear predictor and fitted values computed
Also ran covariate model version without replications by region. Loading results:
load("~/Michigan_State/Sean/HPC/Feb10/Combined_02102018.RData")
For Comparison.
JFrmB = Y ~ -1 + intercept3 + #Intercept (covariate level)
f(field.base, #spatial index for covariate level
model=barrier.model)
#thetaJ = JModel.base$internal.summary.hyperpar$mean #from initial run (to speed up model)
thetaJ = c(1.444903, 4.073292)
JModel.base = inla(JFrmB, #formula
data = inla.stack.data(base.stk), #data list object
family = "binomial",#family
verbose = FALSE, #Show running process
#Ntrials = inla.stack.data(Joint.stk)$Field.trials, #default is 1
control.fixed = list(prec = 0.001, #priors for intercept
prec.intercept = 0.0001),
control.predictor = list(
A = inla.stack.A(base.stk), #data again
compute = TRUE, #estimate fitted values
link = 1), #transform fitted values from logit
control.mode = list(restart = TRUE, theta = thetaJ), #to speed up
control.inla = list(strategy="gaussian", #to speed up
int.strategy = "eb"),
control.results = list(return.marginals.random = TRUE, #results to report
return.marginals.predictor = TRUE),
control.compute=list(dic = TRUE, cpo = TRUE, waic = TRUE)) #calculate indicies for comparison
Comb.plt.df = as.data.frame(JModel.full$summary.random$mMxTemp)[,1:6] #Get effect estimates (Full model)
names(Comb.plt.df) = c("ID", "Mean", "sd", "Q025", "Q50", "Q975") #Clean labels
Comb.plt.df$Region = rep(c("Upper", "Lower", "Wisconsin"), each = 3501) #Add Region ID
Comb.plt.df2 = as.data.frame(JModel.comb$summary.random$mMxTemp)[,1:6] #Get effect estimates (No replicates model)
names(Comb.plt.df2) = c("ID", "Mean", "sd", "Q025", "Q50", "Q975")
Comb.plt.df2$Region = "Combined" #ID
Comb.plt.df = rbind(Comb.plt.df, Comb.plt.df2) #Combine for plotting
Plt.df = Comb.plt.df
Plt.df$Region = as.factor(Plt.df$Region)
RAnge = range(Plt.df$ID)
Plt.all = ggplot(Plt.df, aes(ID, Mean, group = Region)) +
geom_smooth(aes(col = Region,
linetype= Region),
method = "loess",
span = 0.3,
se = FALSE,
lwd = 1) +
scale_linetype_manual(values=c("solid", "longdash", "dotted", "dashed")) +
scale_colour_manual(values=c("red", "brown", "blue", "black")) +
geom_hline(yintercept = 0,
linetype = "solid",
col = "lightgray",
size = 0.5) +
geom_vline(xintercept = 0,
linetype = "dotted",
col = "red",
size = 0.5) +
xlim(RAnge[1], RAnge[2]) +
xlab("Mean Maximum Temperature (°C)") +
ylab("Occurrence Probability (logit)") +
theme_classic() +
theme(axis.text=element_text(size=16),
legend.title = element_text(size=16, face="bold"),
legend.key = element_rect(fill = "gray80", linetype=0),
legend.background = element_rect(fill = "gray80", linetype=0),
strip.text = element_text(face="bold", size = 20),
axis.title.y = element_text(face="bold", size = 20),
axis.title.x = element_text(face="bold", size = 20, vjust=-2))
Plt.all
## Warning: Removed 1 rows containing missing values (geom_vline).
Comb.plt.df = as.data.frame(JModel.full$summary.random$mSnw5yr)[,1:6]
names(Comb.plt.df) = c("ID", "Mean", "sd", "Q025", "Q50", "Q975")
Comb.plt.df$Region = rep(c("Upper", "Lower", "Wisconsin"), each = 90)
Comb.plt.df2 = as.data.frame(JModel.comb$summary.random$mSnw5yr)[,1:6]
names(Comb.plt.df2) = c("ID", "Mean", "sd", "Q025", "Q50", "Q975")
Comb.plt.df2$Region = "Combined"
Comb.plt.df = rbind(Comb.plt.df, Comb.plt.df2)
Plt.df = Comb.plt.df
Plt.df$Region = as.factor(Plt.df$Region)
RAnge = range(Plt.df$ID)
Plt.all = ggplot(Plt.df, aes(ID, Mean, group = Region)) +
geom_smooth(aes(col = Region,
linetype= Region),
method = "loess",
span = 0.3,
se = FALSE,
lwd = 1) +
scale_linetype_manual(values=c("solid", "longdash", "dotted", "dashed")) +
scale_colour_manual(values=c("red", "brown", "blue", "black")) +
geom_hline(yintercept = 0,
linetype = "solid",
col = "lightgray",
size = 0.5) +
geom_vline(xintercept = 0,
linetype = "dotted",
col = "red",
size = 0.5) +
xlim(RAnge[1], RAnge[2]) +
xlab("Snow Weeks") +
ylab("Occurrence Probability (logit)") +
theme_classic() +
theme(axis.text=element_text(size=16),
legend.title = element_text(size=16, face="bold"),
legend.key = element_rect(fill = "gray80", linetype=0),
legend.background = element_rect(fill = "gray80", linetype=0),
strip.text = element_text(face="bold", size = 20),
axis.title.y = element_text(face="bold", size = 20),
axis.title.x = element_text(face="bold", size = 20, vjust=-2))
Plt.all
Comb.plt.df = as.data.frame(JModel.full$summary.random$Forest)[,1:6]
names(Comb.plt.df) = c("ID", "Mean", "sd", "Q025", "Q50", "Q975")
Comb.plt.df$Region = rep(c("Upper", "Lower", "Wisconsin"), each = 110)
Comb.plt.df2 = as.data.frame(JModel.comb$summary.random$Forest)[,1:6]
names(Comb.plt.df2) = c("ID", "Mean", "sd", "Q025", "Q50", "Q975")
Comb.plt.df2$Region = "Combined"
Plt.df = Comb.plt.df
Plt.df$Region = as.factor(Plt.df$Region)
RAnge = range(Plt.df$ID)
Plt.all = ggplot(Plt.df, aes(ID, Mean, group = Region)) +
geom_smooth(aes(col = Region,
linetype= Region),
method = "loess",
span = 0.3,
se = FALSE,
lwd = 1) +
geom_smooth(data=Comb.plt.df2,
aes(ID, Mean, col = Region,
linetype= Region),
method = "loess",
span = 0.6,
se = FALSE,
lwd = 1) +
scale_linetype_manual(values=c("solid", "longdash", "dotted", "dashed")) +
scale_colour_manual(values=c("red", "brown", "blue", "black")) +
geom_hline(yintercept = 0,
linetype = "solid",
col = "lightgray",
size = 0.5) +
geom_vline(xintercept = 0,
linetype = "dotted",
col = "red",
size = 0.5) +
xlim(RAnge[1], RAnge[2]) +
xlab("Forest (1km Grid)") +
ylab("Occurrence Probability (logit)") +
theme_classic() +
theme(axis.text=element_text(size=16),
legend.title = element_text(size=16, face="bold"),
legend.key = element_rect(fill = "gray80", linetype=0),
legend.background = element_rect(fill = "gray80", linetype=0),
strip.text = element_text(face="bold", size = 20),
axis.title.y = element_text(face="bold", size = 20),
axis.title.x = element_text(face="bold", size = 20, vjust=-2))
Plt.all
PhySig.df2 = as.data.frame(JModel.full$summary.random$Site)
names(PhySig.df2) = c("ID", "Mean", "sd", "Q025", "Q50", "Q975", "mode", "kld")
PhySig.df2$PSigL = ifelse(PhySig.df2$Q025>0 & PhySig.df2$Q975>0, 1, 0)
PhySig.df2$PSigH = ifelse(PhySig.df2$Q025<0 & PhySig.df2$Q975<0, 1, 0)
PhySig.df3 = PhySig.df2 %>%
filter(PSigL == 1 | PSigH == 1)
RM.m2 = ggplot(PhySig.df2, aes(x=ID, y=Mean)) +
geom_point(size=2, pch=1, col = "gray75") +
geom_linerange(aes(ymin=Q025, ymax=Q975), colour="gray75") +
geom_point(data=PhySig.df3, aes(x=ID, y=Mean),
size=2, pch=19, col = "red") +
geom_linerange(data=PhySig.df3, aes(ymin=Q025, ymax=Q975), colour="black") +
geom_hline(yintercept = 0,
linetype = "dotted",
colour = "red",
size = 0.75) +
theme_classic() +
xlab("Site Location") +
ylab("Detection Probabilty (logit)") +
theme(axis.title.y = element_text(face="bold", size=14),
axis.title.x = element_text(face="bold", size=14),
axis.text.y = element_text(face="bold", size=12),
axis.ticks.x=element_blank(),
axis.text.x = element_blank())
RM.m2
Pred.pnts = Grd.pnts #Dense grid created during pre-processing
ModResult = JModel.full ##Full Model
ModResult2 = JModel.comb ##Combined Model
ModResult3 = JModel.base
pLoc = cbind(Pred.pnts@coords[,1], Pred.pnts@coords[,2]) #coords
Ap = inla.spde.make.A(mesh, loc=pLoc) #Relate to mesh
Pred.pnts$Full = drop(Ap %*% ModResult$summary.random$field.env$mean)
Pred.pnts$Comb = drop(Ap %*% ModResult2$summary.random$field.env$mean)
Pred.pnts$BaseEnv = drop(Ap %*% ModResult3$summary.random$field.base$mean) #Get random field by location
#Create rasters
Full.rf.r = rasterize(spTransform(
Pred.pnts,
CRS(proj4string(Domain.r))),
Domain.r,
"Full",
background = NA)
Comb.rf.r = rasterize(spTransform(
Pred.pnts,
CRS(proj4string(Domain.r))),
Domain.r,
"Comb",
background = NA)
Base.rf.r = rasterize(spTransform(
Pred.pnts,
CRS(proj4string(Domain.r))),
Domain.r,
"BaseEnv",
background = NA)
RF.stk = stack(Base.rf.r, Comb.rf.r, Full.rf.r)
names(RF.stk) = c("Base", "Combined", "Full")
rng = seq(-1.4, 5.7, 0.1)
mCols = brewer.pal(11, "RdYlGn")
cr = rev(colorRampPalette(mCols)(n = 500))
cr = colorRampPalette(cr,
bias = 2.4, space = "rgb")
levelplot(RF.stk,
layout = c(3,1),
margin = FALSE,
xlab = NULL,
ylab = NULL,
names.attr = c("Base", "Combined", "Full"),
maxpixels = 1e5,
col.regions = cr, at = rng,
colorkey = list(labels=list(cex=1.5),
space = "bottom"),
par.strip.text = list(fontface='bold', cex=1.5),
par.settings = list(axis.line = list(col = "black"),
strip.background = list(col = 'transparent'),
strip.border = list(col = 'transparent')),
scales = list(cex = 1.25)) +
latticeExtra::layer(sp.polygons(Domain, col = "black", lwd = 0.5)) +
#latticeExtra::layer(sp.polygons(Hare.pnt , col = "black", pch=2, cex = 0.25)) +
#latticeExtra::layer(sp.text(MyMatrix, txt = Domain$Name,
# pos =c(1,3,3,2,2,1,1),
# col="black",font=list(face="bold"), cex=1)) +
latticeExtra::layer({SpatialPolygonsRescale(layout.north.arrow(),
offset = c(-83, 45.5),
scale = 2)})
Based on covariates only.
ModResult = JModel.full
#Update Region ID for prediction locations (MI and WI only)
MI_WI_Domain = subset(Domain, Name == "Michigan" | Name == "Wisconsin")
Pred.pnts = Grd.pnts
MI_WI_DomainP = spTransform(MI_WI_Domain, proj4string(Pred.pnts))
Pred.pnts$nDom = over(Pred.pnts, MI_WI_DomainP)[,1]
Pred.pntsN = subset(Pred.pnts, is.na(nDom) == FALSE)
Pred.pntsN$Region = ifelse(Pred.pntsN@data$nDom == 21 & Pred.pntsN@data$UP == "FALSE", "Upper", #FALSE indicates UP
ifelse(Pred.pntsN@data$nDom == 21 & Pred.pntsN@data$UP == "TRUE", "Lower",
ifelse(Pred.pntsN@data$nDom == 48, "Wisconsin", NA)))
#Get RF
pLoc = cbind(Pred.pntsN@coords[,1], Pred.pntsN@coords[,2])
Ap = inla.spde.make.A(mesh, loc=pLoc)
Pred.pntsN$Full.rf = drop(Ap %*% ModResult$summary.random$field.env$mean)
#Get Temperature
Comb.plt.df = as.data.frame(JModel.full$summary.random$mMxTemp)[,1:6] #Get effect estimates (Full model)
names(Comb.plt.df) = c("ID", "Mean", "sd", "Q025", "Q50", "Q975") #Clean labels
Comb.plt.df$Region = rep(c("Upper", "Lower", "Wisconsin"), each = 3501)
#Region-sepcific estimates
UP.lu = Comb.plt.df %>% filter(Region == "Upper")
LW.lu = Comb.plt.df %>% filter(Region == "Lower")
WI.lu = Comb.plt.df %>% filter(Region == "Wisconsin")
UP.lu$UP.POS = 1:dim(UP.lu)[1]
LW.lu$LW.POS = 1:dim(LW.lu)[1]
WI.lu$WI.POS = 1:dim(WI.lu)[1]
#Look up UP Temp Estimates
Pred.pntsN$UP.temp = sapply(Pred.pntsN$mxTempE, function(x)which.min(abs(x - UP.lu$ID)))
Pred.pntsN$UP.TmpEst = as.numeric(with(UP.lu,
Mean[match(Pred.pntsN$UP.temp,
UP.POS)]))
#Look up Lower Temp Estimates
Pred.pntsN$LW.temp = sapply(Pred.pntsN$mxTempE, function(x)which.min(abs(x - LW.lu$ID)))
Pred.pntsN$LW.TmpEst = as.numeric(with(LW.lu,
Mean[match(Pred.pntsN$LW.temp,
LW.POS)]))
#Look up WI Temp Estimates
Pred.pntsN$WI.temp = sapply(Pred.pntsN$mxTempE, function(x)which.min(abs(x - WI.lu$ID)))
Pred.pntsN$WI.TmpEst = as.numeric(with(WI.lu,
Mean[match(Pred.pntsN$WI.temp,
WI.POS)]))
#Match to region
Pred.pntsN$Temp.Full = ifelse(Pred.pntsN$Region == "Upper", Pred.pntsN$UP.TmpEst,
ifelse(Pred.pntsN$Region == "Lower", Pred.pntsN$LW.TmpEst,
ifelse(Pred.pntsN$Region == "Wisconsin", Pred.pntsN$WI.TmpEst, NA)))
#Get Snow Week (same process as above, overwriting a few lables)
Comb.plt.df = as.data.frame(JModel.full$summary.random$mSnw5yr)[,1:6]
names(Comb.plt.df) = c("ID", "Mean", "sd", "Q025", "Q50", "Q975")
Comb.plt.df$Region = rep(c("Upper", "Lower", "Wisconsin"), each = 90)
UP.lu = Comb.plt.df %>% filter(Region == "Upper")
LW.lu = Comb.plt.df %>% filter(Region == "Lower")
WI.lu = Comb.plt.df %>% filter(Region == "Wisconsin")
UP.lu$UP.POS = 1:dim(UP.lu)[1]
LW.lu$LW.POS = 1:dim(LW.lu)[1]
WI.lu$WI.POS = 1:dim(WI.lu)[1]
Pred.pntsN$UP.temp = sapply(Pred.pntsN$mSnow5yrE, function(x)which.min(abs(x - UP.lu$ID)))
Pred.pntsN$UP.TmpEst = as.numeric(with(UP.lu,
Mean[match(Pred.pntsN$UP.temp,
UP.POS)]))
Pred.pntsN$LW.temp = sapply(Pred.pntsN$mSnow5yrE, function(x)which.min(abs(x - LW.lu$ID)))
Pred.pntsN$LW.TmpEst = as.numeric(with(LW.lu,
Mean[match(Pred.pntsN$LW.temp,
LW.POS)]))
Pred.pntsN$WI.temp = sapply(Pred.pntsN$mSnow5yrE, function(x)which.min(abs(x - WI.lu$ID)))
Pred.pntsN$WI.TmpEst = as.numeric(with(WI.lu,
Mean[match(Pred.pntsN$WI.temp,
WI.POS)]))
#Match to region
Pred.pntsN$Snow.Full = ifelse(Pred.pntsN$Region == "Upper", Pred.pntsN$UP.TmpEst,
ifelse(Pred.pntsN$Region == "Lower", Pred.pntsN$LW.TmpEst,
ifelse(Pred.pntsN$Region == "Wisconsin", Pred.pntsN$WI.TmpEst, NA)))
#Get Forest (same process as above, overwriting a few lables)
Comb.plt.df = as.data.frame(JModel.full$summary.random$Forest)[,1:6]
names(Comb.plt.df) = c("ID", "Mean", "sd", "Q025", "Q50", "Q975")
Comb.plt.df$Region = rep(c("Upper", "Lower", "Wisconsin"), each = 110)
UP.lu = Comb.plt.df %>% filter(Region == "Upper")
LW.lu = Comb.plt.df %>% filter(Region == "Lower")
WI.lu = Comb.plt.df %>% filter(Region == "Wisconsin")
UP.lu$UP.POS = 1:dim(UP.lu)[1]
LW.lu$LW.POS = 1:dim(LW.lu)[1]
WI.lu$WI.POS = 1:dim(WI.lu)[1]
Pred.pntsN$UP.temp = sapply(Pred.pntsN$Forest1kmE, function(x)which.min(abs(x - UP.lu$ID)))
Pred.pntsN$UP.TmpEst = as.numeric(with(UP.lu,
Mean[match(Pred.pntsN$UP.temp,
UP.POS)]))
Pred.pntsN$LW.temp = sapply(Pred.pntsN$Forest1kmE, function(x)which.min(abs(x - LW.lu$ID)))
Pred.pntsN$LW.TmpEst = as.numeric(with(LW.lu,
Mean[match(Pred.pntsN$LW.temp,
LW.POS)]))
Pred.pntsN$WI.temp = sapply(Pred.pntsN$Forest1kmE, function(x)which.min(abs(x - WI.lu$ID)))
Pred.pntsN$WI.TmpEst = as.numeric(with(WI.lu,
Mean[match(Pred.pntsN$WI.temp,
WI.POS)]))
#Match to region
Pred.pntsN$Forest.Full = ifelse(Pred.pntsN$Region == "Upper", Pred.pntsN$UP.TmpEst,
ifelse(Pred.pntsN$Region == "Lower", Pred.pntsN$LW.TmpEst,
ifelse(Pred.pntsN$Region == "Wisconsin", Pred.pntsN$WI.TmpEst, NA)))
Pred.pntsN@data = Pred.pntsN@data %>%
mutate(Pred.Full = plogis(Temp.Full + Snow.Full + Forest.Full))
Full.pred.r = rasterize(spTransform(
Pred.pntsN,
CRS(proj4string(Domain.r))),
Domain.r,
"Pred.Full",
background = NA)
ModResult = JModel.comb
Pred.pnts = Pred.pntsN
#Get RF
pLoc = cbind(Pred.pntsN@coords[,1], Pred.pntsN@coords[,2])
Ap = inla.spde.make.A(mesh, loc=pLoc)
Pred.pntsN$Comb.rf = drop(Ap %*% ModResult$summary.random$field.env$mean)
#Get Temperature
Comb.plt.df = as.data.frame(JModel.comb$summary.random$mMxTemp)[,1:6] #Get effect estimates (Comb model)
names(Comb.plt.df) = c("ID", "Mean", "sd", "Q025", "Q50", "Q975")
#Look up UP Temp Estimates
Comb.plt.df$Comb.POS = 1:dim(Comb.plt.df)[1]
Pred.pntsN$UP.temp = sapply(Pred.pntsN$mxTempE, function(x)which.min(abs(x - Comb.plt.df$ID)))
Pred.pntsN$cmb.TmpEst = as.numeric(with(Comb.plt.df,
Mean[match(Pred.pntsN$UP.temp,
Comb.POS)]))
#Get Snow
Comb.plt.df = as.data.frame(JModel.comb$summary.random$mSnw5yr)[,1:6] #Get effect estimates (Comb model)
names(Comb.plt.df) = c("ID", "Mean", "sd", "Q025", "Q50", "Q975")
#Look up UP Temp Estimates
Comb.plt.df$Comb.POS = 1:dim(Comb.plt.df)[1]
Pred.pntsN$UP.temp = sapply(Pred.pntsN$mSnow5yrE, function(x)which.min(abs(x - Comb.plt.df$ID)))
Pred.pntsN$Cmb.SnwEst = as.numeric(with(Comb.plt.df,
Mean[match(Pred.pntsN$UP.temp,
Comb.POS)]))
#Get Forest
Comb.plt.df = as.data.frame(JModel.comb$summary.random$Forest)[,1:6] #Get effect estimates (Comb model)
names(Comb.plt.df) = c("ID", "Mean", "sd", "Q025", "Q50", "Q975")
#Look up UP Temp Estimates
Comb.plt.df$Comb.POS = 1:dim(Comb.plt.df)[1]
Pred.pntsN$UP.temp = sapply(Pred.pntsN$Forest1kmE, function(x)which.min(abs(x - Comb.plt.df$ID)))
Pred.pntsN$Cmb.ForEst = as.numeric(with(Comb.plt.df,
Mean[match(Pred.pntsN$UP.temp,
Comb.POS)]))
Pred.pntsN@data = Pred.pntsN@data %>%
mutate(Pred.Comb = plogis(cmb.TmpEst + Cmb.SnwEst + Cmb.ForEst))
Comb.pred.r = rasterize(spTransform(
Pred.pntsN,
CRS(proj4string(Domain.r))),
Domain.r,
"Pred.Comb",
background = NA)
Pred.stk = stack(Comb.pred.r, Full.pred.r)
names(Pred.stk) = c("Combined", "Full")
rng = seq(0, 1, 0.01)
mCols = brewer.pal(9, "YlOrBr")
cr = colorRampPalette(mCols)(n = 500)
cr = colorRampPalette(cr,
bias = 1, space = "rgb")
levelplot(Pred.stk, #Trial.comp,
layout = c(2,1),
margin = FALSE,
xlab = NULL,
ylab = NULL,
#main = "Occurrence Probabilty",
maxpixels = 1e5,
col.regions = cr, at = rng,
colorkey = list(labels=list(cex=1.5),
space = "bottom"),
par.strip.text = list(fontface='bold', cex=1.5),
par.settings = list(axis.line = list(col = "black"),
strip.background = list(col = 'transparent'),
strip.border = list(col = 'transparent')),
scales = list(cex = 1.25)) +
latticeExtra::layer(sp.polygons(Domain, col = "black", lwd = 1)) +
#latticeExtra::layer(sp.polygons(Hare.pnt , col = "black", pch=2, cex = 0.25)) +
latticeExtra::layer({SpatialPolygonsRescale(layout.north.arrow(),
offset = c(-83, 45.5),
scale = 2)})
Obs.set = subset(HareMesh.mod, OBS == 1)
#Update Region ID for prediction locations (MI and WI only)
MI_WI_Domain = subset(Domain, Name == "Michigan" | Name == "Wisconsin")
Obs.set$nDom = over(Obs.set, MI_WI_DomainP)[,1]
Obs.set$Region = ifelse(Obs.set@data$nDom == 21 & Obs.set@data$UP == "FALSE", "Upper", #FALSE indicates UP
ifelse(Obs.set@data$nDom == 21 & Obs.set@data$UP == "TRUE", "Lower",
ifelse(Obs.set@data$nDom == 48, "Wisconsin", NA)))
Obs.set = Obs.set@data
dim(Obs.set)
## [1] 129 18
sum(Obs.set$OBS)
## [1] 129
Obs.set %>%
group_by(Region) %>%
summarise(Count = length(Region))
## # A tibble: 3 x 2
## Region Count
## <chr> <int>
## 1 Lower 38
## 2 Upper 38
## 3 Wisconsin 53
#Get Temperature
Comb.plt.df = as.data.frame(JModel.full$summary.random$mMxTemp)[,1:6] #Get effect estimates (Full model)
names(Comb.plt.df) = c("ID", "Mean", "sd", "Q025", "Q50", "Q975") #Clean labels
Comb.plt.df$Region = rep(c("Upper", "Lower", "Wisconsin"), each = 3501)
#Region-sepcific estimates
UP.lu = Comb.plt.df %>% filter(Region == "Upper")
LW.lu = Comb.plt.df %>% filter(Region == "Lower")
WI.lu = Comb.plt.df %>% filter(Region == "Wisconsin")
UP.lu$UP.POS = 1:dim(UP.lu)[1]
LW.lu$LW.POS = 1:dim(LW.lu)[1]
WI.lu$WI.POS = 1:dim(WI.lu)[1]
#Look up UP Temp Estimates
Obs.set$UP.temp = sapply(Obs.set$mxTempE, function(x)which.min(abs(x - UP.lu$ID)))
Obs.set$UP.TmpEst = as.numeric(with(UP.lu,
Mean[match(Obs.set$UP.temp,
UP.POS)]))
#Look up Lower Temp Estimates
Obs.set$LW.temp = sapply(Obs.set$mxTempE, function(x)which.min(abs(x - LW.lu$ID)))
Obs.set$LW.TmpEst = as.numeric(with(LW.lu,
Mean[match(Obs.set$LW.temp,
LW.POS)]))
#Look up WI Temp Estimates
Obs.set$WI.temp = sapply(Obs.set$mxTempE, function(x)which.min(abs(x - WI.lu$ID)))
Obs.set$WI.TmpEst = as.numeric(with(WI.lu,
Mean[match(Obs.set$WI.temp,
WI.POS)]))
#Match to region
Obs.set$Temp.Full = ifelse(Obs.set$Region == "Upper", Obs.set$UP.TmpEst,
ifelse(Obs.set$Region == "Lower", Obs.set$LW.TmpEst,
ifelse(Obs.set$Region == "Wisconsin", Obs.set$WI.TmpEst, NA)))
#Get Snow Week (same process as above, overwriting a few lables)
Comb.plt.df = as.data.frame(JModel.full$summary.random$mSnw5yr)[,1:6]
names(Comb.plt.df) = c("ID", "Mean", "sd", "Q025", "Q50", "Q975")
Comb.plt.df$Region = rep(c("Upper", "Lower", "Wisconsin"), each = 90)
UP.lu = Comb.plt.df %>% filter(Region == "Upper")
LW.lu = Comb.plt.df %>% filter(Region == "Lower")
WI.lu = Comb.plt.df %>% filter(Region == "Wisconsin")
UP.lu$UP.POS = 1:dim(UP.lu)[1]
LW.lu$LW.POS = 1:dim(LW.lu)[1]
WI.lu$WI.POS = 1:dim(WI.lu)[1]
Obs.set$UP.temp = sapply(Obs.set$mSnow5yrE, function(x)which.min(abs(x - UP.lu$ID)))
Obs.set$UP.TmpEst = as.numeric(with(UP.lu,
Mean[match(Obs.set$UP.temp,
UP.POS)]))
Obs.set$LW.temp = sapply(Obs.set$mSnow5yrE, function(x)which.min(abs(x - LW.lu$ID)))
Obs.set$LW.TmpEst = as.numeric(with(LW.lu,
Mean[match(Obs.set$LW.temp,
LW.POS)]))
Obs.set$WI.temp = sapply(Obs.set$mSnow5yrE, function(x)which.min(abs(x - WI.lu$ID)))
Obs.set$WI.TmpEst = as.numeric(with(WI.lu,
Mean[match(Obs.set$WI.temp,
WI.POS)]))
#Match to region
Obs.set$Snow.Full = ifelse(Obs.set$Region == "Upper", Obs.set$UP.TmpEst,
ifelse(Obs.set$Region == "Lower", Obs.set$LW.TmpEst,
ifelse(Obs.set$Region == "Wisconsin", Obs.set$WI.TmpEst, NA)))
#Get Forest (same process as above, overwriting a few lables)
Comb.plt.df = as.data.frame(JModel.full$summary.random$Forest)[,1:6]
names(Comb.plt.df) = c("ID", "Mean", "sd", "Q025", "Q50", "Q975")
Comb.plt.df$Region = rep(c("Upper", "Lower", "Wisconsin"), each = 110)
UP.lu = Comb.plt.df %>% filter(Region == "Upper")
LW.lu = Comb.plt.df %>% filter(Region == "Lower")
WI.lu = Comb.plt.df %>% filter(Region == "Wisconsin")
UP.lu$UP.POS = 1:dim(UP.lu)[1]
LW.lu$LW.POS = 1:dim(LW.lu)[1]
WI.lu$WI.POS = 1:dim(WI.lu)[1]
Obs.set$UP.temp = sapply(Obs.set$Forest1kmE, function(x)which.min(abs(x - UP.lu$ID)))
Obs.set$UP.TmpEst = as.numeric(with(UP.lu,
Mean[match(Obs.set$UP.temp,
UP.POS)]))
Obs.set$LW.temp = sapply(Obs.set$Forest1kmE, function(x)which.min(abs(x - LW.lu$ID)))
Obs.set$LW.TmpEst = as.numeric(with(LW.lu,
Mean[match(Obs.set$LW.temp,
LW.POS)]))
Obs.set$WI.temp = sapply(Obs.set$Forest1kmE, function(x)which.min(abs(x - WI.lu$ID)))
Obs.set$WI.TmpEst = as.numeric(with(WI.lu,
Mean[match(Obs.set$WI.temp,
WI.POS)]))
#Match to region
Obs.set$Forest.Full = ifelse(Obs.set$Region == "Upper", Obs.set$UP.TmpEst,
ifelse(Obs.set$Region == "Lower", Obs.set$LW.TmpEst,
ifelse(Obs.set$Region == "Wisconsin", Obs.set$WI.TmpEst, NA)))
Obs.set = Obs.set %>%
mutate(Pred.Full = plogis(Temp.Full + Snow.Full + Forest.Full))
Obs.set$Prop = Obs.set$Counts/Obs.set$Trials
Full.BS = mean((Obs.set$Pred.Full - Obs.set$Prop)^2)
Full.BS
## [1] 0.3470399
#Combined Model
#Get Temperature
Comb.plt.df = as.data.frame(JModel.comb$summary.random$mMxTemp)[,1:6] #Get effect estimates (Comb model)
names(Comb.plt.df) = c("ID", "Mean", "sd", "Q025", "Q50", "Q975")
#Look up UP Temp Estimates
Comb.plt.df$Comb.POS = 1:dim(Comb.plt.df)[1]
Obs.set$UP.temp = sapply(Obs.set$mxTempE, function(x)which.min(abs(x - Comb.plt.df$ID)))
Obs.set$cmb.TmpEst = as.numeric(with(Comb.plt.df,
Mean[match(Obs.set$UP.temp,
Comb.POS)]))
#Get Snow
Comb.plt.df = as.data.frame(JModel.comb$summary.random$mSnw5yr)[,1:6] #Get effect estimates (Comb model)
names(Comb.plt.df) = c("ID", "Mean", "sd", "Q025", "Q50", "Q975")
#Look up UP Temp Estimates
Comb.plt.df$Comb.POS = 1:dim(Comb.plt.df)[1]
Obs.set$UP.temp = sapply(Obs.set$mSnow5yrE, function(x)which.min(abs(x - Comb.plt.df$ID)))
Obs.set$Cmb.SnwEst = as.numeric(with(Comb.plt.df,
Mean[match(Obs.set$UP.temp,
Comb.POS)]))
#Get Forest
Comb.plt.df = as.data.frame(JModel.comb$summary.random$Forest)[,1:6] #Get effect estimates (Comb model)
names(Comb.plt.df) = c("ID", "Mean", "sd", "Q025", "Q50", "Q975")
#Look up UP Temp Estimates
Comb.plt.df$Comb.POS = 1:dim(Comb.plt.df)[1]
Obs.set$UP.temp = sapply(Obs.set$Forest1kmE, function(x)which.min(abs(x - Comb.plt.df$ID)))
Obs.set$Cmb.ForEst = as.numeric(with(Comb.plt.df,
Mean[match(Obs.set$UP.temp,
Comb.POS)]))
Obs.set = Obs.set %>%
mutate(Pred.Comb = plogis(cmb.TmpEst + Cmb.SnwEst + Cmb.ForEst))
Comb.BS = mean((Obs.set$Pred.Comb - Obs.set$Prop)^2)
Comb.BS
## [1] 0.3537512
#Environment Level
Compare.tab = as.data.frame(matrix(ncol = 4, nrow= 2))
names(Compare.tab) = c("Model", "DIC", "WAIC", "MSE")
Compare.tab[1, 1] = "Combined"
Compare.tab[1, 2] = round(GetMets(JModel.comb)[1,3],2)
Compare.tab[1, 3] = round(GetMets(JModel.comb)[2,3],2)
Compare.tab[1, 4] = round(Comb.BS, 3)
Compare.tab[2, 1] = "Full"
Compare.tab[2, 2] = round(GetMets(JModel.full)[1,3],2)
Compare.tab[2, 3] = round(GetMets(JModel.full)[2,3],2)
Compare.tab[2, 4] = round(Full.BS, 3)
#Deection Level
Compare.tab1 = as.data.frame(matrix(ncol = 3, nrow= 2))
names(Compare.tab1) = c("Model", "DIC", "WAIC")
Compare.tab1[1, 1] = "Combined"
Compare.tab1[1, 2] = round(GetMets(JModel.comb)[1,2],2)
Compare.tab1[1, 3] = round(GetMets(JModel.comb)[2,2],2)
Compare.tab1[2, 1] = "Full"
Compare.tab1[2, 2] = round(GetMets(JModel.full)[1,2],2)
Compare.tab1[2, 3] = round(GetMets(JModel.full)[2,2],2)
kable(Compare.tab, caption = "Environment Level") %>%
kable_styling("striped", full_width = F) %>%
row_spec(0, font_size = 20) %>%
column_spec(1, bold = T)
Model | DIC | WAIC | MSE |
---|---|---|---|
Combined | 3494.14 | 3735.14 | 0.354 |
Full | 1207.91 | 1094.29 | 0.347 |
kable(Compare.tab1, caption = "Detection Level") %>%
kable_styling("striped", full_width = F) %>%
row_spec(0, font_size = 20) %>%
column_spec(1, bold = T)
Model | DIC | WAIC |
---|---|---|
Combined | 859.43 | 1740.38 |
Full | 841.51 | 1191.30 |