claimants <- read.csv("E:\\DataScience Yogesh\\R _Codes\\Logistic Regression\\claimants.csv") # Choose the claimants Data set
View(claimants)
attach(claimants)

dim(claimants)
## [1] 1340    7
colnames(claimants)#
## [1] "CASENUM"  "ATTORNEY" "CLMSEX"   "CLMINSUR" "SEATBELT" "CLMAGE"  
## [7] "LOSS"
summary(claimants)
##     CASENUM         ATTORNEY          CLMSEX          CLMINSUR     
##  Min.   :    0   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.: 4177   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:1.0000  
##  Median : 8756   Median :0.0000   Median :1.0000   Median :1.0000  
##  Mean   :11202   Mean   :0.4888   Mean   :0.5587   Mean   :0.9076  
##  3rd Qu.:15702   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :34153   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##                                   NA's   :12       NA's   :41      
##     SEATBELT           CLMAGE           LOSS        
##  Min.   :0.00000   Min.   : 0.00   Min.   :  0.000  
##  1st Qu.:0.00000   1st Qu.: 9.00   1st Qu.:  0.400  
##  Median :0.00000   Median :30.00   Median :  1.069  
##  Mean   :0.01703   Mean   :28.41   Mean   :  3.806  
##  3rd Qu.:0.00000   3rd Qu.:43.00   3rd Qu.:  3.781  
##  Max.   :1.00000   Max.   :95.00   Max.   :173.604  
##  NA's   :48        NA's   :189
claimants1 <- na.omit(claimants)
library(caret)
## Warning: package 'caret' was built under R version 3.4.4
## Loading required package: lattice
## Warning: package 'lattice' was built under R version 3.4.4
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 3.4.4
inTrain <- createDataPartition(y = ATTORNEY, p=0.70,list = FALSE)  
train <-claimants[inTrain,]
test <- claimants[-inTrain,]

str(claimants)
## 'data.frame':    1340 obs. of  7 variables:
##  $ CASENUM : int  5 3 66 70 96 97 10 36 51 55 ...
##  $ ATTORNEY: int  0 1 1 0 1 0 0 0 1 1 ...
##  $ CLMSEX  : int  0 1 0 0 0 1 0 1 1 0 ...
##  $ CLMINSUR: int  1 0 1 1 1 1 1 1 1 1 ...
##  $ SEATBELT: int  0 0 0 1 0 0 0 0 0 0 ...
##  $ CLMAGE  : int  50 18 5 31 30 35 9 34 60 NA ...
##  $ LOSS    : num  34.94 0.891 0.33 0.037 0.038 ...
str(factor(CLMSEX))
##  Factor w/ 2 levels "0","1": 1 2 1 1 1 2 1 2 2 1 ...
#Logistic Regression 
logit <- glm(ATTORNEY ~ factor(CLMSEX) + factor(CLMINSUR) + factor(SEATBELT) + CLMAGE + LOSS,family = binomial,data = train)
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(logit)
## 
## Call:
## glm(formula = ATTORNEY ~ factor(CLMSEX) + factor(CLMINSUR) + 
##     factor(SEATBELT) + CLMAGE + LOSS, family = binomial, data = train)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -1.61878  -1.03932  -0.01017   0.98581   2.51002  
## 
## Coefficients:
##                    Estimate Std. Error z value Pr(>|z|)    
## (Intercept)       -0.155101   0.282179  -0.550    0.583    
## factor(CLMSEX)1    0.159545   0.159778   0.999    0.318    
## factor(CLMINSUR)1  0.629587   0.263787   2.387    0.017 *  
## factor(SEATBELT)1 -0.941330   0.618128  -1.523    0.128    
## CLMAGE             0.005323   0.003939   1.351    0.177    
## LOSS              -0.307870   0.038008  -8.100 5.49e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1043.14  on 753  degrees of freedom
## Residual deviance:  917.24  on 748  degrees of freedom
##   (184 observations deleted due to missingness)
## AIC: 929.24
## 
## Number of Fisher Scoring iterations: 6
logit1 <- glm(ATTORNEY ~ (CLMSEX) + (CLMINSUR) + (SEATBELT) + (CLMAGE) + LOSS,family=binomial,data = train)
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(logit1)
## 
## Call:
## glm(formula = ATTORNEY ~ (CLMSEX) + (CLMINSUR) + (SEATBELT) + 
##     (CLMAGE) + LOSS, family = binomial, data = train)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -1.61878  -1.03932  -0.01017   0.98581   2.51002  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -0.155101   0.282179  -0.550    0.583    
## CLMSEX       0.159545   0.159778   0.999    0.318    
## CLMINSUR     0.629587   0.263787   2.387    0.017 *  
## SEATBELT    -0.941330   0.618128  -1.523    0.128    
## CLMAGE       0.005323   0.003939   1.351    0.177    
## LOSS        -0.307870   0.038008  -8.100 5.49e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1043.14  on 753  degrees of freedom
## Residual deviance:  917.24  on 748  degrees of freedom
##   (184 observations deleted due to missingness)
## AIC: 929.24
## 
## Number of Fisher Scoring iterations: 6
# Odds Ratio
exp(coef(logit))
##       (Intercept)   factor(CLMSEX)1 factor(CLMINSUR)1 factor(SEATBELT)1 
##         0.8563286         1.1729771         1.8768361         0.3901087 
##            CLMAGE              LOSS 
##         1.0053369         0.7350109
# Confusion matrix table 
prob <- predict(logit,type=c("response"),test)
prob
##            5            7           10           11           13 
## 6.507801e-01 3.619633e-01           NA 2.545023e-01 4.987849e-01 
##           15           16           17           27           29 
## 6.871756e-01 5.090069e-01 7.165389e-01 6.798307e-01 6.370791e-01 
##           30           33           48           50           51 
##           NA 5.833997e-01 6.177028e-01 4.336436e-01 3.946849e-01 
##           54           55           58           59           61 
##           NA 6.081545e-01 1.188663e-01 6.953896e-01           NA 
##           62           66           68           72           74 
##           NA 6.745093e-01 6.478357e-01 5.786485e-01 6.431093e-01 
##           77           78           80           84           85 
## 5.979419e-01           NA 3.966548e-01 3.861645e-01 6.060248e-01 
##           86           87           89           92           96 
## 5.914215e-01 3.852730e-01 3.601025e-01 3.201177e-01 7.274604e-01 
##           98          101          102          104          106 
## 3.854811e-05 5.714660e-01 6.677884e-01           NA 3.368346e-01 
##          111          118          134          140          141 
## 6.267953e-01 4.367092e-01           NA 5.541643e-01 6.152975e-01 
##          145          147          149          153          154 
## 4.875233e-01 5.560822e-01 2.586435e-08 6.554037e-01 6.614355e-01 
##          156          160          162          175          178 
## 2.591143e-01 5.252200e-01 6.016303e-01 4.447529e-01 6.177513e-01 
##          179          188          190          191          194 
## 3.515624e-01 6.692197e-01 5.586259e-01 5.541610e-01 4.190238e-01 
##          197          198          199          201          203 
## 3.780416e-01 7.017255e-01 6.491333e-01 6.699355e-01 4.451600e-01 
##          204          209          212          244          247 
## 3.749675e-01 1.732209e-02 6.021631e-01 4.321739e-01 6.006772e-01 
##          248          252          258          260          261 
## 6.265292e-01 2.433802e-01 4.035167e-01 1.809102e-01 6.280153e-01 
##          262          264          266          267          271 
## 6.451620e-01 6.363907e-01 5.497028e-01 4.044097e-01 6.554531e-01 
##          272          275          276          280          286 
## 3.412175e-01           NA 6.036044e-01 6.633983e-01 1.648823e-01 
##          289          291          293          295          298 
## 5.716168e-01 6.891092e-01 5.134602e-01           NA 6.699598e-01 
##          299          300          302          313          314 
##           NA 6.049920e-01           NA 4.374615e-01 4.497847e-01 
##          315          316          318          319          320 
## 5.521029e-01 6.620493e-01 6.578332e-01           NA 5.808386e-01 
##          321          325          326          331          333 
## 6.780500e-01           NA 7.062704e-01 4.398469e-01           NA 
##          337          341          344          348          349 
## 3.632934e-01 6.508701e-01 6.116182e-01 5.014312e-01 5.362234e-01 
##          350          352          353          354          357 
## 3.719357e-01 1.965539e-01 6.491909e-01           NA 4.975227e-01 
##          362          364          372          378          384 
## 4.708721e-01 2.220446e-16 4.194368e-01 3.395557e-01 6.106835e-01 
##          388          393          394          397          398 
## 6.771772e-01 6.256435e-01 6.545781e-01 5.999273e-01           NA 
##          406          407          413          414          416 
## 2.835937e-01 3.007541e-01 3.495360e-01 5.543049e-01 1.418175e-09 
##          417          424          429          430          433 
## 6.163304e-01 6.324284e-01           NA 6.663661e-01 2.349624e-01 
##          434          438          439          442          444 
## 1.248938e-07 4.050327e-01 3.706355e-01           NA 6.224140e-01 
##          445          447          449          451          454 
## 4.363338e-01 3.889917e-01 4.380293e-01 4.076436e-01 5.876634e-01 
##          458          460          462          464          470 
## 7.013659e-01           NA 6.478043e-01 5.534594e-01 5.836342e-01 
##          471          478          485          487          492 
## 3.336129e-01 6.378997e-01           NA 6.417592e-01           NA 
##          498          507          510          512          514 
## 6.333472e-01 4.502623e-01           NA 4.320546e-01 7.223017e-01 
##          517          521          525          526          533 
## 7.179583e-01 7.036394e-01 6.180049e-01 6.265661e-01 6.107727e-01 
##          538          541          551          553          554 
## 5.274661e-01 4.268062e-01           NA 2.898098e-01 4.606206e-01 
##          558          559          560          565          566 
## 6.130669e-01 3.185952e-01           NA 6.630773e-01 2.709331e-01 
##          567          572          576          580          581 
## 6.988060e-01 4.621374e-01 4.270525e-01           NA 2.341406e-01 
##          583          588          595          599          603 
## 6.579826e-01 4.607995e-01 7.028183e-01 6.254176e-01 6.585966e-01 
##          605          612          617          618          622 
## 3.975341e-01           NA 4.435689e-01 1.749435e-02 3.800932e-01 
##          624          633          635          643          644 
## 4.318316e-01 3.992394e-01 6.103400e-02 1.881906e-01 6.625405e-01 
##          646          647          654          661          663 
## 2.668418e-01 3.900183e-01 2.030652e-01           NA 6.530543e-01 
##          664          665          666          667          669 
## 6.748636e-01 4.458868e-01 3.442909e-01           NA 4.729095e-01 
##          680          681          682          684          685 
## 3.125853e-01 6.375882e-01 5.316692e-01 6.238151e-01 1.740888e-01 
##          687          689          693          695          699 
## 6.372059e-01 4.885298e-01 6.476953e-01 6.150239e-01 6.820187e-01 
##          705          706          707          708          709 
## 1.835988e-01 6.118083e-01           NA 6.448488e-01 5.683857e-01 
##          710          714          715          717          724 
## 6.140015e-01           NA 6.971504e-01 6.114752e-01 4.071959e-01 
##          726          728          733          736          739 
## 6.162787e-01 3.327526e-01           NA 6.154254e-01 2.676043e-01 
##          740          743          745          749          750 
## 3.211580e-01 6.348678e-01 3.272995e-01 4.382935e-01 6.600091e-01 
##          754          755          756          758          769 
## 6.236497e-01           NA 6.646028e-01 3.846948e-01           NA 
##          775          785          786          787          791 
## 6.530357e-01           NA 5.586493e-01 3.887430e-01 1.162335e-01 
##          795          806          807          813          814 
## 4.436651e-01           NA 4.674014e-01 6.614889e-01 4.930832e-11 
##          825          829          831          836          837 
##           NA 1.808260e-01 2.592705e-01 6.684877e-01           NA 
##          843          846          849          853          859 
## 6.230489e-01           NA 3.293287e-01 5.613044e-01 5.827694e-01 
##          862          866          867          868          874 
##           NA 6.199621e-01 6.684877e-01 6.228851e-01 4.350219e-01 
##          884          890          893          896          900 
##           NA 6.523564e-01 6.197848e-01 5.013711e-01 3.279459e-01 
##          902          905          908          910          916 
## 6.358157e-01 6.388205e-01 1.159043e-01           NA 4.625811e-01 
##          918          932          933          934          937 
## 3.951265e-01 6.581103e-01           NA 6.110234e-01 6.661061e-01 
##          941          944          948          952          955 
## 6.806134e-01           NA 1.520110e-01 6.725564e-01 5.301902e-01 
##          960          965          968          969          972 
## 6.783456e-01           NA           NA 5.258016e-01 1.259933e-01 
##          973          974          976          977          979 
## 3.970461e-01 5.002114e-01 3.461157e-01 2.648229e-01 2.732245e-01 
##          984          987          989          990          993 
## 2.494437e-01 1.862542e-01 6.457132e-01 3.829487e-01 5.910859e-01 
##         1000         1002         1008         1009         1010 
## 5.934617e-01           NA 5.859299e-01 5.495117e-01           NA 
##         1017         1018         1020         1021         1027 
## 2.052662e-01 4.837495e-01 4.218295e-01 3.777489e-01 6.682269e-01 
##         1032         1034         1042         1045         1046 
## 1.214988e-01 6.212765e-01 6.654698e-01 6.505998e-01 6.325367e-01 
##         1052         1056         1060         1067         1071 
## 5.522350e-01           NA           NA 7.038392e-01 5.910496e-01 
##         1074         1075         1076         1077         1080 
## 4.840213e-01 5.329945e-01 5.780342e-01 6.520462e-01 6.816744e-01 
##         1081         1082         1084         1089         1090 
## 6.637846e-01 6.761235e-01 5.727173e-01 6.326208e-01 6.688697e-01 
##         1092         1094         1097         1101         1102 
## 1.450825e-01 2.454521e-01 4.471398e-01 4.238481e-01 6.139380e-01 
##         1115         1120         1124         1126         1131 
## 1.717765e-01 7.028770e-01 2.139036e-01 3.570940e-01 2.831644e-01 
##         1133         1134         1137         1140         1144 
##           NA 3.641260e-01 6.981808e-01 2.632422e-01 3.848923e-01 
##         1150         1151         1156         1158         1163 
##           NA 3.601072e-01 6.471016e-01 6.749477e-01 4.383924e-02 
##         1172         1173         1175         1179         1181 
## 3.591241e-01 5.778640e-01 4.929821e-01 5.524649e-01           NA 
##         1182         1185         1189         1191         1196 
## 2.201508e-01 3.883172e-01 4.172327e-02 4.103177e-01 5.190319e-01 
##         1202         1203         1204         1209         1212 
##           NA 6.360707e-01 6.059823e-01 6.137547e-01 5.359596e-01 
##         1216         1219         1220         1221         1222 
## 1.226337e-01 6.433353e-01 6.623188e-01 6.680722e-01 5.462575e-01 
##         1224         1229         1230         1233         1234 
##           NA 5.406630e-01           NA 2.464966e-01 4.812420e-01 
##         1239         1253         1254         1255         1257 
## 6.735772e-01 6.322009e-01 5.866488e-01 3.411993e-01 5.885952e-05 
##         1260         1263         1266         1268         1269 
## 3.448471e-01 6.154983e-01           NA           NA 5.610856e-01 
##         1273         1275         1277         1279         1280 
## 6.832665e-01 6.322009e-01           NA 2.130570e-01 3.464069e-01 
##         1281         1285         1289         1290         1301 
## 6.278364e-01 5.909155e-01 5.736243e-01 2.948783e-01 5.893670e-01 
##         1307         1309         1313         1329         1330 
## 6.973598e-01 3.078786e-01 2.392111e-02 6.048839e-01 6.558765e-01 
##         1333         1336 
## 6.641707e-01           NA
prob1 <- predict(logit,test) #Don't use this
prob <-as.data.frame(prob)
prob
##              prob
## 5    6.507801e-01
## 7    3.619633e-01
## 10             NA
## 11   2.545023e-01
## 13   4.987849e-01
## 15   6.871756e-01
## 16   5.090069e-01
## 17   7.165389e-01
## 27   6.798307e-01
## 29   6.370791e-01
## 30             NA
## 33   5.833997e-01
## 48   6.177028e-01
## 50   4.336436e-01
## 51   3.946849e-01
## 54             NA
## 55   6.081545e-01
## 58   1.188663e-01
## 59   6.953896e-01
## 61             NA
## 62             NA
## 66   6.745093e-01
## 68   6.478357e-01
## 72   5.786485e-01
## 74   6.431093e-01
## 77   5.979419e-01
## 78             NA
## 80   3.966548e-01
## 84   3.861645e-01
## 85   6.060248e-01
## 86   5.914215e-01
## 87   3.852730e-01
## 89   3.601025e-01
## 92   3.201177e-01
## 96   7.274604e-01
## 98   3.854811e-05
## 101  5.714660e-01
## 102  6.677884e-01
## 104            NA
## 106  3.368346e-01
## 111  6.267953e-01
## 118  4.367092e-01
## 134            NA
## 140  5.541643e-01
## 141  6.152975e-01
## 145  4.875233e-01
## 147  5.560822e-01
## 149  2.586435e-08
## 153  6.554037e-01
## 154  6.614355e-01
## 156  2.591143e-01
## 160  5.252200e-01
## 162  6.016303e-01
## 175  4.447529e-01
## 178  6.177513e-01
## 179  3.515624e-01
## 188  6.692197e-01
## 190  5.586259e-01
## 191  5.541610e-01
## 194  4.190238e-01
## 197  3.780416e-01
## 198  7.017255e-01
## 199  6.491333e-01
## 201  6.699355e-01
## 203  4.451600e-01
## 204  3.749675e-01
## 209  1.732209e-02
## 212  6.021631e-01
## 244  4.321739e-01
## 247  6.006772e-01
## 248  6.265292e-01
## 252  2.433802e-01
## 258  4.035167e-01
## 260  1.809102e-01
## 261  6.280153e-01
## 262  6.451620e-01
## 264  6.363907e-01
## 266  5.497028e-01
## 267  4.044097e-01
## 271  6.554531e-01
## 272  3.412175e-01
## 275            NA
## 276  6.036044e-01
## 280  6.633983e-01
## 286  1.648823e-01
## 289  5.716168e-01
## 291  6.891092e-01
## 293  5.134602e-01
## 295            NA
## 298  6.699598e-01
## 299            NA
## 300  6.049920e-01
## 302            NA
## 313  4.374615e-01
## 314  4.497847e-01
## 315  5.521029e-01
## 316  6.620493e-01
## 318  6.578332e-01
## 319            NA
## 320  5.808386e-01
## 321  6.780500e-01
## 325            NA
## 326  7.062704e-01
## 331  4.398469e-01
## 333            NA
## 337  3.632934e-01
## 341  6.508701e-01
## 344  6.116182e-01
## 348  5.014312e-01
## 349  5.362234e-01
## 350  3.719357e-01
## 352  1.965539e-01
## 353  6.491909e-01
## 354            NA
## 357  4.975227e-01
## 362  4.708721e-01
## 364  2.220446e-16
## 372  4.194368e-01
## 378  3.395557e-01
## 384  6.106835e-01
## 388  6.771772e-01
## 393  6.256435e-01
## 394  6.545781e-01
## 397  5.999273e-01
## 398            NA
## 406  2.835937e-01
## 407  3.007541e-01
## 413  3.495360e-01
## 414  5.543049e-01
## 416  1.418175e-09
## 417  6.163304e-01
## 424  6.324284e-01
## 429            NA
## 430  6.663661e-01
## 433  2.349624e-01
## 434  1.248938e-07
## 438  4.050327e-01
## 439  3.706355e-01
## 442            NA
## 444  6.224140e-01
## 445  4.363338e-01
## 447  3.889917e-01
## 449  4.380293e-01
## 451  4.076436e-01
## 454  5.876634e-01
## 458  7.013659e-01
## 460            NA
## 462  6.478043e-01
## 464  5.534594e-01
## 470  5.836342e-01
## 471  3.336129e-01
## 478  6.378997e-01
## 485            NA
## 487  6.417592e-01
## 492            NA
## 498  6.333472e-01
## 507  4.502623e-01
## 510            NA
## 512  4.320546e-01
## 514  7.223017e-01
## 517  7.179583e-01
## 521  7.036394e-01
## 525  6.180049e-01
## 526  6.265661e-01
## 533  6.107727e-01
## 538  5.274661e-01
## 541  4.268062e-01
## 551            NA
## 553  2.898098e-01
## 554  4.606206e-01
## 558  6.130669e-01
## 559  3.185952e-01
## 560            NA
## 565  6.630773e-01
## 566  2.709331e-01
## 567  6.988060e-01
## 572  4.621374e-01
## 576  4.270525e-01
## 580            NA
## 581  2.341406e-01
## 583  6.579826e-01
## 588  4.607995e-01
## 595  7.028183e-01
## 599  6.254176e-01
## 603  6.585966e-01
## 605  3.975341e-01
## 612            NA
## 617  4.435689e-01
## 618  1.749435e-02
## 622  3.800932e-01
## 624  4.318316e-01
## 633  3.992394e-01
## 635  6.103400e-02
## 643  1.881906e-01
## 644  6.625405e-01
## 646  2.668418e-01
## 647  3.900183e-01
## 654  2.030652e-01
## 661            NA
## 663  6.530543e-01
## 664  6.748636e-01
## 665  4.458868e-01
## 666  3.442909e-01
## 667            NA
## 669  4.729095e-01
## 680  3.125853e-01
## 681  6.375882e-01
## 682  5.316692e-01
## 684  6.238151e-01
## 685  1.740888e-01
## 687  6.372059e-01
## 689  4.885298e-01
## 693  6.476953e-01
## 695  6.150239e-01
## 699  6.820187e-01
## 705  1.835988e-01
## 706  6.118083e-01
## 707            NA
## 708  6.448488e-01
## 709  5.683857e-01
## 710  6.140015e-01
## 714            NA
## 715  6.971504e-01
## 717  6.114752e-01
## 724  4.071959e-01
## 726  6.162787e-01
## 728  3.327526e-01
## 733            NA
## 736  6.154254e-01
## 739  2.676043e-01
## 740  3.211580e-01
## 743  6.348678e-01
## 745  3.272995e-01
## 749  4.382935e-01
## 750  6.600091e-01
## 754  6.236497e-01
## 755            NA
## 756  6.646028e-01
## 758  3.846948e-01
## 769            NA
## 775  6.530357e-01
## 785            NA
## 786  5.586493e-01
## 787  3.887430e-01
## 791  1.162335e-01
## 795  4.436651e-01
## 806            NA
## 807  4.674014e-01
## 813  6.614889e-01
## 814  4.930832e-11
## 825            NA
## 829  1.808260e-01
## 831  2.592705e-01
## 836  6.684877e-01
## 837            NA
## 843  6.230489e-01
## 846            NA
## 849  3.293287e-01
## 853  5.613044e-01
## 859  5.827694e-01
## 862            NA
## 866  6.199621e-01
## 867  6.684877e-01
## 868  6.228851e-01
## 874  4.350219e-01
## 884            NA
## 890  6.523564e-01
## 893  6.197848e-01
## 896  5.013711e-01
## 900  3.279459e-01
## 902  6.358157e-01
## 905  6.388205e-01
## 908  1.159043e-01
## 910            NA
## 916  4.625811e-01
## 918  3.951265e-01
## 932  6.581103e-01
## 933            NA
## 934  6.110234e-01
## 937  6.661061e-01
## 941  6.806134e-01
## 944            NA
## 948  1.520110e-01
## 952  6.725564e-01
## 955  5.301902e-01
## 960  6.783456e-01
## 965            NA
## 968            NA
## 969  5.258016e-01
## 972  1.259933e-01
## 973  3.970461e-01
## 974  5.002114e-01
## 976  3.461157e-01
## 977  2.648229e-01
## 979  2.732245e-01
## 984  2.494437e-01
## 987  1.862542e-01
## 989  6.457132e-01
## 990  3.829487e-01
## 993  5.910859e-01
## 1000 5.934617e-01
## 1002           NA
## 1008 5.859299e-01
## 1009 5.495117e-01
## 1010           NA
## 1017 2.052662e-01
## 1018 4.837495e-01
## 1020 4.218295e-01
## 1021 3.777489e-01
## 1027 6.682269e-01
## 1032 1.214988e-01
## 1034 6.212765e-01
## 1042 6.654698e-01
## 1045 6.505998e-01
## 1046 6.325367e-01
## 1052 5.522350e-01
## 1056           NA
## 1060           NA
## 1067 7.038392e-01
## 1071 5.910496e-01
## 1074 4.840213e-01
## 1075 5.329945e-01
## 1076 5.780342e-01
## 1077 6.520462e-01
## 1080 6.816744e-01
## 1081 6.637846e-01
## 1082 6.761235e-01
## 1084 5.727173e-01
## 1089 6.326208e-01
## 1090 6.688697e-01
## 1092 1.450825e-01
## 1094 2.454521e-01
## 1097 4.471398e-01
## 1101 4.238481e-01
## 1102 6.139380e-01
## 1115 1.717765e-01
## 1120 7.028770e-01
## 1124 2.139036e-01
## 1126 3.570940e-01
## 1131 2.831644e-01
## 1133           NA
## 1134 3.641260e-01
## 1137 6.981808e-01
## 1140 2.632422e-01
## 1144 3.848923e-01
## 1150           NA
## 1151 3.601072e-01
## 1156 6.471016e-01
## 1158 6.749477e-01
## 1163 4.383924e-02
## 1172 3.591241e-01
## 1173 5.778640e-01
## 1175 4.929821e-01
## 1179 5.524649e-01
## 1181           NA
## 1182 2.201508e-01
## 1185 3.883172e-01
## 1189 4.172327e-02
## 1191 4.103177e-01
## 1196 5.190319e-01
## 1202           NA
## 1203 6.360707e-01
## 1204 6.059823e-01
## 1209 6.137547e-01
## 1212 5.359596e-01
## 1216 1.226337e-01
## 1219 6.433353e-01
## 1220 6.623188e-01
## 1221 6.680722e-01
## 1222 5.462575e-01
## 1224           NA
## 1229 5.406630e-01
## 1230           NA
## 1233 2.464966e-01
## 1234 4.812420e-01
## 1239 6.735772e-01
## 1253 6.322009e-01
## 1254 5.866488e-01
## 1255 3.411993e-01
## 1257 5.885952e-05
## 1260 3.448471e-01
## 1263 6.154983e-01
## 1266           NA
## 1268           NA
## 1269 5.610856e-01
## 1273 6.832665e-01
## 1275 6.322009e-01
## 1277           NA
## 1279 2.130570e-01
## 1280 3.464069e-01
## 1281 6.278364e-01
## 1285 5.909155e-01
## 1289 5.736243e-01
## 1290 2.948783e-01
## 1301 5.893670e-01
## 1307 6.973598e-01
## 1309 3.078786e-01
## 1313 2.392111e-02
## 1329 6.048839e-01
## 1330 6.558765e-01
## 1333 6.641707e-01
## 1336           NA
confusion <- table(prob > 0.5,test$ATTORNEY)

table(prob > 0.5)
## 
## FALSE  TRUE 
##   149   193
table(ATTORNEY)
## ATTORNEY
##   0   1 
## 685 655
confusion
##        
##           0   1
##   FALSE 123  26
##   TRUE   58 135
table(prob > 0.5)
## 
## FALSE  TRUE 
##   149   193
table(test$CLMAGE)
## 
##  0  1  3  4  5  6  7  8  9 10 11 13 14 15 16 17 18 19 30 31 33 34 35 36 37 
## 12  5  4  3 11 15 10 13 14 16 10 11  5  7  7  3  4 10 17  4  4  7  6  5 11 
## 38 39 40 41 43 44 45 46 47 48 49 50 51 53 54 55 56 57 58 59 60 61 63 64 65 
##  7 13 15  5  6  7  3  5  5  8  6  9  2  3  2  1  3  3  4  2  5  3  3  3  1 
## 66 67 68 69 70 71 75 77 78 80 
##  4  1  1  1  2  2  1  1  2  2
confusion
##        
##           0   1
##   FALSE 123  26
##   TRUE   58 135
 #Model Accuracy 
Accuracy <-sum(diag(confusion)/sum(confusion))
sum(diag(confusion))
## [1] 258
sum(confusion)
## [1] 342
Accuracy
## [1] 0.754386