0
4/36, it could be 4 1,1 4, 2 3,3 2
1/36
No, there are 4.2% overlapped.
library(VennDiagram)
## Loading required package: grid
## Loading required package: futile.logger
grid.newpage()
draw.pairwise.venn(14.6, 20.7, 4.2,
category = c("live below the poverty line", "language other than English at home"),
lty = rep("blank", 2),
fill = c("red", "black"),
alpha = rep(0.5, 2),
cat.pos = c(.5, 0.5),
cat.dist = rep(0.025, 2))
## (polygon[GRID.polygon.1], polygon[GRID.polygon.2], polygon[GRID.polygon.3], polygon[GRID.polygon.4], text[GRID.text.5], text[GRID.text.6], text[GRID.text.7], text[GRID.text.8], text[GRID.text.9])
10.4%
31.1%=16.5%+4.2%+10.4%
68.9%=1-31.1%
No, it is dependent.
P_a = (78+19+11+23+13)/204
P_a
## [1] 0.7058824
p_b = 78/204
p_b
## [1] 0.3823529
P_brown_blue<- 19/204
P_brown_blue
## [1] 0.09313725
P_green_blue<- 11/204
P_green_blue
## [1] 0.05392157
The event is not independent,since the P(male bule|female bule)> p(male bule|female brown)
p_a<-(28/95)*(59/94)
p_a
## [1] 0.1849944
p_b<-(72/95)*(28/94)
p_b
## [1] 0.2257559
p_c<-(72/95)*(28/95)
p_c
## [1] 0.2233795
1 out of 95,we consider small in this case.
num_bag<-c(0,1,2)
fee <-c(0,25,60)
prob <-c(0.54,0.34,0.12)
avg_revenue<-sum(fee*prob)
avg_revenue
## [1] 15.7
sd=sqrt((sum(fee^2 * prob) - avg_revenue^2))
sd
## [1] 19.95019
total_rev = 120 * avg_revenue
total_rev
## [1] 1884
The distribution is multimodal
P_44b = (21.2+18.3+15.8+4.7+2.2)/100
P_44b
## [1] 0.622
p_44c<-P_44b*0.41
p_44c
## [1] 0.25502
The assumption is not valid.