AE
18/2/2019
Una buena práctica es siempre revisar nuestro directorio. [Más adelante hablaremos de los proyectos que también ayuda a nuestra organizción]
Lo podemos hacer con el comando "setwd()", también lo ponemos hacer desde el menú: Session-->Set Working Directory --> Choose Directory
setwd("~/Dropbox/FCPyS-2019-ii/ACuanti/Prácticas")
Si lo haces con comando,recuerda checar las diagonales de la ruta.
Vamos a trabajar con el cuestionario para México de LAPOP
LAPOP es la principal institución académica que realiza encuestas de opinión pública en las Américas, con más de 30 años de experiencia. Como centro de excelencia en investigación por encuestas, LAPOP usa enfoques y métodos innovadores con los “estándares más altos” para llevar a cabo encuestas nacionales; conducir estudios de evaluación de impacto, y producir reportes acerca de las actitudes, evaluaciones y experiencias de los individuos. El Barómetro de las Américas es la única encuesta comparativa y científicamente rigurosa que cubre 34 naciones incluyendo Norte, Centro y Sur América, así como también, un significativo número de países en el Caribe. Cada año publica docenas de estudios académicos de alta calidad y artículos de relevancia para la elaboración de políticas públicas.
Esta base se puede descargar desde aquí http://datasets.americasbarometer.org/database/files/275973272Mexico%20LAPOP%20AmericasBarometer%202017%20V1.0_W.dta. Es una base que está en formato de STATA, un archivo .dta.
Este formato se puede descargar con el paquete "haven" y el paquete "foreing". Utilizaremos el primero porque viene en el menú de RStudio. Si lo hacemos por el menú, el paquete se instala solo. Si no, lo tenemos que instalar
#install.packages("haven")
library(haven)
X275973272Mexico_LAPOP_AmericasBarometer_2017_V1_0_W <- read_dta("275973272Mexico LAPOP AmericasBarometer 2017 V1.0_W.dta")
#View(X275973272Mexico_LAPOP_AmericasBarometer_2017_V1_0_W)
Por default, el nombre que nos da a través del menú es muy largo. Vamos a eliminarlo y volverlo a cargar con un nombre más manejable.
rm(X275973272Mexico_LAPOP_AmericasBarometer_2017_V1_0_W) #botamos el objeto
mex2017<-read_dta("275973272Mexico LAPOP AmericasBarometer 2017 V1.0_W.dta")
Vamos a ver nuestra base de datos. Esto es como la "vista de datos" de SPSS o bien lo que veríamos con el "browse" en STATA
#View(mex2017)
También con "head", vemos las primeras 6 líneas de la base de datos
head(mex2017)
## # A tibble: 6 x 201
## pais idnum uniq_id upm prov municipio cluster ur tamano idiomaq
## <dbl> <dbl> <dbl+l> <dbl> <dbl> <dbl+lbl> <dbl> <dbl> <dbl+> <dbl+l>
## 1 1 694 160106… 106 104 104006 71 2 4 1
## 2 1 736 160107… 106 104 104006 71 2 4 1
## 3 1 1083 160110… 66 121 121058 932 2 4 1
## 4 1 1024 160110… 106 104 104006 72 2 4 1
## 5 1 1296 160112… 13 112 112044 431 2 5 1
## 6 1 920 160109… 106 104 104006 71 2 4 1
## # … with 191 more variables: fecha <date>, wt <dbl>, estratopri <dbl+lbl>,
## # estratosec <dbl+lbl>, q2 <dbl>, q1 <dbl+lbl>, ls3 <dbl+lbl>,
## # a4 <dbl+lbl>, soct2 <dbl+lbl>, idio2 <dbl+lbl>, np1 <dbl+lbl>,
## # cp6 <dbl+lbl>, cp7 <dbl+lbl>, cp8 <dbl+lbl>, cp13 <dbl+lbl>,
## # cp20 <dbl+lbl>, it1 <dbl+lbl>, l1 <dbl+lbl>, prot3 <dbl+lbl>,
## # jc10 <dbl+lbl>, jc13 <dbl+lbl>, jc15a <dbl+lbl>, vic1ext <dbl+lbl>,
## # vic1exta <dbl+lbl>, vic71 <dbl+lbl>, vic43 <dbl+lbl>,
## # vicbar4a <dbl+lbl>, aoj11 <dbl+lbl>, aoj12 <dbl+lbl>, b1 <dbl+lbl>,
## # b2 <dbl+lbl>, b3 <dbl+lbl>, b4 <dbl+lbl>, b6 <dbl+lbl>, b43 <dbl+lbl>,
## # b12 <dbl+lbl>, b13 <dbl+lbl>, b18 <dbl+lbl>, b21 <dbl+lbl>,
## # b21a <dbl+lbl>, b32 <dbl+lbl>, b37 <dbl+lbl>, b47a <dbl+lbl>,
## # pr3d <dbl+lbl>, pr3e <dbl+lbl>, m1 <dbl+lbl>, m2 <dbl+lbl>,
## # sd2new2 <dbl+lbl>, sd3new2 <dbl+lbl>, sd6new2 <dbl+lbl>,
## # infrax <dbl+lbl>, infra3 <dbl+lbl>, ros1 <dbl+lbl>, ros4 <dbl+lbl>,
## # ing4 <dbl+lbl>, eff1 <dbl+lbl>, eff2 <dbl+lbl>, aoj22new <dbl+lbl>,
## # media3 <dbl+lbl>, media4 <dbl+lbl>, exp_a <dbl+lbl>, dst1b <dbl+lbl>,
## # drk1 <dbl+lbl>, env1c <dbl+lbl>, env2b <dbl+lbl>, pn4 <dbl+lbl>,
## # w14a <dbl+lbl>, e5 <dbl+lbl>, d1 <dbl+lbl>, d2 <dbl+lbl>,
## # d3 <dbl+lbl>, d4 <dbl+lbl>, d5 <dbl+lbl>, d6 <dbl+lbl>,
## # lib1 <dbl+lbl>, lib2b <dbl+lbl>, lib2c <dbl+lbl>, lib4 <dbl+lbl>,
## # exc2 <dbl+lbl>, exc6 <dbl+lbl>, exc20 <dbl+lbl>, exc11 <dbl+lbl>,
## # exc13 <dbl+lbl>, exc14 <dbl+lbl>, exc15 <dbl+lbl>, exc16 <dbl+lbl>,
## # exc18 <dbl+lbl>, exc7new <dbl+lbl>, vicbar7 <dbl+lbl>,
## # vicbar7f <dbl+lbl>, fear11 <dbl+lbl>, capital1 <dbl+lbl>,
## # iga1 <dbl+lbl>, igaaoj22 <dbl+lbl>, vb1 <dbl+lbl>, inf1 <dbl+lbl>,
## # vb2 <dbl+lbl>, vb3n <dbl+lbl>, vb10 <dbl+lbl>, vb11 <dbl+lbl>, …
También con "tail", vemos las últimas 6 líneas de la base de datos
tail(mex2017)
## # A tibble: 6 x 201
## pais idnum uniq_id upm prov municipio cluster ur tamano idiomaq
## <dbl> <dbl> <dbl+l> <dbl> <dbl> <dbl+lbl> <dbl> <dbl> <dbl+> <dbl+l>
## 1 1 1528 160115… 51 117 117029 812 1 3 1
## 2 1 867 160108… 55 119 119040 851 1 2 1
## 3 1 804 160108… 8 111 111021 382 1 3 1
## 4 1 1422 160114… 120 109 109005 211 1 1 1
## 5 1 661 160106… 63 120 120066 902 1 2 1
## 6 1 536 160105… 19 114 114023 491 1 3 1
## # … with 191 more variables: fecha <date>, wt <dbl>, estratopri <dbl+lbl>,
## # estratosec <dbl+lbl>, q2 <dbl>, q1 <dbl+lbl>, ls3 <dbl+lbl>,
## # a4 <dbl+lbl>, soct2 <dbl+lbl>, idio2 <dbl+lbl>, np1 <dbl+lbl>,
## # cp6 <dbl+lbl>, cp7 <dbl+lbl>, cp8 <dbl+lbl>, cp13 <dbl+lbl>,
## # cp20 <dbl+lbl>, it1 <dbl+lbl>, l1 <dbl+lbl>, prot3 <dbl+lbl>,
## # jc10 <dbl+lbl>, jc13 <dbl+lbl>, jc15a <dbl+lbl>, vic1ext <dbl+lbl>,
## # vic1exta <dbl+lbl>, vic71 <dbl+lbl>, vic43 <dbl+lbl>,
## # vicbar4a <dbl+lbl>, aoj11 <dbl+lbl>, aoj12 <dbl+lbl>, b1 <dbl+lbl>,
## # b2 <dbl+lbl>, b3 <dbl+lbl>, b4 <dbl+lbl>, b6 <dbl+lbl>, b43 <dbl+lbl>,
## # b12 <dbl+lbl>, b13 <dbl+lbl>, b18 <dbl+lbl>, b21 <dbl+lbl>,
## # b21a <dbl+lbl>, b32 <dbl+lbl>, b37 <dbl+lbl>, b47a <dbl+lbl>,
## # pr3d <dbl+lbl>, pr3e <dbl+lbl>, m1 <dbl+lbl>, m2 <dbl+lbl>,
## # sd2new2 <dbl+lbl>, sd3new2 <dbl+lbl>, sd6new2 <dbl+lbl>,
## # infrax <dbl+lbl>, infra3 <dbl+lbl>, ros1 <dbl+lbl>, ros4 <dbl+lbl>,
## # ing4 <dbl+lbl>, eff1 <dbl+lbl>, eff2 <dbl+lbl>, aoj22new <dbl+lbl>,
## # media3 <dbl+lbl>, media4 <dbl+lbl>, exp_a <dbl+lbl>, dst1b <dbl+lbl>,
## # drk1 <dbl+lbl>, env1c <dbl+lbl>, env2b <dbl+lbl>, pn4 <dbl+lbl>,
## # w14a <dbl+lbl>, e5 <dbl+lbl>, d1 <dbl+lbl>, d2 <dbl+lbl>,
## # d3 <dbl+lbl>, d4 <dbl+lbl>, d5 <dbl+lbl>, d6 <dbl+lbl>,
## # lib1 <dbl+lbl>, lib2b <dbl+lbl>, lib2c <dbl+lbl>, lib4 <dbl+lbl>,
## # exc2 <dbl+lbl>, exc6 <dbl+lbl>, exc20 <dbl+lbl>, exc11 <dbl+lbl>,
## # exc13 <dbl+lbl>, exc14 <dbl+lbl>, exc15 <dbl+lbl>, exc16 <dbl+lbl>,
## # exc18 <dbl+lbl>, exc7new <dbl+lbl>, vicbar7 <dbl+lbl>,
## # vicbar7f <dbl+lbl>, fear11 <dbl+lbl>, capital1 <dbl+lbl>,
## # iga1 <dbl+lbl>, igaaoj22 <dbl+lbl>, vb1 <dbl+lbl>, inf1 <dbl+lbl>,
## # vb2 <dbl+lbl>, vb3n <dbl+lbl>, vb10 <dbl+lbl>, vb11 <dbl+lbl>, …
Ver los nombres de las variables
names(mex2017)
## [1] "pais" "idnum" "uniq_id" "upm" "prov"
## [6] "municipio" "cluster" "ur" "tamano" "idiomaq"
## [11] "fecha" "wt" "estratopri" "estratosec" "q2"
## [16] "q1" "ls3" "a4" "soct2" "idio2"
## [21] "np1" "cp6" "cp7" "cp8" "cp13"
## [26] "cp20" "it1" "l1" "prot3" "jc10"
## [31] "jc13" "jc15a" "vic1ext" "vic1exta" "vic71"
## [36] "vic43" "vicbar4a" "aoj11" "aoj12" "b1"
## [41] "b2" "b3" "b4" "b6" "b43"
## [46] "b12" "b13" "b18" "b21" "b21a"
## [51] "b32" "b37" "b47a" "pr3d" "pr3e"
## [56] "m1" "m2" "sd2new2" "sd3new2" "sd6new2"
## [61] "infrax" "infra3" "ros1" "ros4" "ing4"
## [66] "eff1" "eff2" "aoj22new" "media3" "media4"
## [71] "exp_a" "dst1b" "drk1" "env1c" "env2b"
## [76] "pn4" "w14a" "e5" "d1" "d2"
## [81] "d3" "d4" "d5" "d6" "lib1"
## [86] "lib2b" "lib2c" "lib4" "exc2" "exc6"
## [91] "exc20" "exc11" "exc13" "exc14" "exc15"
## [96] "exc16" "exc18" "exc7new" "vicbar7" "vicbar7f"
## [101] "fear11" "capital1" "iga1" "igaaoj22" "vb1"
## [106] "inf1" "vb2" "vb3n" "vb10" "vb11"
## [111] "pol1" "vb20" "mexcv1" "mexcv2" "for5"
## [116] "exp_b" "mil10a" "mil10e" "mil10oas" "mil10un"
## [121] "ccq1" "ccq2" "ccq3" "ccq4" "mexus1"
## [126] "mexus2" "via1a" "via1b" "wf1" "cct1b"
## [131] "ed" "ed2" "mexham1" "mexham2" "mexham3"
## [136] "mexham4" "mexham5" "mexham6" "q5a" "q5b"
## [141] "q3c" "ocup4a" "ocup1a" "q10g" "q10new"
## [146] "q10a" "q14" "q10d" "q10e" "q11n"
## [151] "q12c" "q12bn" "q12" "q12m" "q12f"
## [156] "vac1" "mexinf1" "mexinf4" "mexinf5" "mexinf6"
## [161] "mexinf7" "mexinf9" "mexinf8" "etid" "mexiiet1"
## [166] "mexiiet2" "mexiiet3" "www1" "i2" "i3"
## [171] "i4" "gi0" "pr1" "r3" "r4"
## [176] "r4a" "r5" "r6" "r7" "r8"
## [181] "r12" "r14" "r15" "r18" "r1"
## [186] "r16" "sent1" "colorr" "conocim" "iarea1"
## [191] "iarea2" "iarea3" "iarea4" "iarea6" "iarea7"
## [196] "sexi" "colori" "srvyrid" "nationality" "formatq"
## [201] "sex"
Revisar la estructura de la base de datos
str(mex2017)
## Classes 'tbl_df', 'tbl' and 'data.frame': 1563 obs. of 201 variables:
## $ pais : 'haven_labelled' num 1 1 1 1 1 1 1 1 1 1 ...
## ..- attr(*, "label")= chr "Country"
## ..- attr(*, "format.stata")= chr "%36.0g"
## ..- attr(*, "labels")= Named num 1
## .. ..- attr(*, "names")= chr "Mexico"
## $ idnum : num 694 736 1083 1024 1296 ...
## ..- attr(*, "label")= chr "Questionnaire Number"
## ..- attr(*, "format.stata")= chr "%36.0g"
## $ uniq_id : 'haven_labelled' num 1.6e+07 1.6e+07 1.6e+07 1.6e+07 1.6e+07 ...
## ..- attr(*, "label")= chr "Unique Identifier"
## ..- attr(*, "format.stata")= chr "%36.0g"
## ..- attr(*, "labels")= Named num 1.6e+07 1.6e+07 1.6e+07 1.6e+07 1.6e+07 ...
## .. ..- attr(*, "names")= chr "MEX16_0001" "MEX16_0002" "MEX16_0003" "MEX16_0004" ...
## $ upm : num 106 106 66 106 13 106 13 13 16 16 ...
## ..- attr(*, "label")= chr "Primary Sampling Unit"
## ..- attr(*, "format.stata")= chr "%36.0g"
## $ prov : 'haven_labelled' num 104 104 121 104 112 104 112 112 113 113 ...
## ..- attr(*, "label")= chr "Province"
## ..- attr(*, "format.stata")= chr "%36.0g"
## ..- attr(*, "labels")= Named num 101 102 103 104 105 106 107 108 109 110 ...
## .. ..- attr(*, "names")= chr "Aguascalientes" "Baja California" "Baja California Sur" "Campeche" ...
## $ municipio : 'haven_labelled' num 104006 104006 121058 104006 112044 ...
## ..- attr(*, "label")= chr "Municipio"
## ..- attr(*, "format.stata")= chr "%36.0g"
## ..- attr(*, "labels")= Named num 101009 102002 102004 103001 103004 ...
## .. ..- attr(*, "names")= chr "Tepezalá" "Mexicali" "Tijuana" "Comondú" ...
## $ cluster : num 71 71 932 72 431 71 432 432 461 462 ...
## ..- attr(*, "label")= chr "Cluster"
## ..- attr(*, "format.stata")= chr "%36.0f"
## $ ur : 'haven_labelled' num 2 2 2 2 2 2 2 2 2 2 ...
## ..- attr(*, "label")= chr "Urban/Rural"
## ..- attr(*, "format.stata")= chr "%36.0g"
## ..- attr(*, "labels")= Named num 1 2
## .. ..- attr(*, "names")= chr "Urban" "Rural"
## $ tamano : 'haven_labelled' num 4 4 4 4 5 4 5 5 4 4 ...
## ..- attr(*, "label")= chr "Size of Location"
## ..- attr(*, "format.stata")= chr "%37.0g"
## ..- attr(*, "labels")= Named num 1 2 3 4 5
## .. ..- attr(*, "names")= chr "National Capital (Metropolitan area)" "Large City" "Medium City" "Small City" ...
## $ idiomaq : 'haven_labelled' num 1 1 1 1 1 1 1 1 1 1 ...
## ..- attr(*, "label")= chr "Language of Questionnaire"
## ..- attr(*, "format.stata")= chr "%36.0g"
## ..- attr(*, "labels")= Named num 1
## .. ..- attr(*, "names")= chr "Spanish"
## $ fecha : Date, format: "2017-03-13" "2017-03-13" ...
## $ wt : num 1 1 1 1 1 1 1 1 1 1 ...
## ..- attr(*, "label")= chr "Country Weight"
## ..- attr(*, "format.stata")= chr "%36.0g"
## $ estratopri : 'haven_labelled' num 104 104 103 104 104 104 104 104 103 103 ...
## ..- attr(*, "label")= chr "Primary Strata"
## ..- attr(*, "format.stata")= chr "%36.0g"
## ..- attr(*, "labels")= Named num 101 102 103 104
## .. ..- attr(*, "names")= chr "NORTE" "CENTRO OCCIDENTE" "CENTRO" "SUR"
## $ estratosec : 'haven_labelled' num 2 2 3 2 3 2 3 3 2 2 ...
## ..- attr(*, "label")= chr "Secondary Strata"
## ..- attr(*, "format.stata")= chr "%36.0g"
## ..- attr(*, "labels")= Named num 1 2 3
## .. ..- attr(*, "names")= chr "Large (more than 100,000)" "Medium (between 25,000 and 100,000)" "Small (less than 25,000)"
## $ q2 : num 38 64 25 32 18 45 18 36 73 49 ...
## ..- attr(*, "label")= chr "Age"
## ..- attr(*, "format.stata")= chr "%36.0f"
## $ q1 : 'haven_labelled' num 2 1 2 1 2 1 2 1 1 1 ...
## ..- attr(*, "label")= chr "Sex"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 2
## .. ..- attr(*, "names")= chr "Male" "Female"
## $ ls3 : 'haven_labelled' num 3 2 2 3 2 2 NA 2 NA 1 ...
## ..- attr(*, "label")= chr "Life Satisfaction"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 2 3 4 NA NA
## .. ..- attr(*, "names")= chr "Very Satisfied" "Somewhat Satisfied" "Somewhat Dissatisfied" "Very Dissatisfied" ...
## $ a4 : 'haven_labelled' num NA 55 NA 1 NA 15 15 NA 5 13 ...
## ..- attr(*, "label")= chr "Most Important Problem"
## ..- attr(*, "format.stata")= chr "%64.0f"
## ..- attr(*, "labels")= Named num 1 2 3 4 5 10 11 12 13 14 ...
## .. ..- attr(*, "names")= chr "Economy, problems with, crisis of" "Inflation, high prices" "Unemployment" "Poverty" ...
## $ soct2 : 'haven_labelled' num 3 2 2 3 3 3 3 3 3 3 ...
## ..- attr(*, "label")= chr "Evaluation of the Economic Situation of the Country"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 2 3 NA NA
## .. ..- attr(*, "names")= chr "Better" "Same" "Worse" "Don't Know" ...
## $ idio2 : 'haven_labelled' num 3 1 2 2 3 3 2 3 2 2 ...
## ..- attr(*, "label")= chr "Perception of Personal Economic Situation"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 2 3 NA NA
## .. ..- attr(*, "names")= chr "Better" "Same" "Worse" "Don't Know" ...
## $ np1 : 'haven_labelled' num 2 1 2 2 2 2 2 1 2 1 ...
## ..- attr(*, "label")= chr "Attendance at Municipal Meeting"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 2 NA NA
## .. ..- attr(*, "names")= chr "Yes" "No" "Don't Know" "No Response"
## $ cp6 : 'haven_labelled' num 4 3 4 1 4 1 1 2 1 4 ...
## ..- attr(*, "label")= chr "Attendance at Meetings of Religious Organization"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 2 3 4 NA
## .. ..- attr(*, "names")= chr "Once a Week" "Once or Twice a Month" "Once or Twice a Year" "Never" ...
## $ cp7 : 'haven_labelled' num 2 4 2 4 4 4 4 2 4 2 ...
## ..- attr(*, "label")= chr "Attendance at Meetings of Parent Association"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 2 3 4 NA NA
## .. ..- attr(*, "names")= chr "Once a Week" "Once or Twice a Month" "Once or Twice a Year" "Never" ...
## $ cp8 : 'haven_labelled' num 1 2 4 3 4 3 4 1 2 2 ...
## ..- attr(*, "label")= chr "Attendance at Meetings of Community Improvement Group"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 2 3 4 NA NA
## .. ..- attr(*, "names")= chr "Once a Week" "Once or Twice a Month" "Once or Twice a Year" "Never" ...
## $ cp13 : 'haven_labelled' num 4 3 4 4 4 3 4 2 4 4 ...
## ..- attr(*, "label")= chr "Attendance at Meetings of Political Movements or Parties"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 2 3 4 NA NA
## .. ..- attr(*, "names")= chr "Once a Week" "Once or Twice a Month" "Once or Twice a Year" "Never" ...
## $ cp20 : 'haven_labelled' num 4 NA 4 NA 4 NA 2 NA NA NA ...
## ..- attr(*, "label")= chr "Attendance at Meetings of Women's Group"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 2 3 4 NA NA NA
## .. ..- attr(*, "names")= chr "Once a Week" "Once or Twice a Month" "Once or Twice a Year" "Never" ...
## $ it1 : 'haven_labelled' num 3 2 2 3 3 2 3 3 1 4 ...
## ..- attr(*, "label")= chr "Interpersonal Trust"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 2 3 4 NA NA
## .. ..- attr(*, "names")= chr "Very Trustworthy" "Somewhat Trustworthy" "Not Very Trustworthy" "Untrustworthy" ...
## $ l1 : 'haven_labelled' num 9 10 2 7 10 9 NA 1 7 1 ...
## ..- attr(*, "label")= chr "Ideology (Left / Right)"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 10 NA NA
## .. ..- attr(*, "names")= chr "Left" "Right" "Don't Know" "No Response"
## $ prot3 : 'haven_labelled' num 2 1 2 2 2 2 2 1 2 1 ...
## ..- attr(*, "label")= chr "Participated in a Protest"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 2 NA NA
## .. ..- attr(*, "names")= chr "Yes, I have participated" "No, I have not participated" "Don't Know" "No Response"
## $ jc10 : 'haven_labelled' num NA NA 1 1 1 NA NA NA NA NA ...
## ..- attr(*, "label")= chr "Coup is Justified when Crime is High"
## ..- attr(*, "format.stata")= chr "%74.0f"
## ..- attr(*, "labels")= Named num 1 2 NA NA NA
## .. ..- attr(*, "names")= chr "Yes, a military take-over of the state would be justified" "No, a military take-over of the state would not be justified" "Don't Know" "No Response" ...
## $ jc13 : 'haven_labelled' num NA 2 NA NA NA 1 NA 1 NA 2 ...
## ..- attr(*, "label")= chr "Coup is Justified when Corruption is High"
## ..- attr(*, "format.stata")= chr "%74.0f"
## ..- attr(*, "labels")= Named num 1 2 NA NA NA
## .. ..- attr(*, "names")= chr "Yes, a military take-over of the state would be justified" "No, a military take-over of the state would not be justified" "Don't Know" "No Response" ...
## $ jc15a : 'haven_labelled' num NA 2 2 NA NA 1 NA 1 2 2 ...
## ..- attr(*, "label")= chr "Executive Justified in Governing without Legislature during Crisis"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 2 NA NA
## .. ..- attr(*, "names")= chr "Yes, it is justified" "No, it is not justified" "Don't Know" "No Response"
## $ vic1ext : 'haven_labelled' num 2 2 2 2 2 2 2 1 2 2 ...
## ..- attr(*, "label")= chr "Victim of Crime in the Last 12 Months"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 2 NA
## .. ..- attr(*, "names")= chr "Yes" "No" "No Response"
## $ vic1exta : 'haven_labelled' num NA NA NA NA NA NA NA 1 NA NA ...
## ..- attr(*, "label")= chr "Victim of Crime in the Last 12 Months (Frequency)"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num NA NA NA
## .. ..- attr(*, "names")= chr "Don't Know" "No Response" "Not Applicable"
## $ vic71 : 'haven_labelled' num 0 0 0 0 0 0 0 0 0 0 ...
## ..- attr(*, "label")= chr "Has Avoided Leaving House Alone at Night for Fear of Crime"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 0 1 NA NA
## .. ..- attr(*, "names")= chr "No" "Yes" "Don't Know" "No Response"
## $ vic43 : 'haven_labelled' num 0 0 0 0 0 1 0 0 0 0 ...
## ..- attr(*, "label")= chr "Has Felt Need to Move Neighborhoods for Fear of Crime"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 0 1 NA NA
## .. ..- attr(*, "names")= chr "No" "Yes" "Don't Know" "No Response"
## $ vicbar4a : 'haven_labelled' num 0 0 0 1 0 0 0 0 0 0 ...
## ..- attr(*, "label")= chr "Family Member was a Victim of Extortion"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 0 1 NA
## .. ..- attr(*, "names")= chr "No" "Yes" "Don't Know"
## $ aoj11 : 'haven_labelled' num NA 2 3 2 4 2 2 2 1 2 ...
## ..- attr(*, "label")= chr "Perception of Neighborhood Insecurity"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 2 3 4 NA NA
## .. ..- attr(*, "names")= chr "Very Safe" "Somewhat Safe" "Somewhat Unsafe" "Very Unsafe" ...
## $ aoj12 : 'haven_labelled' num 3 1 1 3 3 2 2 2 4 4 ...
## ..- attr(*, "label")= chr "Confidence that Judiciary will Punish the Guilty"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 2 3 4 NA NA
## .. ..- attr(*, "names")= chr "A lot" "Some" "Little" "None" ...
## $ b1 : 'haven_labelled' num 7 7 3 3 7 5 3 1 1 1 ...
## ..- attr(*, "label")= chr "Courts Guarantee Fair Trial"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 7 NA NA
## .. ..- attr(*, "names")= chr "Not at All" "A Lot" "Don't Know" "No Response"
## $ b2 : 'haven_labelled' num 1 4 6 4 7 6 5 1 1 1 ...
## ..- attr(*, "label")= chr "Respect for Political Institutions"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 7 NA NA
## .. ..- attr(*, "names")= chr "Not at All" "A Lot" "Don't Know" "No Response"
## $ b3 : 'haven_labelled' num NA NA 2 3 7 4 2 1 1 4 ...
## ..- attr(*, "label")= chr "Basic Rights are Protected"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 7 NA NA
## .. ..- attr(*, "names")= chr "Not at All" "A Lot" "Don't Know" "No Response"
## $ b4 : 'haven_labelled' num NA 5 4 3 7 2 6 1 1 1 ...
## ..- attr(*, "label")= chr "Pride in Political System"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 7 NA NA
## .. ..- attr(*, "names")= chr "Not at All" "A Lot" "Don't Know" "No Response"
## $ b6 : 'haven_labelled' num 6 7 6 4 7 7 7 2 1 1 ...
## ..- attr(*, "label")= chr "People Should Support the Political System"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 7 NA NA
## .. ..- attr(*, "names")= chr "Not at All" "A Lot" "Don't Know" "No Response"
## $ b43 : 'haven_labelled' num 7 7 7 6 7 7 7 NA 1 4 ...
## ..- attr(*, "label")= chr "Pride in Nationality"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 7 NA NA
## .. ..- attr(*, "names")= chr "Not at All" "A Lot" "Don't Know" "No Response"
## $ b12 : 'haven_labelled' num NA 7 5 4 7 6 4 1 1 1 ...
## ..- attr(*, "label")= chr "Trust in Armed Forces"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 7 NA NA
## .. ..- attr(*, "names")= chr "Not at All" "A Lot" "Don't Know" "No Response"
## $ b13 : 'haven_labelled' num NA 7 4 3 7 5 4 NA 1 5 ...
## ..- attr(*, "label")= chr "Trust in the National Legislature"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 7 NA NA
## .. ..- attr(*, "names")= chr "Not at All" "A Lot" "Don't Know" "No Response"
## $ b18 : 'haven_labelled' num 1 4 4 3 7 7 1 7 1 3 ...
## ..- attr(*, "label")= chr "Trust in National Police"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 7 NA NA
## .. ..- attr(*, "names")= chr "Not at All" "A Lot" "Don't Know" "No Response"
## $ b21 : 'haven_labelled' num 1 5 2 3 1 4 4 1 1 2 ...
## ..- attr(*, "label")= chr "Trust in Political Parties"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 7 NA NA
## .. ..- attr(*, "names")= chr "Not at All" "A Lot" "Don't Know" "No Response"
## $ b21a : 'haven_labelled' num 1 6 4 4 1 5 6 7 1 1 ...
## ..- attr(*, "label")= chr "Trust in Executive"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 7 NA NA
## .. ..- attr(*, "names")= chr "Not at All" "A Lot" "Don't Know" "No Response"
## $ b32 : 'haven_labelled' num 1 6 6 4 7 7 6 5 1 7 ...
## ..- attr(*, "label")= chr "Trust in Local Government"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 7 NA NA
## .. ..- attr(*, "names")= chr "Not at All" "A Lot" "Don't Know" "No Response"
## $ b37 : 'haven_labelled' num 7 5 6 4 7 4 5 2 1 1 ...
## ..- attr(*, "label")= chr "Trust in the Media"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 7 NA NA
## .. ..- attr(*, "names")= chr "Not at All" "A Lot" "Don't Know" "No Response"
## $ b47a : 'haven_labelled' num 1 4 6 4 7 7 6 NA 1 1 ...
## ..- attr(*, "label")= chr "Trust in Elections"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 7 NA NA
## .. ..- attr(*, "names")= chr "Not at All" "A Lot" "Don't Know" "No Response"
## $ pr3d : 'haven_labelled' num 1 1 NA 7 1 3 3 1 1 1 ...
## ..- attr(*, "label")= chr "Probability that Building without a License Results in Punishment"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 7 NA NA
## .. ..- attr(*, "names")= chr "Not at All" "A Lot" "Don't Know" "No Response"
## $ pr3e : 'haven_labelled' num 7 1 NA 4 7 2 3 1 1 1 ...
## ..- attr(*, "label")= chr "Probability that Building or Renovating Would Necessitate Bribe"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 7 NA NA
## .. ..- attr(*, "names")= chr "Not at All" "A Lot" "Don't Know" "No Response"
## $ m1 : 'haven_labelled' num 4 3 2 3 5 2 2 4 2 5 ...
## ..- attr(*, "label")= chr "Presidential Job Approval"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 2 3 4 5 NA NA
## .. ..- attr(*, "names")= chr "Very Good" "Good" "Neither Good nor Bad (Fair)" "Bad" ...
## $ m2 : 'haven_labelled' num 4 3 3 3 4 3 1 4 2 5 ...
## ..- attr(*, "label")= chr "Congressional Job Approval"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 2 3 4 5 NA NA
## .. ..- attr(*, "names")= chr "Very Well" "Well" "Neither well nor poorly" "Poorly" ...
## $ sd2new2 : 'haven_labelled' num 3 2 2 4 1 2 2 2 3 3 ...
## ..- attr(*, "label")= chr "Satisfaction with Roads"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 2 3 4 NA NA NA
## .. ..- attr(*, "names")= chr "Very Satisfied" "Satisfied" "Dissatisfied" "Very Dissatisfied" ...
## $ sd3new2 : 'haven_labelled' num NA 1 3 2 1 1 2 2 2 3 ...
## ..- attr(*, "label")= chr "Satisfaction with Public Schools"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 2 3 4 NA NA NA
## .. ..- attr(*, "names")= chr "Very Satisfied" "Satisfied" "Dissatisfied" "Very Dissatisfied" ...
## $ sd6new2 : 'haven_labelled' num 3 3 2 3 1 2 2 2 4 4 ...
## ..- attr(*, "label")= chr "Satisfaction with Public Medical and Health Services"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 2 3 4 NA NA NA
## .. ..- attr(*, "names")= chr "Very Satisfied" "Satisfied" "Dissatisfied" "Very Dissatisfied" ...
## $ infrax : 'haven_labelled' num 1 1 3 5 5 2 2 5 6 4 ...
## ..- attr(*, "label")= chr "Police Response Time"
## ..- attr(*, "format.stata")= chr "%52.0f"
## ..- attr(*, "labels")= Named num 1 2 3 4 5 6 NA NA
## .. ..- attr(*, "names")= chr "Less than 10 minutes" "Between 10 and 30 minutes" "More than 30 minutes and up to an hour" "More than 1 hour and up to 3 hours" ...
## $ infra3 : 'haven_labelled' num 2 2 2 3 5 4 1 5 4 4 ...
## ..- attr(*, "label")= chr "Time it Takes to Get to the Hospital"
## ..- attr(*, "format.stata")= chr "%84.0f"
## ..- attr(*, "labels")= Named num 1 2 3 4 5 6 NA NA
## .. ..- attr(*, "names")= chr "Less than 10 minutes" "Between 10 and 30 minutes" "More than 30 minutes and up to an hour" "More than 1 hour and up to 3 hours" ...
## $ ros1 : 'haven_labelled' num NA 6 4 5 6 4 7 1 1 1 ...
## ..- attr(*, "label")= chr "The State Should Own Important Industries"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 7 NA NA
## .. ..- attr(*, "names")= chr "Strongly Disagree" "Strongly Agree" "Don't Know" "No Response"
## $ ros4 : 'haven_labelled' num 1 5 1 7 7 5 6 1 7 3 ...
## ..- attr(*, "label")= chr "Government Should Implement Policies to Reduce Income Inequality"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 7 NA NA
## .. ..- attr(*, "names")= chr "Strongly Disagree" "Strongly Agree" "Don't Know" "No Response"
## $ ing4 : 'haven_labelled' num 1 4 2 4 7 7 4 NA NA 1 ...
## ..- attr(*, "label")= chr "Democracy is Better than Any Other Form of Government"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 7 NA NA
## .. ..- attr(*, "names")= chr "Strongly Disagree" "Strongly Agree" "Don't Know" "No Response"
## $ eff1 : 'haven_labelled' num NA 6 4 4 1 1 3 1 1 2 ...
## ..- attr(*, "label")= chr "Leaders Are Interested in What People Think"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 7 NA NA
## .. ..- attr(*, "names")= chr "Strongly Disagree" "Strongly Agree" "Don't Know" "No Response"
## $ eff2 : 'haven_labelled' num NA 6 4 4 1 5 3 NA 1 3 ...
## ..- attr(*, "label")= chr "Understands Important Political Issues"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 7 NA NA
## .. ..- attr(*, "names")= chr "Strongly Disagree" "Strongly Agree" "Don't Know" "No Response"
## $ aoj22new : 'haven_labelled' num 5 6 3 6 7 7 7 5 7 6 ...
## ..- attr(*, "label")= chr "Penalties for Crimes Need to Increase"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 7 NA NA
## .. ..- attr(*, "names")= chr "Strongly Disagree" "Strongly Agree" "Don't Know" "No Response"
## $ media3 : 'haven_labelled' num NA 5 6 5 7 3 5 1 1 1 ...
## ..- attr(*, "label")= chr "News Media Represents the Different Views that Exist in the Country"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 7 NA NA
## .. ..- attr(*, "names")= chr "Strongly Disagree" "Strongly Agree" "Don't Know" "No Response"
## $ media4 : 'haven_labelled' num NA 3 5 5 6 4 4 1 7 1 ...
## ..- attr(*, "label")= chr "News Media is Controlled by a Few Economic Groups"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 7 NA NA
## .. ..- attr(*, "names")= chr "Strongly Disagree" "Strongly Agree" "Don't Know" "No Response"
## $ exp_a : 'haven_labelled' num 1 1 2 2 1 1 1 2 2 2 ...
## ..- attr(*, "label")= chr "Experimental Test A"
## ..- attr(*, "format.stata")= chr "%36.0g"
## ..- attr(*, "labels")= Named num 1 2
## .. ..- attr(*, "names")= chr "Set 1" "Set 2"
## $ dst1b : 'haven_labelled' num 1 6 3 5 7 6 7 7 7 5 ...
## ..- attr(*, "label")= chr "Government Should Spend More to Enforce Building Codes to Make Homes Safe"
## ..- attr(*, "format.stata")= chr "%36.0g"
## ..- attr(*, "labels")= Named num 1 7 NA NA
## .. ..- attr(*, "names")= chr "Strongly Disagree" "Strongly Agree" "Don't Know" "No Response"
## $ drk1 : 'haven_labelled' num 3 3 1 4 4 3 2 2 1 2 ...
## ..- attr(*, "label")= chr "Likelihood of Death or Harm from Natural Disaster"
## ..- attr(*, "format.stata")= chr "%36.0g"
## ..- attr(*, "labels")= Named num 1 2 3 4 NA NA
## .. ..- attr(*, "names")= chr "Not Likely at All" "A Little Likely" "Somewhat Likely" "Very Likely" ...
## $ env1c : 'haven_labelled' num 7 4 2 5 7 7 1 1 NA 1 ...
## ..- attr(*, "label")= chr "Higher Priority for Protecting Environment or Promoting Economic Growth"
## ..- attr(*, "format.stata")= chr "%36.0g"
## ..- attr(*, "labels")= Named num 1 7 NA NA
## .. ..- attr(*, "names")= chr "Environment as priority" "Economic growth as priority" "Don't Know" "No Response"
## $ env2b : 'haven_labelled' num 1 3 3 2 4 1 1 3 2 3 ...
## ..- attr(*, "label")= chr "Seriousness of Climate Change"
## ..- attr(*, "format.stata")= chr "%36.0g"
## ..- attr(*, "labels")= Named num 1 2 3 4 NA NA
## .. ..- attr(*, "names")= chr "Very Serious" "Somewhat Serious" "Not So Serious" "Not Serious at All" ...
## $ pn4 : 'haven_labelled' num 3 2 3 3 1 2 3 2 NA 3 ...
## ..- attr(*, "label")= chr "Satisfaction with Democracy"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 2 3 4 NA NA
## .. ..- attr(*, "names")= chr "Very Satisfied" "Satisfied" "Dissatisfied" "Very Dissatisfied" ...
## $ w14a : 'haven_labelled' num 1 2 2 1 1 1 1 1 NA 1 ...
## ..- attr(*, "label")= chr "Abortion Justified When Mother's Health is at Risk"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 2 NA NA
## .. ..- attr(*, "names")= chr "Yes, it is justified" "No, it is not justified" "Don't Know" "No Response"
## $ e5 : 'haven_labelled' num NA 6 3 6 1 7 9 1 1 10 ...
## ..- attr(*, "label")= chr "Approval of Those Participating in Legal Demonstration"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 10 NA NA
## .. ..- attr(*, "names")= chr "Strongly disapprove" "Strongly approve" "Don't Know" "No Response"
## $ d1 : 'haven_labelled' num NA 5 3 6 10 10 7 1 1 9 ...
## ..- attr(*, "label")= chr "Approval of Government Critics' Right to Vote"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 10 NA NA
## .. ..- attr(*, "names")= chr "Strongly disapprove" "Strongly approve" "Don't Know" "No Response"
## $ d2 : 'haven_labelled' num NA 7 8 7 1 5 10 1 NA 10 ...
## ..- attr(*, "label")= chr "Approval of Government Critics' Right to Peaceful Demonstrations"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 10 NA NA
## .. ..- attr(*, "names")= chr "Strongly disapprove" "Strongly approve" "Don't Know" "No Response"
## $ d3 : 'haven_labelled' num NA 4 4 6 10 1 3 1 NA 8 ...
## ..- attr(*, "label")= chr "Approval of Government Critics' Right to Run for Office"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 10 NA NA
## .. ..- attr(*, "names")= chr "Strongly disapprove" "Strongly approve" "Don't Know" "No Response"
## $ d4 : 'haven_labelled' num NA 7 5 6 10 6 2 1 NA 7 ...
## ..- attr(*, "label")= chr "Approval of Government Critics' Right to Make Speeches"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 10 NA NA
## .. ..- attr(*, "names")= chr "Strongly disapprove" "Strongly approve" "Don't Know" "No Response"
## $ d5 : 'haven_labelled' num NA 8 9 6 10 2 5 1 1 8 ...
## ..- attr(*, "label")= chr "Approval of Homosexuals' Right to Run for Office"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 10 NA NA
## .. ..- attr(*, "names")= chr "Strongly disapprove" "Strongly approve" "Don't Know" "No Response"
## $ d6 : 'haven_labelled' num NA 5 9 5 10 10 7 1 10 5 ...
## ..- attr(*, "label")= chr "Approval of Same-Sex Couples' Right to Marry"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 10 NA NA
## .. ..- attr(*, "names")= chr "Strongly disapprove" "Strongly approve" "Don't Know" "No Response"
## $ lib1 : 'haven_labelled' num 1 1 2 1 1 2 1 3 1 1 ...
## ..- attr(*, "label")= chr "Level of Freedom of the Press Today"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 2 3 NA NA
## .. ..- attr(*, "names")= chr "Very Little" "Enough" "Too Much" "Don't Know" ...
## $ lib2b : 'haven_labelled' num NA 1 2 1 1 2 1 1 1 1 ...
## ..- attr(*, "label")= chr "Level of Freedom of Expression Today"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 2 3 NA NA
## .. ..- attr(*, "names")= chr "Very Little" "Enough" "Too Much" "Don't Know" ...
## $ lib2c : 'haven_labelled' num NA 1 NA 1 3 2 NA 2 1 1 ...
## ..- attr(*, "label")= chr "Level of Freedom to Express Political Opinions without Fear"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 2 3 NA NA
## .. ..- attr(*, "names")= chr "Very Little" "Enough" "Too Much" "Don't Know" ...
## $ lib4 : 'haven_labelled' num NA 1 NA 2 1 2 1 1 1 1 ...
## ..- attr(*, "label")= chr "Level of Protection of Human Rights Today"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 2 3 NA NA
## .. ..- attr(*, "names")= chr "Very Little" "Enough" "Too Much" "Don't Know" ...
## $ exc2 : 'haven_labelled' num 0 0 0 0 0 0 0 0 0 0 ...
## ..- attr(*, "label")= chr "Police Officer Asked for a Bribe"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 0 1 NA
## .. ..- attr(*, "names")= chr "No" "Yes" "No Response"
## $ exc6 : 'haven_labelled' num 0 0 0 0 0 0 0 0 0 0 ...
## ..- attr(*, "label")= chr "Government Employee Asked for a Bribe"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 0 1 NA
## .. ..- attr(*, "names")= chr "No" "Yes" "Don't Know"
## $ exc20 : 'haven_labelled' num 0 0 0 0 0 0 0 1 0 0 ...
## ..- attr(*, "label")= chr "Soldier Requested a Bribe"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 0 1
## .. ..- attr(*, "names")= chr "No" "Yes"
## $ exc11 : 'haven_labelled' num NA NA NA NA NA 0 NA NA NA 0 ...
## ..- attr(*, "label")= chr "Asked to Pay Bribe to Process Document in Municipal Government"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 0 1 NA NA NA
## .. ..- attr(*, "names")= chr "No" "Yes" "Don't Know" "No Response" ...
## $ exc13 : 'haven_labelled' num NA 0 0 0 NA 0 NA 0 0 0 ...
## ..- attr(*, "label")= chr "Asked to Pay a Bribe at Work"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 0 1 NA NA
## .. ..- attr(*, "names")= chr "No" "Yes" "No Response" "Not Applicable"
## $ exc14 : 'haven_labelled' num NA NA NA NA NA NA NA NA NA NA ...
## ..- attr(*, "label")= chr "Asked to Pay a Bribe to the Courts"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 0 1 NA
## .. ..- attr(*, "names")= chr "No" "Yes" "Not Applicable"
## $ exc15 : 'haven_labelled' num 0 0 NA 0 NA 0 0 NA NA NA ...
## ..- attr(*, "label")= chr "Asked to Pay a Bribe to use Public Health Services"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 0 1 NA NA
## .. ..- attr(*, "names")= chr "No" "Yes" "No Response" "Not Applicable"
## $ exc16 : 'haven_labelled' num 0 NA NA NA NA NA NA 0 NA 0 ...
## ..- attr(*, "label")= chr "Asked to Pay a Bribe at School"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 0 1 NA NA NA
## .. ..- attr(*, "names")= chr "No" "Yes" "Don't Know" "No Response" ...
## $ exc18 : 'haven_labelled' num 0 0 0 1 1 0 0 0 0 0 ...
## ..- attr(*, "label")= chr "Paying a Bribe is Justified"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 0 1 NA NA
## .. ..- attr(*, "names")= chr "No" "Yes" "Don't Know" "No Response"
## $ exc7new : 'haven_labelled' num 5 4 5 3 4 5 2 2 NA 5 ...
## ..- attr(*, "label")= chr "Amount of Corruption among Politicians"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 2 3 4 5 NA NA
## .. ..- attr(*, "names")= chr "None" "Less than half of them" "Half of them" "More than half of them" ...
## $ vicbar7 : 'haven_labelled' num 2 2 2 2 2 2 1 1 2 2 ...
## ..- attr(*, "label")= chr "Murders in the Neighborhood"
## ..- attr(*, "format.stata")= chr "%36.0f"
## ..- attr(*, "labels")= Named num 1 2 NA NA
## .. ..- attr(*, "names")= chr "Yes" "No" "Don't Know" "No Response"
## [list output truncated]
## - attr(*, "label")= chr "©AmericasBarometer, LAPOP; created 21 Sep 2017; type: notes list"
## - attr(*, "notes")= chr "For more information and details about the sample design, please consult the technical and country reports thro"| __truncated__ "4" "All data are de-identified and regulated by the Institutional Review Board (IRB) of Vanderbilt University. They"| __truncated__ "All data are copyrighted by the Latin American Public Opinion Project (LAPOP) and may only be used with the exp"| __truncated__ ...
Otro comando que hace algo similar, en el universo tidy, tydiverse https://www.tidyverse.org/, con la librería dplyr y el comando glimpse
#install.packages("dplyr", dependencies = TRUE)
library(dplyr)
## Warning: package 'dplyr' was built under R version 3.5.2
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
glimpse(mex2017)
## Observations: 1,563
## Variables: 201
## $ pais <dbl+lbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ idnum <dbl> 694, 736, 1083, 1024, 1296, 920, 1479, 876, 565, 209…
## $ uniq_id <dbl+lbl> 16010694, 16010736, 16011083, 16011024, 16011296…
## $ upm <dbl> 106, 106, 66, 106, 13, 106, 13, 13, 16, 16, 16, 111,…
## $ prov <dbl+lbl> 104, 104, 121, 104, 112, 104, 112, 112, 113, 113…
## $ municipio <dbl+lbl> 104006, 104006, 121058, 104006, 112044, 104006, …
## $ cluster <dbl> 71, 71, 932, 72, 431, 71, 432, 432, 461, 462, 462, 1…
## $ ur <dbl+lbl> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, …
## $ tamano <dbl+lbl> 4, 4, 4, 4, 5, 4, 5, 5, 4, 4, 4, 4, 4, 2, 4, 5, …
## $ idiomaq <dbl+lbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ fecha <date> 2017-03-13, 2017-03-13, 2017-02-16, 2017-03-13, 201…
## $ wt <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
## $ estratopri <dbl+lbl> 104, 104, 103, 104, 104, 104, 104, 104, 103, 103…
## $ estratosec <dbl+lbl> 2, 2, 3, 2, 3, 2, 3, 3, 2, 2, 2, 2, 2, 1, 2, 3, …
## $ q2 <dbl> 38, 64, 25, 32, 18, 45, 18, 36, 73, 49, 46, 26, 56, …
## $ q1 <dbl+lbl> 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, …
## $ ls3 <dbl+lbl> 3, 2, 2, 3, 2, 2, NA, 2, NA, 1, 2, 2, 2, 1, 2, 1…
## $ a4 <dbl+lbl> NA, 55, NA, 1, NA, 15, 15, NA, 5, 13, 13, 12, NA…
## $ soct2 <dbl+lbl> 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, NA, 3, 3, 3,…
## $ idio2 <dbl+lbl> 3, 1, 2, 2, 3, 3, 2, 3, 2, 2, 3, 3, NA, 3, 3, 3,…
## $ np1 <dbl+lbl> 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, …
## $ cp6 <dbl+lbl> 4, 3, 4, 1, 4, 1, 1, 2, 1, 4, 2, 1, 4, 1, 1, 2, …
## $ cp7 <dbl+lbl> 2, 4, 2, 4, 4, 4, 4, 2, 4, 2, 2, 3, 4, 4, 4, 3, …
## $ cp8 <dbl+lbl> 1, 2, 4, 3, 4, 3, 4, 1, 2, 2, 2, 4, 4, 3, 4, 2, …
## $ cp13 <dbl+lbl> 4, 3, 4, 4, 4, 3, 4, 2, 4, 4, 4, 4, 4, 3, 4, 4, …
## $ cp20 <dbl+lbl> 4, NA, 4, NA, 4, NA, 2, NA, NA, NA, 2, NA, 4, 4,…
## $ it1 <dbl+lbl> 3, 2, 2, 3, 3, 2, 3, 3, 1, 4, 1, 2, 4, 1, 1, 4, …
## $ l1 <dbl+lbl> 9, 10, 2, 7, 10, 9, NA, 1, 7, 1, NA, 1, 6, 1, 7,…
## $ prot3 <dbl+lbl> 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, NA, 2, 2, 2, 2,…
## $ jc10 <dbl+lbl> NA, NA, 1, 1, 1, NA, NA, NA, NA, NA, 2, 2, 2, 2,…
## $ jc13 <dbl+lbl> NA, 2, NA, NA, NA, 1, NA, 1, NA, 2, NA, NA, NA, …
## $ jc15a <dbl+lbl> NA, 2, 2, NA, NA, 1, NA, 1, 2, 2, 2, 1, 2, 2, 2,…
## $ vic1ext <dbl+lbl> 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 1, 1, 2, …
## $ vic1exta <dbl+lbl> NA, NA, NA, NA, NA, NA, NA, 1, NA, NA, NA, 1, NA…
## $ vic71 <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ vic43 <dbl+lbl> 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ vicbar4a <dbl+lbl> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ aoj11 <dbl+lbl> NA, 2, 3, 2, 4, 2, 2, 2, 1, 2, 1, 2, NA, 3, 2, 2…
## $ aoj12 <dbl+lbl> 3, 1, 1, 3, 3, 2, 2, 2, 4, 4, NA, 3, 4, 4, 4, 1,…
## $ b1 <dbl+lbl> 7, 7, 3, 3, 7, 5, 3, 1, 1, 1, NA, 2, 5, 4, 5, 2,…
## $ b2 <dbl+lbl> 1, 4, 6, 4, 7, 6, 5, 1, 1, 1, 5, 3, 5, 1, 2, 4, …
## $ b3 <dbl+lbl> NA, NA, 2, 3, 7, 4, 2, 1, 1, 4, 2, 5, 3, 1, 6, 2…
## $ b4 <dbl+lbl> NA, 5, 4, 3, 7, 2, 6, 1, 1, 1, 5, 2, 6, 1, 3, 6,…
## $ b6 <dbl+lbl> 6, 7, 6, 4, 7, 7, 7, 2, 1, 1, NA, 1, 1, 7, 4, 4,…
## $ b43 <dbl+lbl> 7, 7, 7, 6, 7, 7, 7, NA, 1, 4, 7, 7, 6, 7, 7, 7,…
## $ b12 <dbl+lbl> NA, 7, 5, 4, 7, 6, 4, 1, 1, 1, 6, 6, 2, 7, 7, 7,…
## $ b13 <dbl+lbl> NA, 7, 4, 3, 7, 5, 4, NA, 1, 5, NA, NA, 1, 1, 1,…
## $ b18 <dbl+lbl> 1, 4, 4, 3, 7, 7, 1, 7, 1, 3, NA, 4, 6, 1, 1, 3,…
## $ b21 <dbl+lbl> 1, 5, 2, 3, 1, 4, 4, 1, 1, 2, NA, 4, 3, 1, 4, 1,…
## $ b21a <dbl+lbl> 1, 6, 4, 4, 1, 5, 6, 7, 1, 1, NA, 4, 5, 1, 5, 1,…
## $ b32 <dbl+lbl> 1, 6, 6, 4, 7, 7, 6, 5, 1, 7, NA, 7, 6, 7, 6, 3,…
## $ b37 <dbl+lbl> 7, 5, 6, 4, 7, 4, 5, 2, 1, 1, NA, 5, 2, 6, 7, 6,…
## $ b47a <dbl+lbl> 1, 4, 6, 4, 7, 7, 6, NA, 1, 1, NA, 7, 1, 1, 5, 5…
## $ pr3d <dbl+lbl> 1, 1, NA, 7, 1, 3, 3, 1, 1, 1, NA, 1, 7, 7, 7, 6…
## $ pr3e <dbl+lbl> 7, 1, NA, 4, 7, 2, 3, 1, 1, 1, NA, 1, 3, 1, 7, 1…
## $ m1 <dbl+lbl> 4, 3, 2, 3, 5, 2, 2, 4, 2, 5, 3, 2, 4, 3, 4, 5, …
## $ m2 <dbl+lbl> 4, 3, 3, 3, 4, 3, 1, 4, 2, 5, NA, 2, 1, 4, 4, NA…
## $ sd2new2 <dbl+lbl> 3, 2, 2, 4, 1, 2, 2, 2, 3, 3, 4, 3, NA, 2, 3, 2,…
## $ sd3new2 <dbl+lbl> NA, 1, 3, 2, 1, 1, 2, 2, 2, 3, 4, 3, NA, 2, 2, 1…
## $ sd6new2 <dbl+lbl> 3, 3, 2, 3, 1, 2, 2, 2, 4, 4, 2, 4, 2, 2, 4, 2, …
## $ infrax <dbl+lbl> 1, 1, 3, 5, 5, 2, 2, 5, 6, 4, 3, 6, 6, 6, 3, 1, …
## $ infra3 <dbl+lbl> 2, 2, 2, 3, 5, 4, 1, 5, 4, 4, 4, 5, 3, 3, 3, 2, …
## $ ros1 <dbl+lbl> NA, 6, 4, 5, 6, 4, 7, 1, 1, 1, NA, 1, 7, 2, 4, 5…
## $ ros4 <dbl+lbl> 1, 5, 1, 7, 7, 5, 6, 1, 7, 3, 4, 3, 2, 7, 5, 7, …
## $ ing4 <dbl+lbl> 1, 4, 2, 4, 7, 7, 4, NA, NA, 1, NA, 4, 1, 1, 6, …
## $ eff1 <dbl+lbl> NA, 6, 4, 4, 1, 1, 3, 1, 1, 2, 1, 1, 2, 7, 6, 4,…
## $ eff2 <dbl+lbl> NA, 6, 4, 4, 1, 5, 3, NA, 1, 3, 1, NA, 3, 1, 4, …
## $ aoj22new <dbl+lbl> 5, 6, 3, 6, 7, 7, 7, 5, 7, 6, NA, 7, 5, 7, 5, 7,…
## $ media3 <dbl+lbl> NA, 5, 6, 5, 7, 3, 5, 1, 1, 1, NA, 5, 7, 7, 7, 6…
## $ media4 <dbl+lbl> NA, 3, 5, 5, 6, 4, 4, 1, 7, 1, 3, 1, 7, 1, 3, NA…
## $ exp_a <dbl+lbl> 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, …
## $ dst1b <dbl+lbl> 1, 6, 3, 5, 7, 6, 7, 7, 7, 5, 7, 7, 6, 7, 7, NA,…
## $ drk1 <dbl+lbl> 3, 3, 1, 4, 4, 3, 2, 2, 1, 2, 4, 4, 1, 2, 4, 4, …
## $ env1c <dbl+lbl> 7, 4, 2, 5, 7, 7, 1, 1, NA, 1, 1, 2, 2, 7, 4, 3,…
## $ env2b <dbl+lbl> 1, 3, 3, 2, 4, 1, 1, 3, 2, 3, 1, 1, 4, 2, 1, 1, …
## $ pn4 <dbl+lbl> 3, 2, 3, 3, 1, 2, 3, 2, NA, 3, NA, 2, 2, 4, 2, 2…
## $ w14a <dbl+lbl> 1, 2, 2, 1, 1, 1, 1, 1, NA, 1, 2, 2, 2, 2, 2, 1,…
## $ e5 <dbl+lbl> NA, 6, 3, 6, 1, 7, 9, 1, 1, 10, NA, NA, 2, 10, 6…
## $ d1 <dbl+lbl> NA, 5, 3, 6, 10, 10, 7, 1, 1, 9, NA, 6, 1, 5, 6,…
## $ d2 <dbl+lbl> NA, 7, 8, 7, 1, 5, 10, 1, NA, 10, 4, 3, 10, 10, …
## $ d3 <dbl+lbl> NA, 4, 4, 6, 10, 1, 3, 1, NA, 8, 3, 1, 9, 10, 8,…
## $ d4 <dbl+lbl> NA, 7, 5, 6, 10, 6, 2, 1, NA, 7, NA, 3, 7, 10, 9…
## $ d5 <dbl+lbl> NA, 8, 9, 6, 10, 2, 5, 1, 1, 8, NA, 1, 5, 1, 1, …
## $ d6 <dbl+lbl> NA, 5, 9, 5, 10, 10, 7, 1, 10, 5, NA, 1, 6, 5, 1…
## $ lib1 <dbl+lbl> 1, 1, 2, 1, 1, 2, 1, 3, 1, 1, 2, 1, NA, 2, 2, NA…
## $ lib2b <dbl+lbl> NA, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, NA, 1, 2, 1…
## $ lib2c <dbl+lbl> NA, 1, NA, 1, 3, 2, NA, 2, 1, 1, NA, 1, NA, 1, 1…
## $ lib4 <dbl+lbl> NA, 1, NA, 2, 1, 2, 1, 1, 1, 1, 1, 1, NA, 1, 2, …
## $ exc2 <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ exc6 <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ exc20 <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ exc11 <dbl+lbl> NA, NA, NA, NA, NA, 0, NA, NA, NA, 0, NA, NA, NA…
## $ exc13 <dbl+lbl> NA, 0, 0, 0, NA, 0, NA, 0, 0, 0, NA, 0, 0, NA, 0…
## $ exc14 <dbl+lbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, …
## $ exc15 <dbl+lbl> 0, 0, NA, 0, NA, 0, 0, NA, NA, NA, NA, NA, NA, 0…
## $ exc16 <dbl+lbl> 0, NA, NA, NA, NA, NA, NA, 0, NA, 0, 0, 0, NA, N…
## $ exc18 <dbl+lbl> 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, …
## $ exc7new <dbl+lbl> 5, 4, 5, 3, 4, 5, 2, 2, NA, 5, NA, 3, NA, 5, 4, …
## $ vicbar7 <dbl+lbl> 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, …
## $ vicbar7f <dbl+lbl> NA, NA, NA, NA, NA, NA, 3, 1, NA, NA, NA, NA, NA…
## $ fear11 <dbl+lbl> NA, 4, 4, 3, 4, 2, 4, 3, 4, 4, 4, 3, 4, 2, 4, 2,…
## $ capital1 <dbl+lbl> 2, 2, 2, NA, 2, 1, NA, 1, NA, 2, NA, NA, 1, 2, 2…
## $ iga1 <dbl+lbl> NA, 1, 4, 1, 4, 2, NA, 4, NA, 1, 1, 1, NA, 4, 4,…
## $ igaaoj22 <dbl+lbl> 1, 1, 2, 1, 2, 2, 1, 1, NA, 1, NA, NA, 1, 1, 1, …
## $ vb1 <dbl+lbl> 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, …
## $ inf1 <dbl+lbl> 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, …
## $ vb2 <dbl+lbl> 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, …
## $ vb3n <dbl+lbl> NA, 101, NA, NA, NA, 101, NA, 102, 101, 102, NA,…
## $ vb10 <dbl+lbl> 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2, …
## $ vb11 <dbl+lbl> NA, NA, NA, NA, NA, NA, NA, 103, NA, NA, NA, 103…
## $ pol1 <dbl+lbl> 4, 3, NA, 3, 4, 2, 2, 1, 4, 1, 4, 3, 3, 3, 3, 4,…
## $ vb20 <dbl+lbl> 4, 2, NA, 3, 4, 3, 3, 3, 2, 3, 3, 3, 3, 1, 1, 3,…
## $ mexcv1 <dbl+lbl> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, …
## $ mexcv2 <dbl+lbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, …
## $ for5 <dbl+lbl> NA, 11, 11, NA, 10, 4, NA, NA, NA, 1, NA, NA, 7,…
## $ exp_b <dbl+lbl> 2, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, …
## $ mil10a <dbl+lbl> NA, 1, NA, 4, 4, NA, NA, 4, NA, 2, NA, NA, NA, N…
## $ mil10e <dbl+lbl> 4, 1, NA, 4, 4, 2, 4, 4, 4, 4, NA, 2, NA, 4, 4, …
## $ mil10oas <dbl+lbl> NA, NA, NA, NA, 4, 3, NA, NA, NA, 4, NA, NA, NA,…
## $ mil10un <dbl+lbl> NA, 2, NA, 3, 4, 2, NA, 3, NA, 4, NA, NA, NA, 3,…
## $ ccq1 <dbl+lbl> 2, 1, 2, NA, 2, 2, 1, 2, 2, 1, 2, 1, 1, 1, 1, 2,…
## $ ccq2 <dbl+lbl> NA, 5, NA, NA, NA, NA, 2, NA, NA, 3, NA, 3, 5, 2…
## $ ccq3 <dbl+lbl> 1, 1, 2, 1, 1, 1, 1, 2, NA, 1, 2, 2, 2, 2, 1, NA…
## $ ccq4 <dbl+lbl> 1, 1, NA, NA, 3, 2, 2, NA, NA, 3, NA, NA, NA, NA…
## $ mexus1 <dbl+lbl> NA, 1, 2, 2, 2, 2, 2, 2, NA, 2, NA, NA, 1, 2, 2,…
## $ mexus2 <dbl+lbl> 3, 1, 2, 1, 2, 3, NA, 2, NA, 2, NA, 2, NA, 2, 2,…
## $ via1a <dbl+lbl> NA, 2, NA, 3, NA, NA, 2, NA, NA, 77, 77, NA, NA,…
## $ via1b <dbl+lbl> NA, 20, NA, 22, NA, NA, 20, NA, NA, NA, NA, NA, …
## $ wf1 <dbl+lbl> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 1, 2, …
## $ cct1b <dbl+lbl> 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, …
## $ ed <dbl+lbl> 6, 0, NA, 9, 8, 0, 10, 0, 0, 12, 1, 9, 1, 0, 6, …
## $ ed2 <dbl+lbl> 0, 0, 0, 2, 0, 0, 5, 0, NA, 0, 0, NA, NA, 0, 1, …
## $ mexham1 <dbl+lbl> 5, 5, 1, 5, 1, 3, 1, 1, 2, 3, 1, 3, 5, 3, 6, 3, …
## $ mexham2 <dbl+lbl> NA, 5, 1, 2, 3, 2, 1, 5, 3, 3, 1, 3, 3, 3, 3, 3,…
## $ mexham3 <dbl+lbl> NA, 5, 1, 3, 1, 3, 1, 1, 3, 3, 1, 3, 5, 3, 2, 3,…
## $ mexham4 <dbl+lbl> 1, 5, 1, 5, 5, 5, 4, 1, 3, 5, 1, 3, 5, 3, 5, 5, …
## $ mexham5 <dbl+lbl> 1, 5, NA, 6, 3, 6, 3, 1, 5, 5, 1, 5, 3, 3, 6, 5,…
## $ mexham6 <dbl+lbl> 1, 6, 1, 5, 5, 3, 3, 5, 3, 3, 1, 5, 3, 3, 5, 3, …
## $ q5a <dbl+lbl> 5, 2, 5, 2, 3, 2, 1, 3, 4, 5, 1, 1, 2, 4, 2, 1, …
## $ q5b <dbl+lbl> 4, 1, 4, 2, 3, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, …
## $ q3c <dbl+lbl> 11, 1, NA, 1, 1, 1, 1, 1, 1, 4, 1, NA, 3, 3, 5, …
## $ ocup4a <dbl+lbl> 5, 1, 6, 1, 4, 1, 4, 3, 1, 1, 5, 1, 5, 5, 1, 5, …
## $ ocup1a <dbl+lbl> NA, 4, NA, 4, NA, 4, NA, NA, 2, 4, NA, 4, NA, NA…
## $ q10g <dbl+lbl> NA, 1, NA, 1, NA, 1, NA, NA, 1, 0, NA, 1, NA, NA…
## $ q10new <dbl+lbl> 0, 1, NA, 1, 16, 1, 1, 1, 1, 0, 1, 1, NA, 0, 1, …
## $ q10a <dbl+lbl> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, NA, 1, 2, 2, 2,…
## $ q14 <dbl+lbl> 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 2, …
## $ q10d <dbl+lbl> 2, 4, 4, 4, 3, 4, 1, 3, 4, 3, 3, 4, NA, 4, 3, 4,…
## $ q10e <dbl+lbl> 3, 3, 3, 2, 3, 3, 2, 3, 2, 2, 2, 2, NA, 3, 3, 1,…
## $ q11n <dbl+lbl> 2, 2, 2, 1, 1, 2, 1, 3, 2, 2, 2, 2, 2, 1, 2, 2, …
## $ q12c <dbl+lbl> 5, 2, 2, 3, 8, 4, 5, 7, 3, 5, 6, 4, 2, 1, 5, 4, …
## $ q12bn <dbl+lbl> 0, 0, 0, 0, 3, 0, 2, 2, 1, 3, 3, 2, 0, 0, 2, 2, …
## $ q12 <dbl+lbl> 3, 6, 0, 0, 0, 0, 1, 4, 8, 3, 3, 2, 8, 1, 3, 2, …
## $ q12m <dbl+lbl> 1, 2, NA, NA, NA, NA, 1, 3, 4, 2, 3, 2, 4, 1, 1,…
## $ q12f <dbl+lbl> 2, 4, NA, NA, NA, NA, 0, 1, 4, 1, 0, 0, 4, 0, 2,…
## $ vac1 <dbl+lbl> 1, 1, 2, NA, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, NA, 1…
## $ mexinf1 <dbl+lbl> 2, 1, 2, 2, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, …
## $ mexinf4 <dbl+lbl> 2, 2, 2, NA, 2, 2, NA, 2, 2, 2, 2, 2, 2, 2, 1, N…
## $ mexinf5 <dbl+lbl> 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ mexinf6 <dbl+lbl> 2, 1, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 1, …
## $ mexinf7 <dbl+lbl> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, NA,…
## $ mexinf9 <dbl+lbl> 2, 2, 2, 2, NA, 2, 2, 2, 2, 2, 2, NA, NA, NA, 2,…
## $ mexinf8 <dbl+lbl> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, NA,…
## $ etid <dbl+lbl> NA, 4, 3, 3, 3, NA, 3, 3, NA, 2, NA, NA, NA, 1, …
## $ mexiiet1 <dbl+lbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 1, N…
## $ mexiiet2 <dbl+lbl> 1, NA, NA, NA, 1, NA, NA, NA, 2, NA, 1, NA, NA, …
## $ mexiiet3 <dbl+lbl> NA, 1, 1, 1, NA, 1, 1, 1, NA, 1, NA, NA, 2, NA, …
## $ www1 <dbl+lbl> 5, 5, 5, 5, 1, 1, 1, 5, 5, 5, 5, 5, 5, 5, 4, 5, …
## $ i2 <dbl+lbl> 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, …
## $ i3 <dbl+lbl> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, …
## $ i4 <dbl+lbl> 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, …
## $ gi0 <dbl+lbl> 5, 3, 3, 2, 3, 2, 2, 5, 5, 1, 5, 4, 2, 1, 5, 2, …
## $ pr1 <dbl+lbl> 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 3, …
## $ r3 <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, …
## $ r4 <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ r4a <dbl+lbl> 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, …
## $ r5 <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ r6 <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, …
## $ r7 <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ r8 <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ r12 <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, …
## $ r14 <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, …
## $ r15 <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ r18 <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ r1 <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, …
## $ r16 <dbl+lbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 1, 1…
## $ sent1 <dbl+lbl> NA, NA, NA, NA, NA, NA, 2, NA, NA, 77, NA, 1, NA…
## $ colorr <dbl+lbl> 6, 6, 7, 6, 5, 6, 5, 4, 4, 3, 3, 5, 4, 5, 6, 3, …
## $ conocim <dbl+lbl> 5, 3, 4, 3, 5, 2, 4, 4, 3, 2, 4, 4, 4, 2, 3, 4, …
## $ iarea1 <dbl+lbl> 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 3, 4, 3, 2, …
## $ iarea2 <dbl+lbl> 3, 4, 3, 4, 3, 3, 3, 3, 2, 2, 3, 4, 3, 3, 4, 3, …
## $ iarea3 <dbl+lbl> 1, 1, 3, 1, 1, 1, 1, 3, 2, 2, 2, 3, 1, 2, 1, 1, …
## $ iarea4 <dbl+lbl> 1, 1, 3, 3, 2, 2, 3, 3, 1, 2, 1, 2, 3, 4, 1, 3, …
## $ iarea6 <dbl+lbl> 1, 1, 3, 1, 2, 3, 2, 2, 1, 1, 1, 2, 1, 1, 2, 1, …
## $ iarea7 <dbl+lbl> 1, 1, 3, 2, 1, 2, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ sexi <dbl+lbl> 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, …
## $ colori <dbl+lbl> 5, 5, 4, 5, 4, 5, 4, 4, 1, 2, 2, 4, 3, 3, 5, 4, …
## $ srvyrid <dbl> 44, 44, 34, 44, 8, 44, 8, 8, 36, 35, 35, 49, 16, 16,…
## $ nationality <dbl+lbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ formatq <dbl+lbl> 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, …
## $ sex <dbl+lbl> 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, …
Si queremos ver los niveles de una variable, tenemos que usar el formato basedatos$var. Esto nos llevará a la variable dentro del objeto que tenemos que es una base de datos. Esto nos permite tener varias bases de datos cargadas en un mismo ambiente.
Recuerda que tenemos que leer los dos archivos de información: http://datasets.americasbarometer.org/database/files/634534536Mexico_AmericasBarometer_Tech_Info_2016_17_W_092217.pdf http://datasets.americasbarometer.org/database/files/1727039552ABMex17-v16.0.2.1-Spa-170130_W.pdf
levels(mex2017$sex)
## NULL
También podemos pedir una tabla de una variable.
table(mex2017$sex) # edad
##
## 1 2
## 788 775
table(mex2017$q2) # sexo
##
## 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
## 59 43 48 42 41 41 32 35 42 36 37 50 45 29 30 39 22 31 32 24 24 28 28 22 33
## 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
## 25 24 34 31 32 33 30 34 21 36 26 23 15 24 18 22 15 15 14 10 10 16 15 12 11
## 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 85 88
## 24 6 15 7 11 12 6 7 8 6 5 1 8 1 3 2 1 1
Para ver las dimensiones de cualquier objeto, en este caso nos dirá el número de observaciones y variables
dim(mex2017)
## [1] 1563 201
Si queremos saber el tipo o clase de un objeto (numeric, matrix, data frame, etc)
class(mex2017)
## [1] "tbl_df" "tbl" "data.frame"
summary(mex2017)
## pais idnum uniq_id upm
## Min. :1 Min. : 1.0 Min. :16010001 Min. : 1.00
## 1st Qu.:1 1st Qu.: 391.5 1st Qu.:16010392 1st Qu.: 33.00
## Median :1 Median : 782.0 Median :16010782 Median : 65.00
## Mean :1 Mean : 782.0 Mean :16010782 Mean : 65.45
## 3rd Qu.:1 3rd Qu.:1172.5 3rd Qu.:16011172 3rd Qu.: 98.00
## Max. :1 Max. :1563.0 Max. :16011563 Max. :130.00
##
## prov municipio cluster ur
## Min. :101.0 Min. :101009 Min. : 11.0 Min. :1.0
## 1st Qu.:110.0 1st Qu.:110012 1st Qu.: 331.5 1st Qu.:1.0
## Median :115.0 Median :115061 Median : 661.0 Median :1.0
## Mean :116.3 Mean :116363 Mean : 656.3 Mean :1.2
## 3rd Qu.:122.0 3rd Qu.:122010 3rd Qu.: 981.5 3rd Qu.:1.0
## Max. :132.0 Max. :132044 Max. :1302.0 Max. :2.0
##
## tamano idiomaq fecha wt
## Min. :1.000 Min. :1 Min. :2017-01-28 Min. :1
## 1st Qu.:2.000 1st Qu.:1 1st Qu.:2017-02-11 1st Qu.:1
## Median :2.000 Median :1 Median :2017-02-19 Median :1
## Mean :2.477 Mean :1 Mean :2017-02-22 Mean :1
## 3rd Qu.:3.000 3rd Qu.:1 3rd Qu.:2017-03-05 3rd Qu.:1
## Max. :5.000 Max. :1 Max. :2017-03-23 Max. :1
##
## estratopri estratosec q2 q1
## Min. :101.0 Min. :1.000 Min. :18.00 Min. :1.000
## 1st Qu.:101.0 1st Qu.:1.000 1st Qu.:27.00 1st Qu.:1.000
## Median :103.0 Median :1.000 Median :38.00 Median :1.000
## Mean :102.5 Mean :1.447 Mean :40.57 Mean :1.496
## 3rd Qu.:103.0 3rd Qu.:2.000 3rd Qu.:52.00 3rd Qu.:2.000
## Max. :104.0 Max. :3.000 Max. :88.00 Max. :2.000
##
## ls3 a4 soct2 idio2
## Min. :1.000 Min. : 1.00 Min. :1.000 Min. :1.000
## 1st Qu.:1.000 1st Qu.: 1.00 1st Qu.:3.000 1st Qu.:2.000
## Median :2.000 Median : 5.00 Median :3.000 Median :3.000
## Mean :1.707 Mean :17.51 Mean :2.807 Mean :2.439
## 3rd Qu.:2.000 3rd Qu.:21.00 3rd Qu.:3.000 3rd Qu.:3.000
## Max. :4.000 Max. :70.00 Max. :3.000 Max. :3.000
## NA's :16 NA's :38 NA's :22 NA's :20
## np1 cp6 cp7 cp8
## Min. :1.00 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:2.00 1st Qu.:1.000 1st Qu.:2.000 1st Qu.:3.000
## Median :2.00 Median :3.000 Median :4.000 Median :4.000
## Mean :1.91 Mean :2.694 Mean :3.246 Mean :3.574
## 3rd Qu.:2.00 3rd Qu.:4.000 3rd Qu.:4.000 3rd Qu.:4.000
## Max. :2.00 Max. :4.000 Max. :4.000 Max. :4.000
## NA's :14 NA's :7 NA's :9 NA's :12
## cp13 cp20 it1 l1
## Min. :1.000 Min. :1.000 Min. :1.000 Min. : 1.000
## 1st Qu.:4.000 1st Qu.:4.000 1st Qu.:2.000 1st Qu.: 3.000
## Median :4.000 Median :4.000 Median :2.000 Median : 5.000
## Mean :3.758 Mean :3.677 Mean :2.387 Mean : 4.969
## 3rd Qu.:4.000 3rd Qu.:4.000 3rd Qu.:3.000 3rd Qu.: 7.000
## Max. :4.000 Max. :4.000 Max. :4.000 Max. :10.000
## NA's :12 NA's :790 NA's :34 NA's :166
## prot3 jc10 jc13 jc15a
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:2.000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:2.000
## Median :2.000 Median :2.000 Median :1.000 Median :2.000
## Mean :1.908 Mean :1.517 Mean :1.497 Mean :1.829
## 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.000
## Max. :2.000 Max. :2.000 Max. :2.000 Max. :2.000
## NA's :4 NA's :842 NA's :827 NA's :133
## vic1ext vic1exta vic71 vic43
## Min. :1.000 Min. : 1.000 Min. :0.0000 Min. :0.0000
## 1st Qu.:1.000 1st Qu.: 1.000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :2.000 Median : 2.000 Median :1.0000 Median :0.0000
## Mean :1.681 Mean : 2.426 Mean :0.5173 Mean :0.1859
## 3rd Qu.:2.000 3rd Qu.: 3.000 3rd Qu.:1.0000 3rd Qu.:0.0000
## Max. :2.000 Max. :20.000 Max. :1.0000 Max. :1.0000
## NA's :1 NA's :1070 NA's :5 NA's :3
## vicbar4a aoj11 aoj12 b1
## Min. :0.0000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:0.0000 1st Qu.:2.000 1st Qu.:2.000 1st Qu.:2.000
## Median :0.0000 Median :2.000 Median :3.000 Median :3.000
## Mean :0.1969 Mean :2.437 Mean :3.106 Mean :3.154
## 3rd Qu.:0.0000 3rd Qu.:3.000 3rd Qu.:4.000 3rd Qu.:4.000
## Max. :1.0000 Max. :4.000 Max. :4.000 Max. :7.000
## NA's :4 NA's :13 NA's :27 NA's :34
## b2 b3 b4 b6
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:3.000 1st Qu.:2.000 1st Qu.:2.000 1st Qu.:3.000
## Median :4.000 Median :3.000 Median :3.000 Median :5.000
## Mean :4.165 Mean :3.253 Mean :3.497 Mean :4.358
## 3rd Qu.:6.000 3rd Qu.:4.000 3rd Qu.:5.000 3rd Qu.:6.000
## Max. :7.000 Max. :7.000 Max. :7.000 Max. :7.000
## NA's :28 NA's :51 NA's :27 NA's :43
## b43 b12 b13 b18
## Min. :1.00 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:7.00 1st Qu.:4.000 1st Qu.:2.000 1st Qu.:1.000
## Median :7.00 Median :5.000 Median :4.000 Median :3.000
## Mean :6.55 Mean :4.888 Mean :3.618 Mean :2.892
## 3rd Qu.:7.00 3rd Qu.:7.000 3rd Qu.:5.000 3rd Qu.:4.000
## Max. :7.00 Max. :7.000 Max. :7.000 Max. :7.000
## NA's :6 NA's :34 NA's :85 NA's :20
## b21 b21a b32 b37
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:2.000 1st Qu.:2.000
## Median :2.000 Median :2.000 Median :4.000 Median :4.000
## Mean :2.364 Mean :2.581 Mean :3.859 Mean :3.933
## 3rd Qu.:3.000 3rd Qu.:4.000 3rd Qu.:5.000 3rd Qu.:5.000
## Max. :7.000 Max. :7.000 Max. :7.000 Max. :7.000
## NA's :19 NA's :25 NA's :24 NA's :39
## b47a pr3d pr3e m1
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:1.000 1st Qu.:2.000 1st Qu.:2.000 1st Qu.:3.000
## Median :3.000 Median :4.000 Median :5.000 Median :4.000
## Mean :3.046 Mean :4.196 Mean :4.354 Mean :3.749
## 3rd Qu.:5.000 3rd Qu.:6.000 3rd Qu.:6.000 3rd Qu.:5.000
## Max. :7.000 Max. :7.000 Max. :7.000 Max. :5.000
## NA's :35 NA's :75 NA's :111 NA's :27
## m2 sd2new2 sd3new2 sd6new2
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:3.000 1st Qu.:2.000 1st Qu.:2.000 1st Qu.:2.000
## Median :4.000 Median :2.000 Median :2.000 Median :3.000
## Mean :3.749 Mean :2.463 Mean :2.386 Mean :2.636
## 3rd Qu.:5.000 3rd Qu.:3.000 3rd Qu.:3.000 3rd Qu.:3.000
## Max. :5.000 Max. :4.000 Max. :4.000 Max. :4.000
## NA's :38 NA's :39 NA's :79 NA's :38
## infrax infra3 ros1 ros4
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:2.000 1st Qu.:2.000 1st Qu.:2.000 1st Qu.:4.000
## Median :3.000 Median :2.000 Median :4.000 Median :6.000
## Mean :3.357 Mean :2.377 Mean :3.996 Mean :5.348
## 3rd Qu.:4.000 3rd Qu.:3.000 3rd Qu.:5.500 3rd Qu.:7.000
## Max. :6.000 Max. :6.000 Max. :7.000 Max. :7.000
## NA's :35 NA's :13 NA's :84 NA's :37
## ing4 eff1 eff2 aoj22new
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:3.000 1st Qu.:1.000 1st Qu.:3.000 1st Qu.:5.000
## Median :4.000 Median :3.000 Median :4.000 Median :7.000
## Mean :4.378 Mean :3.192 Mean :3.928 Mean :5.783
## 3rd Qu.:6.000 3rd Qu.:5.000 3rd Qu.:5.000 3rd Qu.:7.000
## Max. :7.000 Max. :7.000 Max. :7.000 Max. :7.000
## NA's :83 NA's :34 NA's :39 NA's :28
## media3 media4 exp_a dst1b
## Min. :1.00 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:3.00 1st Qu.:3.000 1st Qu.:1.000 1st Qu.:4.000
## Median :4.00 Median :5.000 Median :2.000 Median :6.000
## Mean :4.07 Mean :4.644 Mean :1.508 Mean :5.167
## 3rd Qu.:5.00 3rd Qu.:6.000 3rd Qu.:2.000 3rd Qu.:7.000
## Max. :7.00 Max. :7.000 Max. :2.000 Max. :7.000
## NA's :45 NA's :64 NA's :43
## drk1 env1c env2b pn4
## Min. :1.00 Min. :1.00 Min. :1.000 Min. :1.00
## 1st Qu.:2.00 1st Qu.:2.00 1st Qu.:1.000 1st Qu.:2.00
## Median :3.00 Median :4.00 Median :1.000 Median :3.00
## Mean :2.81 Mean :3.91 Mean :1.331 Mean :2.94
## 3rd Qu.:4.00 3rd Qu.:6.00 3rd Qu.:1.000 3rd Qu.:3.00
## Max. :4.00 Max. :7.00 Max. :4.000 Max. :4.00
## NA's :36 NA's :36 NA's :20 NA's :61
## w14a e5 d1 d2
## Min. :1.000 Min. : 1.00 Min. : 1.000 Min. : 1.00
## 1st Qu.:1.000 1st Qu.: 4.00 1st Qu.: 5.000 1st Qu.: 5.00
## Median :1.000 Median : 7.00 Median : 7.000 Median : 8.00
## Mean :1.361 Mean : 6.33 Mean : 6.432 Mean : 6.98
## 3rd Qu.:2.000 3rd Qu.: 9.00 3rd Qu.: 9.000 3rd Qu.:10.00
## Max. :2.000 Max. :10.00 Max. :10.000 Max. :10.00
## NA's :75 NA's :41 NA's :55 NA's :40
## d3 d4 d5 d6
## Min. : 1.000 Min. : 1.000 Min. : 1.000 Min. : 1.000
## 1st Qu.: 2.000 1st Qu.: 3.000 1st Qu.: 3.000 1st Qu.: 1.000
## Median : 5.000 Median : 5.000 Median : 6.000 Median : 6.000
## Mean : 4.899 Mean : 5.288 Mean : 5.962 Mean : 5.598
## 3rd Qu.: 7.000 3rd Qu.: 8.000 3rd Qu.: 9.000 3rd Qu.:10.000
## Max. :10.000 Max. :10.000 Max. :10.000 Max. :10.000
## NA's :57 NA's :63 NA's :57 NA's :57
## lib1 lib2b lib2c lib4
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000
## Median :1.000 Median :1.000 Median :1.000 Median :1.000
## Mean :1.611 Mean :1.537 Mean :1.401 Mean :1.364
## 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.000
## Max. :3.000 Max. :3.000 Max. :3.000 Max. :3.000
## NA's :55 NA's :32 NA's :43 NA's :47
## exc2 exc6 exc20 exc11
## Min. :0.0000 Min. :0.0000 Min. :0.00000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.00000 1st Qu.:0.0000
## Median :0.0000 Median :0.0000 Median :0.00000 Median :0.0000
## Mean :0.2382 Mean :0.1134 Mean :0.02303 Mean :0.1809
## 3rd Qu.:0.0000 3rd Qu.:0.0000 3rd Qu.:0.00000 3rd Qu.:0.0000
## Max. :1.0000 Max. :1.0000 Max. :1.00000 Max. :1.0000
## NA's :1 NA's :2 NA's :1049
## exc13 exc14 exc15 exc16
## Min. :0.0000 Min. :0.0000 Min. :0.000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.000 1st Qu.:0.0000
## Median :0.0000 Median :0.0000 Median :0.000 Median :0.0000
## Mean :0.0571 Mean :0.2458 Mean :0.033 Mean :0.0806
## 3rd Qu.:0.0000 3rd Qu.:0.0000 3rd Qu.:0.000 3rd Qu.:0.0000
## Max. :1.0000 Max. :1.0000 Max. :1.000 Max. :1.0000
## NA's :634 NA's :1445 NA's :776 NA's :930
## exc18 exc7new vicbar7 vicbar7f
## Min. :0.0000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:0.0000 1st Qu.:4.000 1st Qu.:1.000 1st Qu.:2.000
## Median :0.0000 Median :4.000 Median :2.000 Median :3.000
## Mean :0.2363 Mean :4.123 Mean :1.514 Mean :2.423
## 3rd Qu.:0.0000 3rd Qu.:5.000 3rd Qu.:2.000 3rd Qu.:3.000
## Max. :1.0000 Max. :5.000 Max. :2.000 Max. :3.000
## NA's :14 NA's :64 NA's :22 NA's :825
## fear11 capital1 iga1 igaaoj22
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.00
## 1st Qu.:2.000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.00
## Median :3.000 Median :1.000 Median :1.000 Median :1.00
## Mean :2.589 Mean :1.465 Mean :2.113 Mean :1.35
## 3rd Qu.:4.000 3rd Qu.:2.000 3rd Qu.:4.000 3rd Qu.:2.00
## Max. :4.000 Max. :2.000 Max. :4.000 Max. :2.00
## NA's :3 NA's :127 NA's :147 NA's :40
## vb1 inf1 vb2 vb3n
## Min. :1.000 Min. :1.00 Min. :1.000 Min. : 0.0
## 1st Qu.:1.000 1st Qu.:1.00 1st Qu.:1.000 1st Qu.:101.0
## Median :1.000 Median :1.00 Median :1.000 Median :102.0
## Mean :1.068 Mean :1.02 Mean :1.313 Mean :104.2
## 3rd Qu.:1.000 3rd Qu.:1.00 3rd Qu.:2.000 3rd Qu.:103.0
## Max. :3.000 Max. :2.00 Max. :2.000 Max. :177.0
## NA's :2 NA's :2 NA's :12 NA's :829
## vb10 vb11 pol1 vb20
## Min. :1.000 Min. :101.0 Min. :1.000 Min. :1.000
## 1st Qu.:2.000 1st Qu.:101.0 1st Qu.:2.000 1st Qu.:2.000
## Median :2.000 Median :102.0 Median :3.000 Median :3.000
## Mean :1.811 Mean :104.7 Mean :2.908 Mean :2.825
## 3rd Qu.:2.000 3rd Qu.:109.0 3rd Qu.:4.000 3rd Qu.:4.000
## Max. :2.000 Max. :177.0 Max. :4.000 Max. :4.000
## NA's :16 NA's :1284 NA's :9 NA's :166
## mexcv1 mexcv2 for5 exp_b
## Min. :1.000 Min. :1.000 Min. : 1.000 Min. :1.0
## 1st Qu.:2.000 1st Qu.:2.000 1st Qu.: 1.000 1st Qu.:1.0
## Median :2.000 Median :2.000 Median : 2.000 Median :1.0
## Mean :1.902 Mean :1.891 Mean : 4.425 Mean :1.5
## 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.: 6.000 3rd Qu.:2.0
## Max. :2.000 Max. :2.000 Max. :14.000 Max. :2.0
## NA's :39 NA's :1425 NA's :249
## mil10a mil10e mil10oas mil10un
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:2.000 1st Qu.:3.000 1st Qu.:2.000 1st Qu.:2.000
## Median :2.000 Median :4.000 Median :2.000 Median :2.000
## Mean :2.376 Mean :3.236 Mean :2.535 Mean :2.283
## 3rd Qu.:3.000 3rd Qu.:4.000 3rd Qu.:3.000 3rd Qu.:3.000
## Max. :4.000 Max. :4.000 Max. :4.000 Max. :4.000
## NA's :859 NA's :375 NA's :890 NA's :502
## ccq1 ccq2 ccq3 ccq4
## Min. :1.00 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:1.00 1st Qu.:2.000 1st Qu.:1.000 1st Qu.:2.000
## Median :1.00 Median :3.000 Median :1.000 Median :3.000
## Mean :1.26 Mean :2.741 Mean :1.316 Mean :2.618
## 3rd Qu.:2.00 3rd Qu.:4.000 3rd Qu.:2.000 3rd Qu.:3.000
## Max. :2.00 Max. :5.000 Max. :2.000 Max. :5.000
## NA's :120 NA's :520 NA's :158 NA's :618
## mexus1 mexus2 via1a via1b
## Min. :1.000 Min. :1.000 Min. : 1.00 Min. : 2.00
## 1st Qu.:2.000 1st Qu.:1.000 1st Qu.: 2.00 1st Qu.:18.00
## Median :2.000 Median :2.000 Median :12.00 Median :77.00
## Mean :1.866 Mean :1.793 Mean :25.83 Mean :47.97
## 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:77.00 3rd Qu.:77.00
## Max. :3.000 Max. :3.000 Max. :77.00 Max. :77.00
## NA's :42 NA's :153 NA's :286 NA's :782
## wf1 cct1b ed ed2
## Min. :1.000 Min. :1.000 Min. : 0.00 Min. :0.000
## 1st Qu.:2.000 1st Qu.:2.000 1st Qu.: 6.00 1st Qu.:0.000
## Median :2.000 Median :2.000 Median : 9.00 Median :2.000
## Mean :1.798 Mean :1.759 Mean : 9.38 Mean :2.076
## 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:12.00 3rd Qu.:4.000
## Max. :2.000 Max. :2.000 Max. :18.00 Max. :8.000
## NA's :6 NA's :21 NA's :10 NA's :158
## mexham1 mexham2 mexham3 mexham4
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:3.000 1st Qu.:2.000 1st Qu.:2.000 1st Qu.:2.000
## Median :3.000 Median :3.000 Median :3.000 Median :3.000
## Mean :3.418 Mean :2.853 Mean :3.012 Mean :3.446
## 3rd Qu.:5.000 3rd Qu.:3.000 3rd Qu.:4.000 3rd Qu.:5.000
## Max. :6.000 Max. :6.000 Max. :6.000 Max. :6.000
## NA's :27 NA's :34 NA's :33 NA's :40
## mexham5 mexham6 q5a q5b
## Min. :1.000 Min. :1.00 Min. :1.000 Min. :1.000
## 1st Qu.:3.000 1st Qu.:2.00 1st Qu.:2.000 1st Qu.:1.000
## Median :5.000 Median :3.00 Median :3.000 Median :1.000
## Mean :3.882 Mean :3.16 Mean :3.258 Mean :1.774
## 3rd Qu.:5.000 3rd Qu.:5.00 3rd Qu.:5.000 3rd Qu.:2.000
## Max. :6.000 Max. :6.00 Max. :5.000 Max. :4.000
## NA's :25 NA's :41 NA's :9 NA's :17
## q3c ocup4a ocup1a q10g
## Min. : 1.000 Min. :1.000 Min. :1.000 Min. : 0.000
## 1st Qu.: 1.000 1st Qu.:1.000 1st Qu.:2.000 1st Qu.: 2.000
## Median : 1.000 Median :1.000 Median :4.000 Median : 6.000
## Mean : 4.325 Mean :2.811 Mean :3.034 Mean : 6.551
## 3rd Qu.: 2.000 3rd Qu.:5.000 3rd Qu.:4.000 3rd Qu.:11.000
## Max. :77.000 Max. :7.000 Max. :5.000 Max. :16.000
## NA's :63 NA's :4 NA's :744 NA's :711
## q10new q10a q14 q10d
## Min. : 0.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.: 3.000 1st Qu.:2.000 1st Qu.:2.000 1st Qu.:2.000
## Median : 7.000 Median :2.000 Median :2.000 Median :3.000
## Mean : 7.329 Mean :1.923 Mean :1.816 Mean :2.629
## 3rd Qu.:12.000 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:3.000
## Max. :16.000 Max. :2.000 Max. :2.000 Max. :4.000
## NA's :179 NA's :8 NA's :13 NA's :22
## q10e q11n q12c q12bn
## Min. :1.000 Min. :1.000 Min. : 1.000 Min. :0.000
## 1st Qu.:2.000 1st Qu.:1.000 1st Qu.: 3.000 1st Qu.:0.000
## Median :2.000 Median :2.000 Median : 4.000 Median :1.000
## Mean :2.147 Mean :2.265 Mean : 4.315 Mean :1.039
## 3rd Qu.:3.000 3rd Qu.:3.000 3rd Qu.: 5.000 3rd Qu.:2.000
## Max. :3.000 Max. :7.000 Max. :18.000 Max. :9.000
## NA's :21 NA's :6 NA's :16 NA's :12
## q12 q12m q12f vac1
## Min. : 0.000 Min. :0.000 Min. : 0.000 Min. :1.000
## 1st Qu.: 0.000 1st Qu.:1.000 1st Qu.: 1.000 1st Qu.:1.000
## Median : 2.000 Median :1.000 Median : 1.000 Median :1.000
## Mean : 2.117 Mean :1.539 Mean : 1.366 Mean :1.133
## 3rd Qu.: 3.000 3rd Qu.:2.000 3rd Qu.: 2.000 3rd Qu.:1.000
## Max. :16.000 Max. :8.000 Max. :10.000 Max. :2.000
## NA's :11 NA's :434 NA's :434 NA's :417
## mexinf1 mexinf4 mexinf5 mexinf6
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000
## Median :2.000 Median :1.000 Median :1.000 Median :2.000
## Mean :1.517 Mean :1.395 Mean :1.227 Mean :1.668
## 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:1.000 3rd Qu.:2.000
## Max. :2.000 Max. :2.000 Max. :2.000 Max. :2.000
## NA's :14 NA's :188 NA's :24 NA's :148
## mexinf7 mexinf9 mexinf8 etid
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:2.000 1st Qu.:2.000
## Median :2.000 Median :2.000 Median :2.000 Median :2.000
## Mean :1.745 Mean :1.633 Mean :1.928 Mean :2.399
## 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.000
## Max. :2.000 Max. :2.000 Max. :2.000 Max. :7.000
## NA's :263 NA's :314 NA's :62 NA's :268
## mexiiet1 mexiiet2 mexiiet3 www1
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000
## Median :2.000 Median :2.000 Median :2.000 Median :3.000
## Mean :1.512 Mean :1.523 Mean :1.531 Mean :2.978
## 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:5.000
## Max. :2.000 Max. :2.000 Max. :2.000 Max. :5.000
## NA's :1073 NA's :1058 NA's :1043 NA's :7
## i2 i3 i4 gi0
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:1.000 1st Qu.:2.000 1st Qu.:1.000 1st Qu.:1.000
## Median :2.000 Median :2.000 Median :1.000 Median :2.000
## Mean :1.535 Mean :1.887 Mean :1.451 Mean :1.936
## 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.000
## Max. :2.000 Max. :2.000 Max. :2.000 Max. :5.000
## NA's :10 NA's :7 NA's :10 NA's :9
## pr1 r3 r4 r4a
## Min. :1.000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:2.000 1st Qu.:1.0000 1st Qu.:0.0000 1st Qu.:1.0000
## Median :2.000 Median :1.0000 Median :0.0000 Median :1.0000
## Mean :2.041 Mean :0.8809 Mean :0.3803 Mean :0.8085
## 3rd Qu.:2.000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :4.000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :20 NA's :10 NA's :9 NA's :7
## r5 r6 r7 r8
## Min. :0.0000 Min. :0.000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.0000 Median :1.000 Median :0.0000 Median :0.0000
## Mean :0.5052 Mean :0.702 Mean :0.4399 Mean :0.1035
## 3rd Qu.:1.0000 3rd Qu.:1.000 3rd Qu.:1.0000 3rd Qu.:0.0000
## Max. :3.0000 Max. :1.000 Max. :1.0000 Max. :1.0000
## NA's :11 NA's :6 NA's :6 NA's :7
## r12 r14 r15 r18
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.000
## 1st Qu.:1.0000 1st Qu.:1.0000 1st Qu.:0.0000 1st Qu.:0.000
## Median :1.0000 Median :1.0000 Median :0.0000 Median :0.000
## Mean :0.9058 Mean :0.8098 Mean :0.3148 Mean :0.399
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.000
## NA's :3 NA's :7 NA's :13 NA's :9
## r1 r16 sent1 colorr
## Min. :0.0000 Min. :0.0000 Min. : 1.00 Min. :1.000
## 1st Qu.:1.0000 1st Qu.:0.0000 1st Qu.: 1.00 1st Qu.:3.000
## Median :1.0000 Median :1.0000 Median : 4.00 Median :4.000
## Mean :0.9383 Mean :0.6891 Mean :14.36 Mean :4.089
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:17.00 3rd Qu.:5.000
## Max. :1.0000 Max. :1.0000 Max. :77.00 Max. :9.000
## NA's :6 NA's :106 NA's :555
## conocim iarea1 iarea2 iarea3
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:3.000 1st Qu.:2.000 1st Qu.:2.000 1st Qu.:2.000
## Median :3.000 Median :2.000 Median :2.000 Median :2.000
## Mean :3.163 Mean :2.212 Mean :2.411 Mean :2.336
## 3rd Qu.:4.000 3rd Qu.:3.000 3rd Qu.:3.000 3rd Qu.:3.000
## Max. :5.000 Max. :4.000 Max. :4.000 Max. :4.000
##
## iarea4 iarea6 iarea7 sexi
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000
## Median :1.000 Median :1.000 Median :1.000 Median :2.000
## Mean :1.538 Mean :1.357 Mean :1.163 Mean :1.567
## 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:1.000 3rd Qu.:2.000
## Max. :4.000 Max. :4.000 Max. :4.000 Max. :2.000
##
## colori srvyrid nationality formatq sex
## Min. :1.000 Min. : 1.00 Min. :1 Min. :4 Min. :1.000
## 1st Qu.:3.000 1st Qu.:16.00 1st Qu.:1 1st Qu.:4 1st Qu.:1.000
## Median :4.000 Median :23.00 Median :1 Median :4 Median :1.000
## Mean :4.074 Mean :25.59 Mean :1 Mean :4 Mean :1.496
## 3rd Qu.:5.000 3rd Qu.:39.00 3rd Qu.:1 3rd Qu.:4 3rd Qu.:2.000
## Max. :7.000 Max. :49.00 Max. :1 Max. :4 Max. :2.000
##
Este summary también se puede hacer para una variable.
summary(mex2017$q1)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.000 1.000 1.000 1.496 2.000 2.000
¿Esto tendrá sentido?
class(mex2017$q1)
## [1] "haven_labelled"
Cuando importamos una base de stata que tiene etiquetas como la nuestra podemos usarlas. Pero tenemos que instalar una librería
#install.packages("sjlabelled", dependencies=T)
library(sjlabelled)
## Warning: package 'sjlabelled' was built under R version 3.5.2
##
## Attaching package: 'sjlabelled'
## The following objects are masked from 'package:haven':
##
## as_factor, read_sas, read_spss, read_stata, write_sas,
## zap_labels
Dentro de essta librería tenemos la función "as_label", esto nos permite usar las etiquetas
summary(as_label(mex2017$q1))
## Male Female
## 788 775
Utilizando el símbolo de $ también se puede asignar valores adentro del objeto
mex2017$newvar<-NA
mex2017$newvar<-as_label(mex2017$q1)
dim(mex2017)
## [1] 1563 202
"haven" también nos permite exportar, aunque no desde los menús
write_dta(mex2017 , "mi_exportación.dta", version = 14)
Hay muchos formatos de almacenamiento de bases de datos. Vamos a aprender a importar información desde ellos. Poco a poco.
Desde Excel, el paquete más compatible con RStudio es readxl. A veces, otros paquetes tienen más problemas de configuración entre R y el Java.
#install.packages("readxl", repos = "http://cran.us.r-project.org", dependencies = TRUE)
library(readxl) # Recuerda que hay llamar al paquete
## Warning: package 'readxl' was built under R version 3.5.2
Vamos a trabajar con el "Índice de Competitividad Estatal" (mayor info aquí).
Excel_2016_IMCO <- read_excel("Excel_2016_IMCO.xlsx")
## New names:
## * `` -> `..101`
## * `` -> `..102`
## * `` -> `..103`
#View(Excel_2014_IMCO)
Como el nombre de paquete lo indica, sólo lee. Para escribir en este formato, recomiendo el paquete "openxlsx".
#install.packages("openxlsx", dependencies = TRUE)
library(openxlsx)
Si quisiéramos exportar un objeto a Excel
write.xlsx(Excel_2016_IMCO, file = "Mi_Exportación.xlsx")
hist(Excel_2016_IMCO$Homicidios)