Sesión práctica 2

AE
18/2/2019

Previo

Una buena práctica es siempre revisar nuestro directorio. [Más adelante hablaremos de los proyectos que también ayuda a nuestra organizción]

Lo podemos hacer con el comando "setwd()", también lo ponemos hacer desde el menú: Session-->Set Working Directory --> Choose Directory

setwd("~/Dropbox/FCPyS-2019-ii/ACuanti/Prácticas")

Si lo haces con comando,recuerda checar las diagonales de la ruta.

Leer base de datos y revisar su contenido

Vamos a trabajar con el cuestionario para México de LAPOP

LAPOP es la principal institución académica que realiza encuestas de opinión pública en las Américas, con más de 30 años de experiencia. Como centro de excelencia en investigación por encuestas, LAPOP usa enfoques y métodos innovadores con los “estándares más altos” para llevar a cabo encuestas nacionales; conducir estudios de evaluación de impacto, y producir reportes acerca de las actitudes, evaluaciones y experiencias de los individuos. El Barómetro de las Américas es la única encuesta comparativa y científicamente rigurosa que cubre 34 naciones incluyendo Norte, Centro y Sur América, así como también, un significativo número de países en el Caribe. Cada año publica docenas de estudios académicos de alta calidad y artículos de relevancia para la elaboración de políticas públicas.

Esta base se puede descargar desde aquí http://datasets.americasbarometer.org/database/files/275973272Mexico%20LAPOP%20AmericasBarometer%202017%20V1.0_W.dta. Es una base que está en formato de STATA, un archivo .dta.

Este formato se puede descargar con el paquete "haven" y el paquete "foreing". Utilizaremos el primero porque viene en el menú de RStudio. Si lo hacemos por el menú, el paquete se instala solo. Si no, lo tenemos que instalar

#install.packages("haven")
library(haven)
X275973272Mexico_LAPOP_AmericasBarometer_2017_V1_0_W <- read_dta("275973272Mexico LAPOP AmericasBarometer 2017 V1.0_W.dta")
#View(X275973272Mexico_LAPOP_AmericasBarometer_2017_V1_0_W)

Por default, el nombre que nos da a través del menú es muy largo. Vamos a eliminarlo y volverlo a cargar con un nombre más manejable.

rm(X275973272Mexico_LAPOP_AmericasBarometer_2017_V1_0_W) #botamos el objeto

mex2017<-read_dta("275973272Mexico LAPOP AmericasBarometer 2017 V1.0_W.dta")

Vamos a ver nuestra base de datos. Esto es como la "vista de datos" de SPSS o bien lo que veríamos con el "browse" en STATA

#View(mex2017)

También con "head", vemos las primeras 6 líneas de la base de datos

head(mex2017)
## # A tibble: 6 x 201
##   pais  idnum uniq_id   upm prov  municipio cluster ur    tamano idiomaq
##   <dbl> <dbl> <dbl+l> <dbl> <dbl> <dbl+lbl>   <dbl> <dbl> <dbl+> <dbl+l>
## 1 1       694 160106…   106 104   104006         71 2     4      1      
## 2 1       736 160107…   106 104   104006         71 2     4      1      
## 3 1      1083 160110…    66 121   121058        932 2     4      1      
## 4 1      1024 160110…   106 104   104006         72 2     4      1      
## 5 1      1296 160112…    13 112   112044        431 2     5      1      
## 6 1       920 160109…   106 104   104006         71 2     4      1      
## # … with 191 more variables: fecha <date>, wt <dbl>, estratopri <dbl+lbl>,
## #   estratosec <dbl+lbl>, q2 <dbl>, q1 <dbl+lbl>, ls3 <dbl+lbl>,
## #   a4 <dbl+lbl>, soct2 <dbl+lbl>, idio2 <dbl+lbl>, np1 <dbl+lbl>,
## #   cp6 <dbl+lbl>, cp7 <dbl+lbl>, cp8 <dbl+lbl>, cp13 <dbl+lbl>,
## #   cp20 <dbl+lbl>, it1 <dbl+lbl>, l1 <dbl+lbl>, prot3 <dbl+lbl>,
## #   jc10 <dbl+lbl>, jc13 <dbl+lbl>, jc15a <dbl+lbl>, vic1ext <dbl+lbl>,
## #   vic1exta <dbl+lbl>, vic71 <dbl+lbl>, vic43 <dbl+lbl>,
## #   vicbar4a <dbl+lbl>, aoj11 <dbl+lbl>, aoj12 <dbl+lbl>, b1 <dbl+lbl>,
## #   b2 <dbl+lbl>, b3 <dbl+lbl>, b4 <dbl+lbl>, b6 <dbl+lbl>, b43 <dbl+lbl>,
## #   b12 <dbl+lbl>, b13 <dbl+lbl>, b18 <dbl+lbl>, b21 <dbl+lbl>,
## #   b21a <dbl+lbl>, b32 <dbl+lbl>, b37 <dbl+lbl>, b47a <dbl+lbl>,
## #   pr3d <dbl+lbl>, pr3e <dbl+lbl>, m1 <dbl+lbl>, m2 <dbl+lbl>,
## #   sd2new2 <dbl+lbl>, sd3new2 <dbl+lbl>, sd6new2 <dbl+lbl>,
## #   infrax <dbl+lbl>, infra3 <dbl+lbl>, ros1 <dbl+lbl>, ros4 <dbl+lbl>,
## #   ing4 <dbl+lbl>, eff1 <dbl+lbl>, eff2 <dbl+lbl>, aoj22new <dbl+lbl>,
## #   media3 <dbl+lbl>, media4 <dbl+lbl>, exp_a <dbl+lbl>, dst1b <dbl+lbl>,
## #   drk1 <dbl+lbl>, env1c <dbl+lbl>, env2b <dbl+lbl>, pn4 <dbl+lbl>,
## #   w14a <dbl+lbl>, e5 <dbl+lbl>, d1 <dbl+lbl>, d2 <dbl+lbl>,
## #   d3 <dbl+lbl>, d4 <dbl+lbl>, d5 <dbl+lbl>, d6 <dbl+lbl>,
## #   lib1 <dbl+lbl>, lib2b <dbl+lbl>, lib2c <dbl+lbl>, lib4 <dbl+lbl>,
## #   exc2 <dbl+lbl>, exc6 <dbl+lbl>, exc20 <dbl+lbl>, exc11 <dbl+lbl>,
## #   exc13 <dbl+lbl>, exc14 <dbl+lbl>, exc15 <dbl+lbl>, exc16 <dbl+lbl>,
## #   exc18 <dbl+lbl>, exc7new <dbl+lbl>, vicbar7 <dbl+lbl>,
## #   vicbar7f <dbl+lbl>, fear11 <dbl+lbl>, capital1 <dbl+lbl>,
## #   iga1 <dbl+lbl>, igaaoj22 <dbl+lbl>, vb1 <dbl+lbl>, inf1 <dbl+lbl>,
## #   vb2 <dbl+lbl>, vb3n <dbl+lbl>, vb10 <dbl+lbl>, vb11 <dbl+lbl>, …

También con "tail", vemos las últimas 6 líneas de la base de datos

tail(mex2017)
## # A tibble: 6 x 201
##   pais  idnum uniq_id   upm prov  municipio cluster ur    tamano idiomaq
##   <dbl> <dbl> <dbl+l> <dbl> <dbl> <dbl+lbl>   <dbl> <dbl> <dbl+> <dbl+l>
## 1 1      1528 160115…    51 117   117029        812 1     3      1      
## 2 1       867 160108…    55 119   119040        851 1     2      1      
## 3 1       804 160108…     8 111   111021        382 1     3      1      
## 4 1      1422 160114…   120 109   109005        211 1     1      1      
## 5 1       661 160106…    63 120   120066        902 1     2      1      
## 6 1       536 160105…    19 114   114023        491 1     3      1      
## # … with 191 more variables: fecha <date>, wt <dbl>, estratopri <dbl+lbl>,
## #   estratosec <dbl+lbl>, q2 <dbl>, q1 <dbl+lbl>, ls3 <dbl+lbl>,
## #   a4 <dbl+lbl>, soct2 <dbl+lbl>, idio2 <dbl+lbl>, np1 <dbl+lbl>,
## #   cp6 <dbl+lbl>, cp7 <dbl+lbl>, cp8 <dbl+lbl>, cp13 <dbl+lbl>,
## #   cp20 <dbl+lbl>, it1 <dbl+lbl>, l1 <dbl+lbl>, prot3 <dbl+lbl>,
## #   jc10 <dbl+lbl>, jc13 <dbl+lbl>, jc15a <dbl+lbl>, vic1ext <dbl+lbl>,
## #   vic1exta <dbl+lbl>, vic71 <dbl+lbl>, vic43 <dbl+lbl>,
## #   vicbar4a <dbl+lbl>, aoj11 <dbl+lbl>, aoj12 <dbl+lbl>, b1 <dbl+lbl>,
## #   b2 <dbl+lbl>, b3 <dbl+lbl>, b4 <dbl+lbl>, b6 <dbl+lbl>, b43 <dbl+lbl>,
## #   b12 <dbl+lbl>, b13 <dbl+lbl>, b18 <dbl+lbl>, b21 <dbl+lbl>,
## #   b21a <dbl+lbl>, b32 <dbl+lbl>, b37 <dbl+lbl>, b47a <dbl+lbl>,
## #   pr3d <dbl+lbl>, pr3e <dbl+lbl>, m1 <dbl+lbl>, m2 <dbl+lbl>,
## #   sd2new2 <dbl+lbl>, sd3new2 <dbl+lbl>, sd6new2 <dbl+lbl>,
## #   infrax <dbl+lbl>, infra3 <dbl+lbl>, ros1 <dbl+lbl>, ros4 <dbl+lbl>,
## #   ing4 <dbl+lbl>, eff1 <dbl+lbl>, eff2 <dbl+lbl>, aoj22new <dbl+lbl>,
## #   media3 <dbl+lbl>, media4 <dbl+lbl>, exp_a <dbl+lbl>, dst1b <dbl+lbl>,
## #   drk1 <dbl+lbl>, env1c <dbl+lbl>, env2b <dbl+lbl>, pn4 <dbl+lbl>,
## #   w14a <dbl+lbl>, e5 <dbl+lbl>, d1 <dbl+lbl>, d2 <dbl+lbl>,
## #   d3 <dbl+lbl>, d4 <dbl+lbl>, d5 <dbl+lbl>, d6 <dbl+lbl>,
## #   lib1 <dbl+lbl>, lib2b <dbl+lbl>, lib2c <dbl+lbl>, lib4 <dbl+lbl>,
## #   exc2 <dbl+lbl>, exc6 <dbl+lbl>, exc20 <dbl+lbl>, exc11 <dbl+lbl>,
## #   exc13 <dbl+lbl>, exc14 <dbl+lbl>, exc15 <dbl+lbl>, exc16 <dbl+lbl>,
## #   exc18 <dbl+lbl>, exc7new <dbl+lbl>, vicbar7 <dbl+lbl>,
## #   vicbar7f <dbl+lbl>, fear11 <dbl+lbl>, capital1 <dbl+lbl>,
## #   iga1 <dbl+lbl>, igaaoj22 <dbl+lbl>, vb1 <dbl+lbl>, inf1 <dbl+lbl>,
## #   vb2 <dbl+lbl>, vb3n <dbl+lbl>, vb10 <dbl+lbl>, vb11 <dbl+lbl>, …

Ver los nombres de las variables

names(mex2017)
##   [1] "pais"        "idnum"       "uniq_id"     "upm"         "prov"       
##   [6] "municipio"   "cluster"     "ur"          "tamano"      "idiomaq"    
##  [11] "fecha"       "wt"          "estratopri"  "estratosec"  "q2"         
##  [16] "q1"          "ls3"         "a4"          "soct2"       "idio2"      
##  [21] "np1"         "cp6"         "cp7"         "cp8"         "cp13"       
##  [26] "cp20"        "it1"         "l1"          "prot3"       "jc10"       
##  [31] "jc13"        "jc15a"       "vic1ext"     "vic1exta"    "vic71"      
##  [36] "vic43"       "vicbar4a"    "aoj11"       "aoj12"       "b1"         
##  [41] "b2"          "b3"          "b4"          "b6"          "b43"        
##  [46] "b12"         "b13"         "b18"         "b21"         "b21a"       
##  [51] "b32"         "b37"         "b47a"        "pr3d"        "pr3e"       
##  [56] "m1"          "m2"          "sd2new2"     "sd3new2"     "sd6new2"    
##  [61] "infrax"      "infra3"      "ros1"        "ros4"        "ing4"       
##  [66] "eff1"        "eff2"        "aoj22new"    "media3"      "media4"     
##  [71] "exp_a"       "dst1b"       "drk1"        "env1c"       "env2b"      
##  [76] "pn4"         "w14a"        "e5"          "d1"          "d2"         
##  [81] "d3"          "d4"          "d5"          "d6"          "lib1"       
##  [86] "lib2b"       "lib2c"       "lib4"        "exc2"        "exc6"       
##  [91] "exc20"       "exc11"       "exc13"       "exc14"       "exc15"      
##  [96] "exc16"       "exc18"       "exc7new"     "vicbar7"     "vicbar7f"   
## [101] "fear11"      "capital1"    "iga1"        "igaaoj22"    "vb1"        
## [106] "inf1"        "vb2"         "vb3n"        "vb10"        "vb11"       
## [111] "pol1"        "vb20"        "mexcv1"      "mexcv2"      "for5"       
## [116] "exp_b"       "mil10a"      "mil10e"      "mil10oas"    "mil10un"    
## [121] "ccq1"        "ccq2"        "ccq3"        "ccq4"        "mexus1"     
## [126] "mexus2"      "via1a"       "via1b"       "wf1"         "cct1b"      
## [131] "ed"          "ed2"         "mexham1"     "mexham2"     "mexham3"    
## [136] "mexham4"     "mexham5"     "mexham6"     "q5a"         "q5b"        
## [141] "q3c"         "ocup4a"      "ocup1a"      "q10g"        "q10new"     
## [146] "q10a"        "q14"         "q10d"        "q10e"        "q11n"       
## [151] "q12c"        "q12bn"       "q12"         "q12m"        "q12f"       
## [156] "vac1"        "mexinf1"     "mexinf4"     "mexinf5"     "mexinf6"    
## [161] "mexinf7"     "mexinf9"     "mexinf8"     "etid"        "mexiiet1"   
## [166] "mexiiet2"    "mexiiet3"    "www1"        "i2"          "i3"         
## [171] "i4"          "gi0"         "pr1"         "r3"          "r4"         
## [176] "r4a"         "r5"          "r6"          "r7"          "r8"         
## [181] "r12"         "r14"         "r15"         "r18"         "r1"         
## [186] "r16"         "sent1"       "colorr"      "conocim"     "iarea1"     
## [191] "iarea2"      "iarea3"      "iarea4"      "iarea6"      "iarea7"     
## [196] "sexi"        "colori"      "srvyrid"     "nationality" "formatq"    
## [201] "sex"

Revisar la estructura de la base de datos

str(mex2017)
## Classes 'tbl_df', 'tbl' and 'data.frame':    1563 obs. of  201 variables:
##  $ pais       : 'haven_labelled' num  1 1 1 1 1 1 1 1 1 1 ...
##   ..- attr(*, "label")= chr "Country"
##   ..- attr(*, "format.stata")= chr "%36.0g"
##   ..- attr(*, "labels")= Named num 1
##   .. ..- attr(*, "names")= chr "Mexico"
##  $ idnum      : num  694 736 1083 1024 1296 ...
##   ..- attr(*, "label")= chr "Questionnaire Number"
##   ..- attr(*, "format.stata")= chr "%36.0g"
##  $ uniq_id    : 'haven_labelled' num  1.6e+07 1.6e+07 1.6e+07 1.6e+07 1.6e+07 ...
##   ..- attr(*, "label")= chr "Unique Identifier"
##   ..- attr(*, "format.stata")= chr "%36.0g"
##   ..- attr(*, "labels")= Named num  1.6e+07 1.6e+07 1.6e+07 1.6e+07 1.6e+07 ...
##   .. ..- attr(*, "names")= chr  "MEX16_0001" "MEX16_0002" "MEX16_0003" "MEX16_0004" ...
##  $ upm        : num  106 106 66 106 13 106 13 13 16 16 ...
##   ..- attr(*, "label")= chr "Primary Sampling Unit"
##   ..- attr(*, "format.stata")= chr "%36.0g"
##  $ prov       : 'haven_labelled' num  104 104 121 104 112 104 112 112 113 113 ...
##   ..- attr(*, "label")= chr "Province"
##   ..- attr(*, "format.stata")= chr "%36.0g"
##   ..- attr(*, "labels")= Named num  101 102 103 104 105 106 107 108 109 110 ...
##   .. ..- attr(*, "names")= chr  "Aguascalientes" "Baja California" "Baja California Sur" "Campeche" ...
##  $ municipio  : 'haven_labelled' num  104006 104006 121058 104006 112044 ...
##   ..- attr(*, "label")= chr "Municipio"
##   ..- attr(*, "format.stata")= chr "%36.0g"
##   ..- attr(*, "labels")= Named num  101009 102002 102004 103001 103004 ...
##   .. ..- attr(*, "names")= chr  "Tepezalá" "Mexicali" "Tijuana" "Comondú" ...
##  $ cluster    : num  71 71 932 72 431 71 432 432 461 462 ...
##   ..- attr(*, "label")= chr "Cluster"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##  $ ur         : 'haven_labelled' num  2 2 2 2 2 2 2 2 2 2 ...
##   ..- attr(*, "label")= chr "Urban/Rural"
##   ..- attr(*, "format.stata")= chr "%36.0g"
##   ..- attr(*, "labels")= Named num  1 2
##   .. ..- attr(*, "names")= chr  "Urban" "Rural"
##  $ tamano     : 'haven_labelled' num  4 4 4 4 5 4 5 5 4 4 ...
##   ..- attr(*, "label")= chr "Size of Location"
##   ..- attr(*, "format.stata")= chr "%37.0g"
##   ..- attr(*, "labels")= Named num  1 2 3 4 5
##   .. ..- attr(*, "names")= chr  "National Capital (Metropolitan area)" "Large City" "Medium City" "Small City" ...
##  $ idiomaq    : 'haven_labelled' num  1 1 1 1 1 1 1 1 1 1 ...
##   ..- attr(*, "label")= chr "Language of Questionnaire"
##   ..- attr(*, "format.stata")= chr "%36.0g"
##   ..- attr(*, "labels")= Named num 1
##   .. ..- attr(*, "names")= chr "Spanish"
##  $ fecha      : Date, format: "2017-03-13" "2017-03-13" ...
##  $ wt         : num  1 1 1 1 1 1 1 1 1 1 ...
##   ..- attr(*, "label")= chr "Country Weight"
##   ..- attr(*, "format.stata")= chr "%36.0g"
##  $ estratopri : 'haven_labelled' num  104 104 103 104 104 104 104 104 103 103 ...
##   ..- attr(*, "label")= chr "Primary Strata"
##   ..- attr(*, "format.stata")= chr "%36.0g"
##   ..- attr(*, "labels")= Named num  101 102 103 104
##   .. ..- attr(*, "names")= chr  "NORTE" "CENTRO OCCIDENTE" "CENTRO" "SUR"
##  $ estratosec : 'haven_labelled' num  2 2 3 2 3 2 3 3 2 2 ...
##   ..- attr(*, "label")= chr "Secondary Strata"
##   ..- attr(*, "format.stata")= chr "%36.0g"
##   ..- attr(*, "labels")= Named num  1 2 3
##   .. ..- attr(*, "names")= chr  "Large (more than 100,000)" "Medium (between 25,000 and 100,000)" "Small (less than 25,000)"
##  $ q2         : num  38 64 25 32 18 45 18 36 73 49 ...
##   ..- attr(*, "label")= chr "Age"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##  $ q1         : 'haven_labelled' num  2 1 2 1 2 1 2 1 1 1 ...
##   ..- attr(*, "label")= chr "Sex"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 2
##   .. ..- attr(*, "names")= chr  "Male" "Female"
##  $ ls3        : 'haven_labelled' num  3 2 2 3 2 2 NA 2 NA 1 ...
##   ..- attr(*, "label")= chr "Life Satisfaction"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 2 3 4 NA NA
##   .. ..- attr(*, "names")= chr  "Very Satisfied" "Somewhat Satisfied" "Somewhat Dissatisfied" "Very Dissatisfied" ...
##  $ a4         : 'haven_labelled' num  NA 55 NA 1 NA 15 15 NA 5 13 ...
##   ..- attr(*, "label")= chr "Most Important Problem"
##   ..- attr(*, "format.stata")= chr "%64.0f"
##   ..- attr(*, "labels")= Named num  1 2 3 4 5 10 11 12 13 14 ...
##   .. ..- attr(*, "names")= chr  "Economy, problems with, crisis of" "Inflation, high prices" "Unemployment" "Poverty" ...
##  $ soct2      : 'haven_labelled' num  3 2 2 3 3 3 3 3 3 3 ...
##   ..- attr(*, "label")= chr "Evaluation of the Economic Situation of the Country"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 2 3 NA NA
##   .. ..- attr(*, "names")= chr  "Better" "Same" "Worse" "Don't Know" ...
##  $ idio2      : 'haven_labelled' num  3 1 2 2 3 3 2 3 2 2 ...
##   ..- attr(*, "label")= chr "Perception of Personal Economic Situation"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 2 3 NA NA
##   .. ..- attr(*, "names")= chr  "Better" "Same" "Worse" "Don't Know" ...
##  $ np1        : 'haven_labelled' num  2 1 2 2 2 2 2 1 2 1 ...
##   ..- attr(*, "label")= chr "Attendance at Municipal Meeting"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 2 NA NA
##   .. ..- attr(*, "names")= chr  "Yes" "No" "Don't Know" "No Response"
##  $ cp6        : 'haven_labelled' num  4 3 4 1 4 1 1 2 1 4 ...
##   ..- attr(*, "label")= chr "Attendance at Meetings of Religious Organization"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 2 3 4 NA
##   .. ..- attr(*, "names")= chr  "Once a Week" "Once or Twice a Month" "Once or Twice a Year" "Never" ...
##  $ cp7        : 'haven_labelled' num  2 4 2 4 4 4 4 2 4 2 ...
##   ..- attr(*, "label")= chr "Attendance at Meetings of Parent Association"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 2 3 4 NA NA
##   .. ..- attr(*, "names")= chr  "Once a Week" "Once or Twice a Month" "Once or Twice a Year" "Never" ...
##  $ cp8        : 'haven_labelled' num  1 2 4 3 4 3 4 1 2 2 ...
##   ..- attr(*, "label")= chr "Attendance at Meetings of Community Improvement Group"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 2 3 4 NA NA
##   .. ..- attr(*, "names")= chr  "Once a Week" "Once or Twice a Month" "Once or Twice a Year" "Never" ...
##  $ cp13       : 'haven_labelled' num  4 3 4 4 4 3 4 2 4 4 ...
##   ..- attr(*, "label")= chr "Attendance at Meetings of Political Movements or Parties"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 2 3 4 NA NA
##   .. ..- attr(*, "names")= chr  "Once a Week" "Once or Twice a Month" "Once or Twice a Year" "Never" ...
##  $ cp20       : 'haven_labelled' num  4 NA 4 NA 4 NA 2 NA NA NA ...
##   ..- attr(*, "label")= chr "Attendance at Meetings of Women's Group"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 2 3 4 NA NA NA
##   .. ..- attr(*, "names")= chr  "Once a Week" "Once or Twice a Month" "Once or Twice a Year" "Never" ...
##  $ it1        : 'haven_labelled' num  3 2 2 3 3 2 3 3 1 4 ...
##   ..- attr(*, "label")= chr "Interpersonal Trust"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 2 3 4 NA NA
##   .. ..- attr(*, "names")= chr  "Very Trustworthy" "Somewhat Trustworthy" "Not Very Trustworthy" "Untrustworthy" ...
##  $ l1         : 'haven_labelled' num  9 10 2 7 10 9 NA 1 7 1 ...
##   ..- attr(*, "label")= chr "Ideology (Left / Right)"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 10 NA NA
##   .. ..- attr(*, "names")= chr  "Left" "Right" "Don't Know" "No Response"
##  $ prot3      : 'haven_labelled' num  2 1 2 2 2 2 2 1 2 1 ...
##   ..- attr(*, "label")= chr "Participated in a Protest"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 2 NA NA
##   .. ..- attr(*, "names")= chr  "Yes, I have participated" "No, I have not participated" "Don't Know" "No Response"
##  $ jc10       : 'haven_labelled' num  NA NA 1 1 1 NA NA NA NA NA ...
##   ..- attr(*, "label")= chr "Coup is Justified when Crime is High"
##   ..- attr(*, "format.stata")= chr "%74.0f"
##   ..- attr(*, "labels")= Named num  1 2 NA NA NA
##   .. ..- attr(*, "names")= chr  "Yes, a military take-over of the state would be justified" "No, a military take-over of the state would not be justified" "Don't Know" "No Response" ...
##  $ jc13       : 'haven_labelled' num  NA 2 NA NA NA 1 NA 1 NA 2 ...
##   ..- attr(*, "label")= chr "Coup is Justified when Corruption is High"
##   ..- attr(*, "format.stata")= chr "%74.0f"
##   ..- attr(*, "labels")= Named num  1 2 NA NA NA
##   .. ..- attr(*, "names")= chr  "Yes, a military take-over of the state would be justified" "No, a military take-over of the state would not be justified" "Don't Know" "No Response" ...
##  $ jc15a      : 'haven_labelled' num  NA 2 2 NA NA 1 NA 1 2 2 ...
##   ..- attr(*, "label")= chr "Executive Justified in Governing without Legislature during Crisis"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 2 NA NA
##   .. ..- attr(*, "names")= chr  "Yes, it is justified" "No, it is not justified" "Don't Know" "No Response"
##  $ vic1ext    : 'haven_labelled' num  2 2 2 2 2 2 2 1 2 2 ...
##   ..- attr(*, "label")= chr "Victim of Crime in the Last 12 Months"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 2 NA
##   .. ..- attr(*, "names")= chr  "Yes" "No" "No Response"
##  $ vic1exta   : 'haven_labelled' num  NA NA NA NA NA NA NA 1 NA NA ...
##   ..- attr(*, "label")= chr "Victim of Crime in the Last 12 Months (Frequency)"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  NA NA NA
##   .. ..- attr(*, "names")= chr  "Don't Know" "No Response" "Not Applicable"
##  $ vic71      : 'haven_labelled' num  0 0 0 0 0 0 0 0 0 0 ...
##   ..- attr(*, "label")= chr "Has Avoided Leaving House Alone at Night for Fear of Crime"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  0 1 NA NA
##   .. ..- attr(*, "names")= chr  "No" "Yes" "Don't Know" "No Response"
##  $ vic43      : 'haven_labelled' num  0 0 0 0 0 1 0 0 0 0 ...
##   ..- attr(*, "label")= chr "Has Felt Need to Move Neighborhoods for Fear of Crime"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  0 1 NA NA
##   .. ..- attr(*, "names")= chr  "No" "Yes" "Don't Know" "No Response"
##  $ vicbar4a   : 'haven_labelled' num  0 0 0 1 0 0 0 0 0 0 ...
##   ..- attr(*, "label")= chr "Family Member was a Victim of Extortion"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  0 1 NA
##   .. ..- attr(*, "names")= chr  "No" "Yes" "Don't Know"
##  $ aoj11      : 'haven_labelled' num  NA 2 3 2 4 2 2 2 1 2 ...
##   ..- attr(*, "label")= chr "Perception of Neighborhood Insecurity"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 2 3 4 NA NA
##   .. ..- attr(*, "names")= chr  "Very Safe" "Somewhat Safe" "Somewhat Unsafe" "Very Unsafe" ...
##  $ aoj12      : 'haven_labelled' num  3 1 1 3 3 2 2 2 4 4 ...
##   ..- attr(*, "label")= chr "Confidence that Judiciary will Punish the Guilty"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 2 3 4 NA NA
##   .. ..- attr(*, "names")= chr  "A lot" "Some" "Little" "None" ...
##  $ b1         : 'haven_labelled' num  7 7 3 3 7 5 3 1 1 1 ...
##   ..- attr(*, "label")= chr "Courts Guarantee Fair Trial"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 7 NA NA
##   .. ..- attr(*, "names")= chr  "Not at All" "A Lot" "Don't Know" "No Response"
##  $ b2         : 'haven_labelled' num  1 4 6 4 7 6 5 1 1 1 ...
##   ..- attr(*, "label")= chr "Respect for Political Institutions"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 7 NA NA
##   .. ..- attr(*, "names")= chr  "Not at All" "A Lot" "Don't Know" "No Response"
##  $ b3         : 'haven_labelled' num  NA NA 2 3 7 4 2 1 1 4 ...
##   ..- attr(*, "label")= chr "Basic Rights are Protected"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 7 NA NA
##   .. ..- attr(*, "names")= chr  "Not at All" "A Lot" "Don't Know" "No Response"
##  $ b4         : 'haven_labelled' num  NA 5 4 3 7 2 6 1 1 1 ...
##   ..- attr(*, "label")= chr "Pride in Political System"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 7 NA NA
##   .. ..- attr(*, "names")= chr  "Not at All" "A Lot" "Don't Know" "No Response"
##  $ b6         : 'haven_labelled' num  6 7 6 4 7 7 7 2 1 1 ...
##   ..- attr(*, "label")= chr "People Should Support the Political System"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 7 NA NA
##   .. ..- attr(*, "names")= chr  "Not at All" "A Lot" "Don't Know" "No Response"
##  $ b43        : 'haven_labelled' num  7 7 7 6 7 7 7 NA 1 4 ...
##   ..- attr(*, "label")= chr "Pride in Nationality"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 7 NA NA
##   .. ..- attr(*, "names")= chr  "Not at All" "A Lot" "Don't Know" "No Response"
##  $ b12        : 'haven_labelled' num  NA 7 5 4 7 6 4 1 1 1 ...
##   ..- attr(*, "label")= chr "Trust in Armed Forces"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 7 NA NA
##   .. ..- attr(*, "names")= chr  "Not at All" "A Lot" "Don't Know" "No Response"
##  $ b13        : 'haven_labelled' num  NA 7 4 3 7 5 4 NA 1 5 ...
##   ..- attr(*, "label")= chr "Trust in the National Legislature"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 7 NA NA
##   .. ..- attr(*, "names")= chr  "Not at All" "A Lot" "Don't Know" "No Response"
##  $ b18        : 'haven_labelled' num  1 4 4 3 7 7 1 7 1 3 ...
##   ..- attr(*, "label")= chr "Trust in National Police"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 7 NA NA
##   .. ..- attr(*, "names")= chr  "Not at All" "A Lot" "Don't Know" "No Response"
##  $ b21        : 'haven_labelled' num  1 5 2 3 1 4 4 1 1 2 ...
##   ..- attr(*, "label")= chr "Trust in Political Parties"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 7 NA NA
##   .. ..- attr(*, "names")= chr  "Not at All" "A Lot" "Don't Know" "No Response"
##  $ b21a       : 'haven_labelled' num  1 6 4 4 1 5 6 7 1 1 ...
##   ..- attr(*, "label")= chr "Trust in Executive"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 7 NA NA
##   .. ..- attr(*, "names")= chr  "Not at All" "A Lot" "Don't Know" "No Response"
##  $ b32        : 'haven_labelled' num  1 6 6 4 7 7 6 5 1 7 ...
##   ..- attr(*, "label")= chr "Trust in Local Government"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 7 NA NA
##   .. ..- attr(*, "names")= chr  "Not at All" "A Lot" "Don't Know" "No Response"
##  $ b37        : 'haven_labelled' num  7 5 6 4 7 4 5 2 1 1 ...
##   ..- attr(*, "label")= chr "Trust in the Media"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 7 NA NA
##   .. ..- attr(*, "names")= chr  "Not at All" "A Lot" "Don't Know" "No Response"
##  $ b47a       : 'haven_labelled' num  1 4 6 4 7 7 6 NA 1 1 ...
##   ..- attr(*, "label")= chr "Trust in Elections"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 7 NA NA
##   .. ..- attr(*, "names")= chr  "Not at All" "A Lot" "Don't Know" "No Response"
##  $ pr3d       : 'haven_labelled' num  1 1 NA 7 1 3 3 1 1 1 ...
##   ..- attr(*, "label")= chr "Probability that Building without a License Results in Punishment"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 7 NA NA
##   .. ..- attr(*, "names")= chr  "Not at All" "A Lot" "Don't Know" "No Response"
##  $ pr3e       : 'haven_labelled' num  7 1 NA 4 7 2 3 1 1 1 ...
##   ..- attr(*, "label")= chr "Probability that Building or Renovating Would Necessitate Bribe"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 7 NA NA
##   .. ..- attr(*, "names")= chr  "Not at All" "A Lot" "Don't Know" "No Response"
##  $ m1         : 'haven_labelled' num  4 3 2 3 5 2 2 4 2 5 ...
##   ..- attr(*, "label")= chr "Presidential Job Approval"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 2 3 4 5 NA NA
##   .. ..- attr(*, "names")= chr  "Very Good" "Good" "Neither Good nor Bad (Fair)" "Bad" ...
##  $ m2         : 'haven_labelled' num  4 3 3 3 4 3 1 4 2 5 ...
##   ..- attr(*, "label")= chr "Congressional Job Approval"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 2 3 4 5 NA NA
##   .. ..- attr(*, "names")= chr  "Very Well" "Well" "Neither well nor poorly" "Poorly" ...
##  $ sd2new2    : 'haven_labelled' num  3 2 2 4 1 2 2 2 3 3 ...
##   ..- attr(*, "label")= chr "Satisfaction with Roads"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 2 3 4 NA NA NA
##   .. ..- attr(*, "names")= chr  "Very Satisfied" "Satisfied" "Dissatisfied" "Very Dissatisfied" ...
##  $ sd3new2    : 'haven_labelled' num  NA 1 3 2 1 1 2 2 2 3 ...
##   ..- attr(*, "label")= chr "Satisfaction with Public Schools"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 2 3 4 NA NA NA
##   .. ..- attr(*, "names")= chr  "Very Satisfied" "Satisfied" "Dissatisfied" "Very Dissatisfied" ...
##  $ sd6new2    : 'haven_labelled' num  3 3 2 3 1 2 2 2 4 4 ...
##   ..- attr(*, "label")= chr "Satisfaction with Public Medical and Health Services"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 2 3 4 NA NA NA
##   .. ..- attr(*, "names")= chr  "Very Satisfied" "Satisfied" "Dissatisfied" "Very Dissatisfied" ...
##  $ infrax     : 'haven_labelled' num  1 1 3 5 5 2 2 5 6 4 ...
##   ..- attr(*, "label")= chr "Police Response Time"
##   ..- attr(*, "format.stata")= chr "%52.0f"
##   ..- attr(*, "labels")= Named num  1 2 3 4 5 6 NA NA
##   .. ..- attr(*, "names")= chr  "Less than 10 minutes" "Between 10 and 30 minutes" "More than 30 minutes and up to an hour" "More than 1 hour and up to 3 hours" ...
##  $ infra3     : 'haven_labelled' num  2 2 2 3 5 4 1 5 4 4 ...
##   ..- attr(*, "label")= chr "Time it Takes to Get to the Hospital"
##   ..- attr(*, "format.stata")= chr "%84.0f"
##   ..- attr(*, "labels")= Named num  1 2 3 4 5 6 NA NA
##   .. ..- attr(*, "names")= chr  "Less than 10 minutes" "Between 10 and 30 minutes" "More than 30 minutes and up to an hour" "More than 1 hour and up to 3 hours" ...
##  $ ros1       : 'haven_labelled' num  NA 6 4 5 6 4 7 1 1 1 ...
##   ..- attr(*, "label")= chr "The State Should Own Important Industries"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 7 NA NA
##   .. ..- attr(*, "names")= chr  "Strongly Disagree" "Strongly Agree" "Don't Know" "No Response"
##  $ ros4       : 'haven_labelled' num  1 5 1 7 7 5 6 1 7 3 ...
##   ..- attr(*, "label")= chr "Government Should Implement Policies to Reduce Income Inequality"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 7 NA NA
##   .. ..- attr(*, "names")= chr  "Strongly Disagree" "Strongly Agree" "Don't Know" "No Response"
##  $ ing4       : 'haven_labelled' num  1 4 2 4 7 7 4 NA NA 1 ...
##   ..- attr(*, "label")= chr "Democracy is Better than Any Other Form of Government"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 7 NA NA
##   .. ..- attr(*, "names")= chr  "Strongly Disagree" "Strongly Agree" "Don't Know" "No Response"
##  $ eff1       : 'haven_labelled' num  NA 6 4 4 1 1 3 1 1 2 ...
##   ..- attr(*, "label")= chr "Leaders Are Interested in What People Think"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 7 NA NA
##   .. ..- attr(*, "names")= chr  "Strongly Disagree" "Strongly Agree" "Don't Know" "No Response"
##  $ eff2       : 'haven_labelled' num  NA 6 4 4 1 5 3 NA 1 3 ...
##   ..- attr(*, "label")= chr "Understands Important Political Issues"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 7 NA NA
##   .. ..- attr(*, "names")= chr  "Strongly Disagree" "Strongly Agree" "Don't Know" "No Response"
##  $ aoj22new   : 'haven_labelled' num  5 6 3 6 7 7 7 5 7 6 ...
##   ..- attr(*, "label")= chr "Penalties for Crimes Need to Increase"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 7 NA NA
##   .. ..- attr(*, "names")= chr  "Strongly Disagree" "Strongly Agree" "Don't Know" "No Response"
##  $ media3     : 'haven_labelled' num  NA 5 6 5 7 3 5 1 1 1 ...
##   ..- attr(*, "label")= chr "News Media Represents the Different Views that Exist in the Country"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 7 NA NA
##   .. ..- attr(*, "names")= chr  "Strongly Disagree" "Strongly Agree" "Don't Know" "No Response"
##  $ media4     : 'haven_labelled' num  NA 3 5 5 6 4 4 1 7 1 ...
##   ..- attr(*, "label")= chr "News Media is Controlled by a Few Economic Groups"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 7 NA NA
##   .. ..- attr(*, "names")= chr  "Strongly Disagree" "Strongly Agree" "Don't Know" "No Response"
##  $ exp_a      : 'haven_labelled' num  1 1 2 2 1 1 1 2 2 2 ...
##   ..- attr(*, "label")= chr "Experimental Test A"
##   ..- attr(*, "format.stata")= chr "%36.0g"
##   ..- attr(*, "labels")= Named num  1 2
##   .. ..- attr(*, "names")= chr  "Set 1" "Set 2"
##  $ dst1b      : 'haven_labelled' num  1 6 3 5 7 6 7 7 7 5 ...
##   ..- attr(*, "label")= chr "Government Should Spend More to Enforce Building Codes to Make Homes Safe"
##   ..- attr(*, "format.stata")= chr "%36.0g"
##   ..- attr(*, "labels")= Named num  1 7 NA NA
##   .. ..- attr(*, "names")= chr  "Strongly Disagree" "Strongly Agree" "Don't Know" "No Response"
##  $ drk1       : 'haven_labelled' num  3 3 1 4 4 3 2 2 1 2 ...
##   ..- attr(*, "label")= chr "Likelihood of Death or Harm from Natural Disaster"
##   ..- attr(*, "format.stata")= chr "%36.0g"
##   ..- attr(*, "labels")= Named num  1 2 3 4 NA NA
##   .. ..- attr(*, "names")= chr  "Not Likely at All" "A Little Likely" "Somewhat Likely" "Very Likely" ...
##  $ env1c      : 'haven_labelled' num  7 4 2 5 7 7 1 1 NA 1 ...
##   ..- attr(*, "label")= chr "Higher Priority for Protecting Environment or Promoting Economic Growth"
##   ..- attr(*, "format.stata")= chr "%36.0g"
##   ..- attr(*, "labels")= Named num  1 7 NA NA
##   .. ..- attr(*, "names")= chr  "Environment as priority" "Economic growth as priority" "Don't Know" "No Response"
##  $ env2b      : 'haven_labelled' num  1 3 3 2 4 1 1 3 2 3 ...
##   ..- attr(*, "label")= chr "Seriousness of Climate Change"
##   ..- attr(*, "format.stata")= chr "%36.0g"
##   ..- attr(*, "labels")= Named num  1 2 3 4 NA NA
##   .. ..- attr(*, "names")= chr  "Very Serious" "Somewhat Serious" "Not So Serious" "Not Serious at All" ...
##  $ pn4        : 'haven_labelled' num  3 2 3 3 1 2 3 2 NA 3 ...
##   ..- attr(*, "label")= chr "Satisfaction with Democracy"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 2 3 4 NA NA
##   .. ..- attr(*, "names")= chr  "Very Satisfied" "Satisfied" "Dissatisfied" "Very Dissatisfied" ...
##  $ w14a       : 'haven_labelled' num  1 2 2 1 1 1 1 1 NA 1 ...
##   ..- attr(*, "label")= chr "Abortion Justified When Mother's Health is at Risk"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 2 NA NA
##   .. ..- attr(*, "names")= chr  "Yes, it is justified" "No, it is not justified" "Don't Know" "No Response"
##  $ e5         : 'haven_labelled' num  NA 6 3 6 1 7 9 1 1 10 ...
##   ..- attr(*, "label")= chr "Approval of Those Participating in Legal Demonstration"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 10 NA NA
##   .. ..- attr(*, "names")= chr  "Strongly disapprove" "Strongly approve" "Don't Know" "No Response"
##  $ d1         : 'haven_labelled' num  NA 5 3 6 10 10 7 1 1 9 ...
##   ..- attr(*, "label")= chr "Approval of Government Critics' Right to Vote"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 10 NA NA
##   .. ..- attr(*, "names")= chr  "Strongly disapprove" "Strongly approve" "Don't Know" "No Response"
##  $ d2         : 'haven_labelled' num  NA 7 8 7 1 5 10 1 NA 10 ...
##   ..- attr(*, "label")= chr "Approval of Government Critics' Right to Peaceful Demonstrations"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 10 NA NA
##   .. ..- attr(*, "names")= chr  "Strongly disapprove" "Strongly approve" "Don't Know" "No Response"
##  $ d3         : 'haven_labelled' num  NA 4 4 6 10 1 3 1 NA 8 ...
##   ..- attr(*, "label")= chr "Approval of Government Critics' Right to Run for Office"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 10 NA NA
##   .. ..- attr(*, "names")= chr  "Strongly disapprove" "Strongly approve" "Don't Know" "No Response"
##  $ d4         : 'haven_labelled' num  NA 7 5 6 10 6 2 1 NA 7 ...
##   ..- attr(*, "label")= chr "Approval of Government Critics' Right to Make Speeches"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 10 NA NA
##   .. ..- attr(*, "names")= chr  "Strongly disapprove" "Strongly approve" "Don't Know" "No Response"
##  $ d5         : 'haven_labelled' num  NA 8 9 6 10 2 5 1 1 8 ...
##   ..- attr(*, "label")= chr "Approval of Homosexuals' Right to Run for Office"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 10 NA NA
##   .. ..- attr(*, "names")= chr  "Strongly disapprove" "Strongly approve" "Don't Know" "No Response"
##  $ d6         : 'haven_labelled' num  NA 5 9 5 10 10 7 1 10 5 ...
##   ..- attr(*, "label")= chr "Approval of Same-Sex Couples' Right to Marry"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 10 NA NA
##   .. ..- attr(*, "names")= chr  "Strongly disapprove" "Strongly approve" "Don't Know" "No Response"
##  $ lib1       : 'haven_labelled' num  1 1 2 1 1 2 1 3 1 1 ...
##   ..- attr(*, "label")= chr "Level of Freedom of the Press Today"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 2 3 NA NA
##   .. ..- attr(*, "names")= chr  "Very Little" "Enough" "Too Much" "Don't Know" ...
##  $ lib2b      : 'haven_labelled' num  NA 1 2 1 1 2 1 1 1 1 ...
##   ..- attr(*, "label")= chr "Level of Freedom of Expression Today"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 2 3 NA NA
##   .. ..- attr(*, "names")= chr  "Very Little" "Enough" "Too Much" "Don't Know" ...
##  $ lib2c      : 'haven_labelled' num  NA 1 NA 1 3 2 NA 2 1 1 ...
##   ..- attr(*, "label")= chr "Level of Freedom to Express Political Opinions without Fear"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 2 3 NA NA
##   .. ..- attr(*, "names")= chr  "Very Little" "Enough" "Too Much" "Don't Know" ...
##  $ lib4       : 'haven_labelled' num  NA 1 NA 2 1 2 1 1 1 1 ...
##   ..- attr(*, "label")= chr "Level of Protection of Human Rights Today"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 2 3 NA NA
##   .. ..- attr(*, "names")= chr  "Very Little" "Enough" "Too Much" "Don't Know" ...
##  $ exc2       : 'haven_labelled' num  0 0 0 0 0 0 0 0 0 0 ...
##   ..- attr(*, "label")= chr "Police Officer Asked for a Bribe"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  0 1 NA
##   .. ..- attr(*, "names")= chr  "No" "Yes" "No Response"
##  $ exc6       : 'haven_labelled' num  0 0 0 0 0 0 0 0 0 0 ...
##   ..- attr(*, "label")= chr "Government Employee Asked for a Bribe"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  0 1 NA
##   .. ..- attr(*, "names")= chr  "No" "Yes" "Don't Know"
##  $ exc20      : 'haven_labelled' num  0 0 0 0 0 0 0 1 0 0 ...
##   ..- attr(*, "label")= chr "Soldier Requested a Bribe"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  0 1
##   .. ..- attr(*, "names")= chr  "No" "Yes"
##  $ exc11      : 'haven_labelled' num  NA NA NA NA NA 0 NA NA NA 0 ...
##   ..- attr(*, "label")= chr "Asked to Pay Bribe to Process Document in Municipal Government"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  0 1 NA NA NA
##   .. ..- attr(*, "names")= chr  "No" "Yes" "Don't Know" "No Response" ...
##  $ exc13      : 'haven_labelled' num  NA 0 0 0 NA 0 NA 0 0 0 ...
##   ..- attr(*, "label")= chr "Asked to Pay a Bribe at Work"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  0 1 NA NA
##   .. ..- attr(*, "names")= chr  "No" "Yes" "No Response" "Not Applicable"
##  $ exc14      : 'haven_labelled' num  NA NA NA NA NA NA NA NA NA NA ...
##   ..- attr(*, "label")= chr "Asked to Pay a Bribe to the Courts"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  0 1 NA
##   .. ..- attr(*, "names")= chr  "No" "Yes" "Not Applicable"
##  $ exc15      : 'haven_labelled' num  0 0 NA 0 NA 0 0 NA NA NA ...
##   ..- attr(*, "label")= chr "Asked to Pay a Bribe to use Public Health Services"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  0 1 NA NA
##   .. ..- attr(*, "names")= chr  "No" "Yes" "No Response" "Not Applicable"
##  $ exc16      : 'haven_labelled' num  0 NA NA NA NA NA NA 0 NA 0 ...
##   ..- attr(*, "label")= chr "Asked to Pay a Bribe at School"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  0 1 NA NA NA
##   .. ..- attr(*, "names")= chr  "No" "Yes" "Don't Know" "No Response" ...
##  $ exc18      : 'haven_labelled' num  0 0 0 1 1 0 0 0 0 0 ...
##   ..- attr(*, "label")= chr "Paying a Bribe is Justified"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  0 1 NA NA
##   .. ..- attr(*, "names")= chr  "No" "Yes" "Don't Know" "No Response"
##  $ exc7new    : 'haven_labelled' num  5 4 5 3 4 5 2 2 NA 5 ...
##   ..- attr(*, "label")= chr "Amount of Corruption among Politicians"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 2 3 4 5 NA NA
##   .. ..- attr(*, "names")= chr  "None" "Less than half of them" "Half of them" "More than half of them" ...
##  $ vicbar7    : 'haven_labelled' num  2 2 2 2 2 2 1 1 2 2 ...
##   ..- attr(*, "label")= chr "Murders in the Neighborhood"
##   ..- attr(*, "format.stata")= chr "%36.0f"
##   ..- attr(*, "labels")= Named num  1 2 NA NA
##   .. ..- attr(*, "names")= chr  "Yes" "No" "Don't Know" "No Response"
##   [list output truncated]
##  - attr(*, "label")= chr "©AmericasBarometer, LAPOP; created 21 Sep 2017; type: notes list"
##  - attr(*, "notes")= chr  "For more information and details about the sample design, please consult the technical and country reports thro"| __truncated__ "4" "All data are de-identified and regulated by the Institutional Review Board (IRB) of Vanderbilt University. They"| __truncated__ "All data are copyrighted by the Latin American Public Opinion Project (LAPOP) and may only be used with the exp"| __truncated__ ...

Otro comando que hace algo similar, en el universo tidy, tydiverse https://www.tidyverse.org/, con la librería dplyr y el comando glimpse

#install.packages("dplyr", dependencies = TRUE)
library(dplyr)
## Warning: package 'dplyr' was built under R version 3.5.2

## 
## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':
## 
##     filter, lag

## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
glimpse(mex2017)
## Observations: 1,563
## Variables: 201
## $ pais        <dbl+lbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ idnum       <dbl> 694, 736, 1083, 1024, 1296, 920, 1479, 876, 565, 209…
## $ uniq_id     <dbl+lbl> 16010694, 16010736, 16011083, 16011024, 16011296…
## $ upm         <dbl> 106, 106, 66, 106, 13, 106, 13, 13, 16, 16, 16, 111,…
## $ prov        <dbl+lbl> 104, 104, 121, 104, 112, 104, 112, 112, 113, 113…
## $ municipio   <dbl+lbl> 104006, 104006, 121058, 104006, 112044, 104006, …
## $ cluster     <dbl> 71, 71, 932, 72, 431, 71, 432, 432, 461, 462, 462, 1…
## $ ur          <dbl+lbl> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, …
## $ tamano      <dbl+lbl> 4, 4, 4, 4, 5, 4, 5, 5, 4, 4, 4, 4, 4, 2, 4, 5, …
## $ idiomaq     <dbl+lbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ fecha       <date> 2017-03-13, 2017-03-13, 2017-02-16, 2017-03-13, 201…
## $ wt          <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
## $ estratopri  <dbl+lbl> 104, 104, 103, 104, 104, 104, 104, 104, 103, 103…
## $ estratosec  <dbl+lbl> 2, 2, 3, 2, 3, 2, 3, 3, 2, 2, 2, 2, 2, 1, 2, 3, …
## $ q2          <dbl> 38, 64, 25, 32, 18, 45, 18, 36, 73, 49, 46, 26, 56, …
## $ q1          <dbl+lbl> 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, …
## $ ls3         <dbl+lbl> 3, 2, 2, 3, 2, 2, NA, 2, NA, 1, 2, 2, 2, 1, 2, 1…
## $ a4          <dbl+lbl> NA, 55, NA, 1, NA, 15, 15, NA, 5, 13, 13, 12, NA…
## $ soct2       <dbl+lbl> 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, NA, 3, 3, 3,…
## $ idio2       <dbl+lbl> 3, 1, 2, 2, 3, 3, 2, 3, 2, 2, 3, 3, NA, 3, 3, 3,…
## $ np1         <dbl+lbl> 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, …
## $ cp6         <dbl+lbl> 4, 3, 4, 1, 4, 1, 1, 2, 1, 4, 2, 1, 4, 1, 1, 2, …
## $ cp7         <dbl+lbl> 2, 4, 2, 4, 4, 4, 4, 2, 4, 2, 2, 3, 4, 4, 4, 3, …
## $ cp8         <dbl+lbl> 1, 2, 4, 3, 4, 3, 4, 1, 2, 2, 2, 4, 4, 3, 4, 2, …
## $ cp13        <dbl+lbl> 4, 3, 4, 4, 4, 3, 4, 2, 4, 4, 4, 4, 4, 3, 4, 4, …
## $ cp20        <dbl+lbl> 4, NA, 4, NA, 4, NA, 2, NA, NA, NA, 2, NA, 4, 4,…
## $ it1         <dbl+lbl> 3, 2, 2, 3, 3, 2, 3, 3, 1, 4, 1, 2, 4, 1, 1, 4, …
## $ l1          <dbl+lbl> 9, 10, 2, 7, 10, 9, NA, 1, 7, 1, NA, 1, 6, 1, 7,…
## $ prot3       <dbl+lbl> 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, NA, 2, 2, 2, 2,…
## $ jc10        <dbl+lbl> NA, NA, 1, 1, 1, NA, NA, NA, NA, NA, 2, 2, 2, 2,…
## $ jc13        <dbl+lbl> NA, 2, NA, NA, NA, 1, NA, 1, NA, 2, NA, NA, NA, …
## $ jc15a       <dbl+lbl> NA, 2, 2, NA, NA, 1, NA, 1, 2, 2, 2, 1, 2, 2, 2,…
## $ vic1ext     <dbl+lbl> 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 1, 1, 2, …
## $ vic1exta    <dbl+lbl> NA, NA, NA, NA, NA, NA, NA, 1, NA, NA, NA, 1, NA…
## $ vic71       <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ vic43       <dbl+lbl> 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ vicbar4a    <dbl+lbl> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ aoj11       <dbl+lbl> NA, 2, 3, 2, 4, 2, 2, 2, 1, 2, 1, 2, NA, 3, 2, 2…
## $ aoj12       <dbl+lbl> 3, 1, 1, 3, 3, 2, 2, 2, 4, 4, NA, 3, 4, 4, 4, 1,…
## $ b1          <dbl+lbl> 7, 7, 3, 3, 7, 5, 3, 1, 1, 1, NA, 2, 5, 4, 5, 2,…
## $ b2          <dbl+lbl> 1, 4, 6, 4, 7, 6, 5, 1, 1, 1, 5, 3, 5, 1, 2, 4, …
## $ b3          <dbl+lbl> NA, NA, 2, 3, 7, 4, 2, 1, 1, 4, 2, 5, 3, 1, 6, 2…
## $ b4          <dbl+lbl> NA, 5, 4, 3, 7, 2, 6, 1, 1, 1, 5, 2, 6, 1, 3, 6,…
## $ b6          <dbl+lbl> 6, 7, 6, 4, 7, 7, 7, 2, 1, 1, NA, 1, 1, 7, 4, 4,…
## $ b43         <dbl+lbl> 7, 7, 7, 6, 7, 7, 7, NA, 1, 4, 7, 7, 6, 7, 7, 7,…
## $ b12         <dbl+lbl> NA, 7, 5, 4, 7, 6, 4, 1, 1, 1, 6, 6, 2, 7, 7, 7,…
## $ b13         <dbl+lbl> NA, 7, 4, 3, 7, 5, 4, NA, 1, 5, NA, NA, 1, 1, 1,…
## $ b18         <dbl+lbl> 1, 4, 4, 3, 7, 7, 1, 7, 1, 3, NA, 4, 6, 1, 1, 3,…
## $ b21         <dbl+lbl> 1, 5, 2, 3, 1, 4, 4, 1, 1, 2, NA, 4, 3, 1, 4, 1,…
## $ b21a        <dbl+lbl> 1, 6, 4, 4, 1, 5, 6, 7, 1, 1, NA, 4, 5, 1, 5, 1,…
## $ b32         <dbl+lbl> 1, 6, 6, 4, 7, 7, 6, 5, 1, 7, NA, 7, 6, 7, 6, 3,…
## $ b37         <dbl+lbl> 7, 5, 6, 4, 7, 4, 5, 2, 1, 1, NA, 5, 2, 6, 7, 6,…
## $ b47a        <dbl+lbl> 1, 4, 6, 4, 7, 7, 6, NA, 1, 1, NA, 7, 1, 1, 5, 5…
## $ pr3d        <dbl+lbl> 1, 1, NA, 7, 1, 3, 3, 1, 1, 1, NA, 1, 7, 7, 7, 6…
## $ pr3e        <dbl+lbl> 7, 1, NA, 4, 7, 2, 3, 1, 1, 1, NA, 1, 3, 1, 7, 1…
## $ m1          <dbl+lbl> 4, 3, 2, 3, 5, 2, 2, 4, 2, 5, 3, 2, 4, 3, 4, 5, …
## $ m2          <dbl+lbl> 4, 3, 3, 3, 4, 3, 1, 4, 2, 5, NA, 2, 1, 4, 4, NA…
## $ sd2new2     <dbl+lbl> 3, 2, 2, 4, 1, 2, 2, 2, 3, 3, 4, 3, NA, 2, 3, 2,…
## $ sd3new2     <dbl+lbl> NA, 1, 3, 2, 1, 1, 2, 2, 2, 3, 4, 3, NA, 2, 2, 1…
## $ sd6new2     <dbl+lbl> 3, 3, 2, 3, 1, 2, 2, 2, 4, 4, 2, 4, 2, 2, 4, 2, …
## $ infrax      <dbl+lbl> 1, 1, 3, 5, 5, 2, 2, 5, 6, 4, 3, 6, 6, 6, 3, 1, …
## $ infra3      <dbl+lbl> 2, 2, 2, 3, 5, 4, 1, 5, 4, 4, 4, 5, 3, 3, 3, 2, …
## $ ros1        <dbl+lbl> NA, 6, 4, 5, 6, 4, 7, 1, 1, 1, NA, 1, 7, 2, 4, 5…
## $ ros4        <dbl+lbl> 1, 5, 1, 7, 7, 5, 6, 1, 7, 3, 4, 3, 2, 7, 5, 7, …
## $ ing4        <dbl+lbl> 1, 4, 2, 4, 7, 7, 4, NA, NA, 1, NA, 4, 1, 1, 6, …
## $ eff1        <dbl+lbl> NA, 6, 4, 4, 1, 1, 3, 1, 1, 2, 1, 1, 2, 7, 6, 4,…
## $ eff2        <dbl+lbl> NA, 6, 4, 4, 1, 5, 3, NA, 1, 3, 1, NA, 3, 1, 4, …
## $ aoj22new    <dbl+lbl> 5, 6, 3, 6, 7, 7, 7, 5, 7, 6, NA, 7, 5, 7, 5, 7,…
## $ media3      <dbl+lbl> NA, 5, 6, 5, 7, 3, 5, 1, 1, 1, NA, 5, 7, 7, 7, 6…
## $ media4      <dbl+lbl> NA, 3, 5, 5, 6, 4, 4, 1, 7, 1, 3, 1, 7, 1, 3, NA…
## $ exp_a       <dbl+lbl> 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, …
## $ dst1b       <dbl+lbl> 1, 6, 3, 5, 7, 6, 7, 7, 7, 5, 7, 7, 6, 7, 7, NA,…
## $ drk1        <dbl+lbl> 3, 3, 1, 4, 4, 3, 2, 2, 1, 2, 4, 4, 1, 2, 4, 4, …
## $ env1c       <dbl+lbl> 7, 4, 2, 5, 7, 7, 1, 1, NA, 1, 1, 2, 2, 7, 4, 3,…
## $ env2b       <dbl+lbl> 1, 3, 3, 2, 4, 1, 1, 3, 2, 3, 1, 1, 4, 2, 1, 1, …
## $ pn4         <dbl+lbl> 3, 2, 3, 3, 1, 2, 3, 2, NA, 3, NA, 2, 2, 4, 2, 2…
## $ w14a        <dbl+lbl> 1, 2, 2, 1, 1, 1, 1, 1, NA, 1, 2, 2, 2, 2, 2, 1,…
## $ e5          <dbl+lbl> NA, 6, 3, 6, 1, 7, 9, 1, 1, 10, NA, NA, 2, 10, 6…
## $ d1          <dbl+lbl> NA, 5, 3, 6, 10, 10, 7, 1, 1, 9, NA, 6, 1, 5, 6,…
## $ d2          <dbl+lbl> NA, 7, 8, 7, 1, 5, 10, 1, NA, 10, 4, 3, 10, 10, …
## $ d3          <dbl+lbl> NA, 4, 4, 6, 10, 1, 3, 1, NA, 8, 3, 1, 9, 10, 8,…
## $ d4          <dbl+lbl> NA, 7, 5, 6, 10, 6, 2, 1, NA, 7, NA, 3, 7, 10, 9…
## $ d5          <dbl+lbl> NA, 8, 9, 6, 10, 2, 5, 1, 1, 8, NA, 1, 5, 1, 1, …
## $ d6          <dbl+lbl> NA, 5, 9, 5, 10, 10, 7, 1, 10, 5, NA, 1, 6, 5, 1…
## $ lib1        <dbl+lbl> 1, 1, 2, 1, 1, 2, 1, 3, 1, 1, 2, 1, NA, 2, 2, NA…
## $ lib2b       <dbl+lbl> NA, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, NA, 1, 2, 1…
## $ lib2c       <dbl+lbl> NA, 1, NA, 1, 3, 2, NA, 2, 1, 1, NA, 1, NA, 1, 1…
## $ lib4        <dbl+lbl> NA, 1, NA, 2, 1, 2, 1, 1, 1, 1, 1, 1, NA, 1, 2, …
## $ exc2        <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ exc6        <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ exc20       <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ exc11       <dbl+lbl> NA, NA, NA, NA, NA, 0, NA, NA, NA, 0, NA, NA, NA…
## $ exc13       <dbl+lbl> NA, 0, 0, 0, NA, 0, NA, 0, 0, 0, NA, 0, 0, NA, 0…
## $ exc14       <dbl+lbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, …
## $ exc15       <dbl+lbl> 0, 0, NA, 0, NA, 0, 0, NA, NA, NA, NA, NA, NA, 0…
## $ exc16       <dbl+lbl> 0, NA, NA, NA, NA, NA, NA, 0, NA, 0, 0, 0, NA, N…
## $ exc18       <dbl+lbl> 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, …
## $ exc7new     <dbl+lbl> 5, 4, 5, 3, 4, 5, 2, 2, NA, 5, NA, 3, NA, 5, 4, …
## $ vicbar7     <dbl+lbl> 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, …
## $ vicbar7f    <dbl+lbl> NA, NA, NA, NA, NA, NA, 3, 1, NA, NA, NA, NA, NA…
## $ fear11      <dbl+lbl> NA, 4, 4, 3, 4, 2, 4, 3, 4, 4, 4, 3, 4, 2, 4, 2,…
## $ capital1    <dbl+lbl> 2, 2, 2, NA, 2, 1, NA, 1, NA, 2, NA, NA, 1, 2, 2…
## $ iga1        <dbl+lbl> NA, 1, 4, 1, 4, 2, NA, 4, NA, 1, 1, 1, NA, 4, 4,…
## $ igaaoj22    <dbl+lbl> 1, 1, 2, 1, 2, 2, 1, 1, NA, 1, NA, NA, 1, 1, 1, …
## $ vb1         <dbl+lbl> 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, …
## $ inf1        <dbl+lbl> 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, …
## $ vb2         <dbl+lbl> 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, …
## $ vb3n        <dbl+lbl> NA, 101, NA, NA, NA, 101, NA, 102, 101, 102, NA,…
## $ vb10        <dbl+lbl> 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2, …
## $ vb11        <dbl+lbl> NA, NA, NA, NA, NA, NA, NA, 103, NA, NA, NA, 103…
## $ pol1        <dbl+lbl> 4, 3, NA, 3, 4, 2, 2, 1, 4, 1, 4, 3, 3, 3, 3, 4,…
## $ vb20        <dbl+lbl> 4, 2, NA, 3, 4, 3, 3, 3, 2, 3, 3, 3, 3, 1, 1, 3,…
## $ mexcv1      <dbl+lbl> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, …
## $ mexcv2      <dbl+lbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, …
## $ for5        <dbl+lbl> NA, 11, 11, NA, 10, 4, NA, NA, NA, 1, NA, NA, 7,…
## $ exp_b       <dbl+lbl> 2, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, …
## $ mil10a      <dbl+lbl> NA, 1, NA, 4, 4, NA, NA, 4, NA, 2, NA, NA, NA, N…
## $ mil10e      <dbl+lbl> 4, 1, NA, 4, 4, 2, 4, 4, 4, 4, NA, 2, NA, 4, 4, …
## $ mil10oas    <dbl+lbl> NA, NA, NA, NA, 4, 3, NA, NA, NA, 4, NA, NA, NA,…
## $ mil10un     <dbl+lbl> NA, 2, NA, 3, 4, 2, NA, 3, NA, 4, NA, NA, NA, 3,…
## $ ccq1        <dbl+lbl> 2, 1, 2, NA, 2, 2, 1, 2, 2, 1, 2, 1, 1, 1, 1, 2,…
## $ ccq2        <dbl+lbl> NA, 5, NA, NA, NA, NA, 2, NA, NA, 3, NA, 3, 5, 2…
## $ ccq3        <dbl+lbl> 1, 1, 2, 1, 1, 1, 1, 2, NA, 1, 2, 2, 2, 2, 1, NA…
## $ ccq4        <dbl+lbl> 1, 1, NA, NA, 3, 2, 2, NA, NA, 3, NA, NA, NA, NA…
## $ mexus1      <dbl+lbl> NA, 1, 2, 2, 2, 2, 2, 2, NA, 2, NA, NA, 1, 2, 2,…
## $ mexus2      <dbl+lbl> 3, 1, 2, 1, 2, 3, NA, 2, NA, 2, NA, 2, NA, 2, 2,…
## $ via1a       <dbl+lbl> NA, 2, NA, 3, NA, NA, 2, NA, NA, 77, 77, NA, NA,…
## $ via1b       <dbl+lbl> NA, 20, NA, 22, NA, NA, 20, NA, NA, NA, NA, NA, …
## $ wf1         <dbl+lbl> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 1, 2, …
## $ cct1b       <dbl+lbl> 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, …
## $ ed          <dbl+lbl> 6, 0, NA, 9, 8, 0, 10, 0, 0, 12, 1, 9, 1, 0, 6, …
## $ ed2         <dbl+lbl> 0, 0, 0, 2, 0, 0, 5, 0, NA, 0, 0, NA, NA, 0, 1, …
## $ mexham1     <dbl+lbl> 5, 5, 1, 5, 1, 3, 1, 1, 2, 3, 1, 3, 5, 3, 6, 3, …
## $ mexham2     <dbl+lbl> NA, 5, 1, 2, 3, 2, 1, 5, 3, 3, 1, 3, 3, 3, 3, 3,…
## $ mexham3     <dbl+lbl> NA, 5, 1, 3, 1, 3, 1, 1, 3, 3, 1, 3, 5, 3, 2, 3,…
## $ mexham4     <dbl+lbl> 1, 5, 1, 5, 5, 5, 4, 1, 3, 5, 1, 3, 5, 3, 5, 5, …
## $ mexham5     <dbl+lbl> 1, 5, NA, 6, 3, 6, 3, 1, 5, 5, 1, 5, 3, 3, 6, 5,…
## $ mexham6     <dbl+lbl> 1, 6, 1, 5, 5, 3, 3, 5, 3, 3, 1, 5, 3, 3, 5, 3, …
## $ q5a         <dbl+lbl> 5, 2, 5, 2, 3, 2, 1, 3, 4, 5, 1, 1, 2, 4, 2, 1, …
## $ q5b         <dbl+lbl> 4, 1, 4, 2, 3, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, …
## $ q3c         <dbl+lbl> 11, 1, NA, 1, 1, 1, 1, 1, 1, 4, 1, NA, 3, 3, 5, …
## $ ocup4a      <dbl+lbl> 5, 1, 6, 1, 4, 1, 4, 3, 1, 1, 5, 1, 5, 5, 1, 5, …
## $ ocup1a      <dbl+lbl> NA, 4, NA, 4, NA, 4, NA, NA, 2, 4, NA, 4, NA, NA…
## $ q10g        <dbl+lbl> NA, 1, NA, 1, NA, 1, NA, NA, 1, 0, NA, 1, NA, NA…
## $ q10new      <dbl+lbl> 0, 1, NA, 1, 16, 1, 1, 1, 1, 0, 1, 1, NA, 0, 1, …
## $ q10a        <dbl+lbl> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, NA, 1, 2, 2, 2,…
## $ q14         <dbl+lbl> 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 2, …
## $ q10d        <dbl+lbl> 2, 4, 4, 4, 3, 4, 1, 3, 4, 3, 3, 4, NA, 4, 3, 4,…
## $ q10e        <dbl+lbl> 3, 3, 3, 2, 3, 3, 2, 3, 2, 2, 2, 2, NA, 3, 3, 1,…
## $ q11n        <dbl+lbl> 2, 2, 2, 1, 1, 2, 1, 3, 2, 2, 2, 2, 2, 1, 2, 2, …
## $ q12c        <dbl+lbl> 5, 2, 2, 3, 8, 4, 5, 7, 3, 5, 6, 4, 2, 1, 5, 4, …
## $ q12bn       <dbl+lbl> 0, 0, 0, 0, 3, 0, 2, 2, 1, 3, 3, 2, 0, 0, 2, 2, …
## $ q12         <dbl+lbl> 3, 6, 0, 0, 0, 0, 1, 4, 8, 3, 3, 2, 8, 1, 3, 2, …
## $ q12m        <dbl+lbl> 1, 2, NA, NA, NA, NA, 1, 3, 4, 2, 3, 2, 4, 1, 1,…
## $ q12f        <dbl+lbl> 2, 4, NA, NA, NA, NA, 0, 1, 4, 1, 0, 0, 4, 0, 2,…
## $ vac1        <dbl+lbl> 1, 1, 2, NA, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, NA, 1…
## $ mexinf1     <dbl+lbl> 2, 1, 2, 2, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, …
## $ mexinf4     <dbl+lbl> 2, 2, 2, NA, 2, 2, NA, 2, 2, 2, 2, 2, 2, 2, 1, N…
## $ mexinf5     <dbl+lbl> 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ mexinf6     <dbl+lbl> 2, 1, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 1, …
## $ mexinf7     <dbl+lbl> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, NA,…
## $ mexinf9     <dbl+lbl> 2, 2, 2, 2, NA, 2, 2, 2, 2, 2, 2, NA, NA, NA, 2,…
## $ mexinf8     <dbl+lbl> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, NA,…
## $ etid        <dbl+lbl> NA, 4, 3, 3, 3, NA, 3, 3, NA, 2, NA, NA, NA, 1, …
## $ mexiiet1    <dbl+lbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 1, N…
## $ mexiiet2    <dbl+lbl> 1, NA, NA, NA, 1, NA, NA, NA, 2, NA, 1, NA, NA, …
## $ mexiiet3    <dbl+lbl> NA, 1, 1, 1, NA, 1, 1, 1, NA, 1, NA, NA, 2, NA, …
## $ www1        <dbl+lbl> 5, 5, 5, 5, 1, 1, 1, 5, 5, 5, 5, 5, 5, 5, 4, 5, …
## $ i2          <dbl+lbl> 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, …
## $ i3          <dbl+lbl> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, …
## $ i4          <dbl+lbl> 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, …
## $ gi0         <dbl+lbl> 5, 3, 3, 2, 3, 2, 2, 5, 5, 1, 5, 4, 2, 1, 5, 2, …
## $ pr1         <dbl+lbl> 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 3, …
## $ r3          <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, …
## $ r4          <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ r4a         <dbl+lbl> 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, …
## $ r5          <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ r6          <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, …
## $ r7          <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ r8          <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ r12         <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, …
## $ r14         <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, …
## $ r15         <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ r18         <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ r1          <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, …
## $ r16         <dbl+lbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 1, 1…
## $ sent1       <dbl+lbl> NA, NA, NA, NA, NA, NA, 2, NA, NA, 77, NA, 1, NA…
## $ colorr      <dbl+lbl> 6, 6, 7, 6, 5, 6, 5, 4, 4, 3, 3, 5, 4, 5, 6, 3, …
## $ conocim     <dbl+lbl> 5, 3, 4, 3, 5, 2, 4, 4, 3, 2, 4, 4, 4, 2, 3, 4, …
## $ iarea1      <dbl+lbl> 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 3, 4, 3, 2, …
## $ iarea2      <dbl+lbl> 3, 4, 3, 4, 3, 3, 3, 3, 2, 2, 3, 4, 3, 3, 4, 3, …
## $ iarea3      <dbl+lbl> 1, 1, 3, 1, 1, 1, 1, 3, 2, 2, 2, 3, 1, 2, 1, 1, …
## $ iarea4      <dbl+lbl> 1, 1, 3, 3, 2, 2, 3, 3, 1, 2, 1, 2, 3, 4, 1, 3, …
## $ iarea6      <dbl+lbl> 1, 1, 3, 1, 2, 3, 2, 2, 1, 1, 1, 2, 1, 1, 2, 1, …
## $ iarea7      <dbl+lbl> 1, 1, 3, 2, 1, 2, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ sexi        <dbl+lbl> 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, …
## $ colori      <dbl+lbl> 5, 5, 4, 5, 4, 5, 4, 4, 1, 2, 2, 4, 3, 3, 5, 4, …
## $ srvyrid     <dbl> 44, 44, 34, 44, 8, 44, 8, 8, 36, 35, 35, 49, 16, 16,…
## $ nationality <dbl+lbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ formatq     <dbl+lbl> 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, …
## $ sex         <dbl+lbl> 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, …

Si queremos ver los niveles de una variable, tenemos que usar el formato basedatos$var. Esto nos llevará a la variable dentro del objeto que tenemos que es una base de datos. Esto nos permite tener varias bases de datos cargadas en un mismo ambiente.

Recuerda que tenemos que leer los dos archivos de información: http://datasets.americasbarometer.org/database/files/634534536Mexico_AmericasBarometer_Tech_Info_2016_17_W_092217.pdf http://datasets.americasbarometer.org/database/files/1727039552ABMex17-v16.0.2.1-Spa-170130_W.pdf

levels(mex2017$sex)
## NULL

También podemos pedir una tabla de una variable.

table(mex2017$sex) # edad
## 
##   1   2 
## 788 775
table(mex2017$q2) # sexo
## 
## 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 
## 59 43 48 42 41 41 32 35 42 36 37 50 45 29 30 39 22 31 32 24 24 28 28 22 33 
## 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 
## 25 24 34 31 32 33 30 34 21 36 26 23 15 24 18 22 15 15 14 10 10 16 15 12 11 
## 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 85 88 
## 24  6 15  7 11 12  6  7  8  6  5  1  8  1  3  2  1  1

Para ver las dimensiones de cualquier objeto, en este caso nos dirá el número de observaciones y variables

dim(mex2017)
## [1] 1563  201

Si queremos saber el tipo o clase de un objeto (numeric, matrix, data frame, etc)

class(mex2017)
## [1] "tbl_df"     "tbl"        "data.frame"

Una breve revisión

summary(mex2017)
##       pais       idnum           uniq_id              upm        
##  Min.   :1   Min.   :   1.0   Min.   :16010001   Min.   :  1.00  
##  1st Qu.:1   1st Qu.: 391.5   1st Qu.:16010392   1st Qu.: 33.00  
##  Median :1   Median : 782.0   Median :16010782   Median : 65.00  
##  Mean   :1   Mean   : 782.0   Mean   :16010782   Mean   : 65.45  
##  3rd Qu.:1   3rd Qu.:1172.5   3rd Qu.:16011172   3rd Qu.: 98.00  
##  Max.   :1   Max.   :1563.0   Max.   :16011563   Max.   :130.00  
##                                                                  
##       prov         municipio         cluster             ur     
##  Min.   :101.0   Min.   :101009   Min.   :  11.0   Min.   :1.0  
##  1st Qu.:110.0   1st Qu.:110012   1st Qu.: 331.5   1st Qu.:1.0  
##  Median :115.0   Median :115061   Median : 661.0   Median :1.0  
##  Mean   :116.3   Mean   :116363   Mean   : 656.3   Mean   :1.2  
##  3rd Qu.:122.0   3rd Qu.:122010   3rd Qu.: 981.5   3rd Qu.:1.0  
##  Max.   :132.0   Max.   :132044   Max.   :1302.0   Max.   :2.0  
##                                                                 
##      tamano         idiomaq      fecha                  wt   
##  Min.   :1.000   Min.   :1   Min.   :2017-01-28   Min.   :1  
##  1st Qu.:2.000   1st Qu.:1   1st Qu.:2017-02-11   1st Qu.:1  
##  Median :2.000   Median :1   Median :2017-02-19   Median :1  
##  Mean   :2.477   Mean   :1   Mean   :2017-02-22   Mean   :1  
##  3rd Qu.:3.000   3rd Qu.:1   3rd Qu.:2017-03-05   3rd Qu.:1  
##  Max.   :5.000   Max.   :1   Max.   :2017-03-23   Max.   :1  
##                                                              
##    estratopri      estratosec          q2              q1       
##  Min.   :101.0   Min.   :1.000   Min.   :18.00   Min.   :1.000  
##  1st Qu.:101.0   1st Qu.:1.000   1st Qu.:27.00   1st Qu.:1.000  
##  Median :103.0   Median :1.000   Median :38.00   Median :1.000  
##  Mean   :102.5   Mean   :1.447   Mean   :40.57   Mean   :1.496  
##  3rd Qu.:103.0   3rd Qu.:2.000   3rd Qu.:52.00   3rd Qu.:2.000  
##  Max.   :104.0   Max.   :3.000   Max.   :88.00   Max.   :2.000  
##                                                                 
##       ls3              a4            soct2           idio2      
##  Min.   :1.000   Min.   : 1.00   Min.   :1.000   Min.   :1.000  
##  1st Qu.:1.000   1st Qu.: 1.00   1st Qu.:3.000   1st Qu.:2.000  
##  Median :2.000   Median : 5.00   Median :3.000   Median :3.000  
##  Mean   :1.707   Mean   :17.51   Mean   :2.807   Mean   :2.439  
##  3rd Qu.:2.000   3rd Qu.:21.00   3rd Qu.:3.000   3rd Qu.:3.000  
##  Max.   :4.000   Max.   :70.00   Max.   :3.000   Max.   :3.000  
##  NA's   :16      NA's   :38      NA's   :22      NA's   :20     
##       np1            cp6             cp7             cp8       
##  Min.   :1.00   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.00   1st Qu.:1.000   1st Qu.:2.000   1st Qu.:3.000  
##  Median :2.00   Median :3.000   Median :4.000   Median :4.000  
##  Mean   :1.91   Mean   :2.694   Mean   :3.246   Mean   :3.574  
##  3rd Qu.:2.00   3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.:4.000  
##  Max.   :2.00   Max.   :4.000   Max.   :4.000   Max.   :4.000  
##  NA's   :14     NA's   :7       NA's   :9       NA's   :12     
##       cp13            cp20            it1              l1        
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   : 1.000  
##  1st Qu.:4.000   1st Qu.:4.000   1st Qu.:2.000   1st Qu.: 3.000  
##  Median :4.000   Median :4.000   Median :2.000   Median : 5.000  
##  Mean   :3.758   Mean   :3.677   Mean   :2.387   Mean   : 4.969  
##  3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.:3.000   3rd Qu.: 7.000  
##  Max.   :4.000   Max.   :4.000   Max.   :4.000   Max.   :10.000  
##  NA's   :12      NA's   :790     NA's   :34      NA's   :166     
##      prot3            jc10            jc13           jc15a      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:1.000   1st Qu.:1.000   1st Qu.:2.000  
##  Median :2.000   Median :2.000   Median :1.000   Median :2.000  
##  Mean   :1.908   Mean   :1.517   Mean   :1.497   Mean   :1.829  
##  3rd Qu.:2.000   3rd Qu.:2.000   3rd Qu.:2.000   3rd Qu.:2.000  
##  Max.   :2.000   Max.   :2.000   Max.   :2.000   Max.   :2.000  
##  NA's   :4       NA's   :842     NA's   :827     NA's   :133    
##     vic1ext         vic1exta          vic71            vic43       
##  Min.   :1.000   Min.   : 1.000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:1.000   1st Qu.: 1.000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :2.000   Median : 2.000   Median :1.0000   Median :0.0000  
##  Mean   :1.681   Mean   : 2.426   Mean   :0.5173   Mean   :0.1859  
##  3rd Qu.:2.000   3rd Qu.: 3.000   3rd Qu.:1.0000   3rd Qu.:0.0000  
##  Max.   :2.000   Max.   :20.000   Max.   :1.0000   Max.   :1.0000  
##  NA's   :1       NA's   :1070     NA's   :5        NA's   :3       
##     vicbar4a          aoj11           aoj12             b1       
##  Min.   :0.0000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:0.0000   1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000  
##  Median :0.0000   Median :2.000   Median :3.000   Median :3.000  
##  Mean   :0.1969   Mean   :2.437   Mean   :3.106   Mean   :3.154  
##  3rd Qu.:0.0000   3rd Qu.:3.000   3rd Qu.:4.000   3rd Qu.:4.000  
##  Max.   :1.0000   Max.   :4.000   Max.   :4.000   Max.   :7.000  
##  NA's   :4        NA's   :13      NA's   :27      NA's   :34     
##        b2              b3              b4              b6       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:2.000   1st Qu.:2.000   1st Qu.:3.000  
##  Median :4.000   Median :3.000   Median :3.000   Median :5.000  
##  Mean   :4.165   Mean   :3.253   Mean   :3.497   Mean   :4.358  
##  3rd Qu.:6.000   3rd Qu.:4.000   3rd Qu.:5.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##  NA's   :28      NA's   :51      NA's   :27      NA's   :43     
##       b43            b12             b13             b18       
##  Min.   :1.00   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:7.00   1st Qu.:4.000   1st Qu.:2.000   1st Qu.:1.000  
##  Median :7.00   Median :5.000   Median :4.000   Median :3.000  
##  Mean   :6.55   Mean   :4.888   Mean   :3.618   Mean   :2.892  
##  3rd Qu.:7.00   3rd Qu.:7.000   3rd Qu.:5.000   3rd Qu.:4.000  
##  Max.   :7.00   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##  NA's   :6      NA's   :34      NA's   :85      NA's   :20     
##       b21             b21a            b32             b37       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:1.000   1st Qu.:1.000   1st Qu.:2.000   1st Qu.:2.000  
##  Median :2.000   Median :2.000   Median :4.000   Median :4.000  
##  Mean   :2.364   Mean   :2.581   Mean   :3.859   Mean   :3.933  
##  3rd Qu.:3.000   3rd Qu.:4.000   3rd Qu.:5.000   3rd Qu.:5.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##  NA's   :19      NA's   :25      NA's   :24      NA's   :39     
##       b47a            pr3d            pr3e             m1       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:1.000   1st Qu.:2.000   1st Qu.:2.000   1st Qu.:3.000  
##  Median :3.000   Median :4.000   Median :5.000   Median :4.000  
##  Mean   :3.046   Mean   :4.196   Mean   :4.354   Mean   :3.749  
##  3rd Qu.:5.000   3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:5.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :5.000  
##  NA's   :35      NA's   :75      NA's   :111     NA's   :27     
##        m2           sd2new2         sd3new2         sd6new2     
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000  
##  Median :4.000   Median :2.000   Median :2.000   Median :3.000  
##  Mean   :3.749   Mean   :2.463   Mean   :2.386   Mean   :2.636  
##  3rd Qu.:5.000   3rd Qu.:3.000   3rd Qu.:3.000   3rd Qu.:3.000  
##  Max.   :5.000   Max.   :4.000   Max.   :4.000   Max.   :4.000  
##  NA's   :38      NA's   :39      NA's   :79      NA's   :38     
##      infrax          infra3           ros1            ros4      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000   1st Qu.:4.000  
##  Median :3.000   Median :2.000   Median :4.000   Median :6.000  
##  Mean   :3.357   Mean   :2.377   Mean   :3.996   Mean   :5.348  
##  3rd Qu.:4.000   3rd Qu.:3.000   3rd Qu.:5.500   3rd Qu.:7.000  
##  Max.   :6.000   Max.   :6.000   Max.   :7.000   Max.   :7.000  
##  NA's   :35      NA's   :13      NA's   :84      NA's   :37     
##       ing4            eff1            eff2          aoj22new    
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:1.000   1st Qu.:3.000   1st Qu.:5.000  
##  Median :4.000   Median :3.000   Median :4.000   Median :7.000  
##  Mean   :4.378   Mean   :3.192   Mean   :3.928   Mean   :5.783  
##  3rd Qu.:6.000   3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:7.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##  NA's   :83      NA's   :34      NA's   :39      NA's   :28     
##      media3         media4          exp_a           dst1b      
##  Min.   :1.00   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.00   1st Qu.:3.000   1st Qu.:1.000   1st Qu.:4.000  
##  Median :4.00   Median :5.000   Median :2.000   Median :6.000  
##  Mean   :4.07   Mean   :4.644   Mean   :1.508   Mean   :5.167  
##  3rd Qu.:5.00   3rd Qu.:6.000   3rd Qu.:2.000   3rd Qu.:7.000  
##  Max.   :7.00   Max.   :7.000   Max.   :2.000   Max.   :7.000  
##  NA's   :45     NA's   :64                      NA's   :43     
##       drk1          env1c          env2b            pn4      
##  Min.   :1.00   Min.   :1.00   Min.   :1.000   Min.   :1.00  
##  1st Qu.:2.00   1st Qu.:2.00   1st Qu.:1.000   1st Qu.:2.00  
##  Median :3.00   Median :4.00   Median :1.000   Median :3.00  
##  Mean   :2.81   Mean   :3.91   Mean   :1.331   Mean   :2.94  
##  3rd Qu.:4.00   3rd Qu.:6.00   3rd Qu.:1.000   3rd Qu.:3.00  
##  Max.   :4.00   Max.   :7.00   Max.   :4.000   Max.   :4.00  
##  NA's   :36     NA's   :36     NA's   :20      NA's   :61    
##       w14a             e5              d1               d2       
##  Min.   :1.000   Min.   : 1.00   Min.   : 1.000   Min.   : 1.00  
##  1st Qu.:1.000   1st Qu.: 4.00   1st Qu.: 5.000   1st Qu.: 5.00  
##  Median :1.000   Median : 7.00   Median : 7.000   Median : 8.00  
##  Mean   :1.361   Mean   : 6.33   Mean   : 6.432   Mean   : 6.98  
##  3rd Qu.:2.000   3rd Qu.: 9.00   3rd Qu.: 9.000   3rd Qu.:10.00  
##  Max.   :2.000   Max.   :10.00   Max.   :10.000   Max.   :10.00  
##  NA's   :75      NA's   :41      NA's   :55       NA's   :40     
##        d3               d4               d5               d6        
##  Min.   : 1.000   Min.   : 1.000   Min.   : 1.000   Min.   : 1.000  
##  1st Qu.: 2.000   1st Qu.: 3.000   1st Qu.: 3.000   1st Qu.: 1.000  
##  Median : 5.000   Median : 5.000   Median : 6.000   Median : 6.000  
##  Mean   : 4.899   Mean   : 5.288   Mean   : 5.962   Mean   : 5.598  
##  3rd Qu.: 7.000   3rd Qu.: 8.000   3rd Qu.: 9.000   3rd Qu.:10.000  
##  Max.   :10.000   Max.   :10.000   Max.   :10.000   Max.   :10.000  
##  NA's   :57       NA's   :63       NA's   :57       NA's   :57      
##       lib1           lib2b           lib2c            lib4      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:1.000   1st Qu.:1.000   1st Qu.:1.000   1st Qu.:1.000  
##  Median :1.000   Median :1.000   Median :1.000   Median :1.000  
##  Mean   :1.611   Mean   :1.537   Mean   :1.401   Mean   :1.364  
##  3rd Qu.:2.000   3rd Qu.:2.000   3rd Qu.:2.000   3rd Qu.:2.000  
##  Max.   :3.000   Max.   :3.000   Max.   :3.000   Max.   :3.000  
##  NA's   :55      NA's   :32      NA's   :43      NA's   :47     
##       exc2             exc6            exc20             exc11       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.00000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.00000   Median :0.0000  
##  Mean   :0.2382   Mean   :0.1134   Mean   :0.02303   Mean   :0.1809  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.00000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.00000   Max.   :1.0000  
##  NA's   :1        NA's   :2                          NA's   :1049    
##      exc13            exc14            exc15           exc16       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.000   Median :0.0000  
##  Mean   :0.0571   Mean   :0.2458   Mean   :0.033   Mean   :0.0806  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.000   Max.   :1.0000  
##  NA's   :634      NA's   :1445     NA's   :776     NA's   :930     
##      exc18           exc7new         vicbar7         vicbar7f    
##  Min.   :0.0000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:0.0000   1st Qu.:4.000   1st Qu.:1.000   1st Qu.:2.000  
##  Median :0.0000   Median :4.000   Median :2.000   Median :3.000  
##  Mean   :0.2363   Mean   :4.123   Mean   :1.514   Mean   :2.423  
##  3rd Qu.:0.0000   3rd Qu.:5.000   3rd Qu.:2.000   3rd Qu.:3.000  
##  Max.   :1.0000   Max.   :5.000   Max.   :2.000   Max.   :3.000  
##  NA's   :14       NA's   :64      NA's   :22      NA's   :825    
##      fear11         capital1          iga1          igaaoj22   
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.00  
##  1st Qu.:2.000   1st Qu.:1.000   1st Qu.:1.000   1st Qu.:1.00  
##  Median :3.000   Median :1.000   Median :1.000   Median :1.00  
##  Mean   :2.589   Mean   :1.465   Mean   :2.113   Mean   :1.35  
##  3rd Qu.:4.000   3rd Qu.:2.000   3rd Qu.:4.000   3rd Qu.:2.00  
##  Max.   :4.000   Max.   :2.000   Max.   :4.000   Max.   :2.00  
##  NA's   :3       NA's   :127     NA's   :147     NA's   :40    
##       vb1             inf1           vb2             vb3n      
##  Min.   :1.000   Min.   :1.00   Min.   :1.000   Min.   :  0.0  
##  1st Qu.:1.000   1st Qu.:1.00   1st Qu.:1.000   1st Qu.:101.0  
##  Median :1.000   Median :1.00   Median :1.000   Median :102.0  
##  Mean   :1.068   Mean   :1.02   Mean   :1.313   Mean   :104.2  
##  3rd Qu.:1.000   3rd Qu.:1.00   3rd Qu.:2.000   3rd Qu.:103.0  
##  Max.   :3.000   Max.   :2.00   Max.   :2.000   Max.   :177.0  
##  NA's   :2       NA's   :2      NA's   :12      NA's   :829    
##       vb10            vb11            pol1            vb20      
##  Min.   :1.000   Min.   :101.0   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:101.0   1st Qu.:2.000   1st Qu.:2.000  
##  Median :2.000   Median :102.0   Median :3.000   Median :3.000  
##  Mean   :1.811   Mean   :104.7   Mean   :2.908   Mean   :2.825  
##  3rd Qu.:2.000   3rd Qu.:109.0   3rd Qu.:4.000   3rd Qu.:4.000  
##  Max.   :2.000   Max.   :177.0   Max.   :4.000   Max.   :4.000  
##  NA's   :16      NA's   :1284    NA's   :9       NA's   :166    
##      mexcv1          mexcv2           for5            exp_b    
##  Min.   :1.000   Min.   :1.000   Min.   : 1.000   Min.   :1.0  
##  1st Qu.:2.000   1st Qu.:2.000   1st Qu.: 1.000   1st Qu.:1.0  
##  Median :2.000   Median :2.000   Median : 2.000   Median :1.0  
##  Mean   :1.902   Mean   :1.891   Mean   : 4.425   Mean   :1.5  
##  3rd Qu.:2.000   3rd Qu.:2.000   3rd Qu.: 6.000   3rd Qu.:2.0  
##  Max.   :2.000   Max.   :2.000   Max.   :14.000   Max.   :2.0  
##  NA's   :39      NA's   :1425    NA's   :249                   
##      mil10a          mil10e         mil10oas        mil10un     
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:3.000   1st Qu.:2.000   1st Qu.:2.000  
##  Median :2.000   Median :4.000   Median :2.000   Median :2.000  
##  Mean   :2.376   Mean   :3.236   Mean   :2.535   Mean   :2.283  
##  3rd Qu.:3.000   3rd Qu.:4.000   3rd Qu.:3.000   3rd Qu.:3.000  
##  Max.   :4.000   Max.   :4.000   Max.   :4.000   Max.   :4.000  
##  NA's   :859     NA's   :375     NA's   :890     NA's   :502    
##       ccq1           ccq2            ccq3            ccq4      
##  Min.   :1.00   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:1.00   1st Qu.:2.000   1st Qu.:1.000   1st Qu.:2.000  
##  Median :1.00   Median :3.000   Median :1.000   Median :3.000  
##  Mean   :1.26   Mean   :2.741   Mean   :1.316   Mean   :2.618  
##  3rd Qu.:2.00   3rd Qu.:4.000   3rd Qu.:2.000   3rd Qu.:3.000  
##  Max.   :2.00   Max.   :5.000   Max.   :2.000   Max.   :5.000  
##  NA's   :120    NA's   :520     NA's   :158     NA's   :618    
##      mexus1          mexus2          via1a           via1b      
##  Min.   :1.000   Min.   :1.000   Min.   : 1.00   Min.   : 2.00  
##  1st Qu.:2.000   1st Qu.:1.000   1st Qu.: 2.00   1st Qu.:18.00  
##  Median :2.000   Median :2.000   Median :12.00   Median :77.00  
##  Mean   :1.866   Mean   :1.793   Mean   :25.83   Mean   :47.97  
##  3rd Qu.:2.000   3rd Qu.:2.000   3rd Qu.:77.00   3rd Qu.:77.00  
##  Max.   :3.000   Max.   :3.000   Max.   :77.00   Max.   :77.00  
##  NA's   :42      NA's   :153     NA's   :286     NA's   :782    
##       wf1            cct1b             ed             ed2       
##  Min.   :1.000   Min.   :1.000   Min.   : 0.00   Min.   :0.000  
##  1st Qu.:2.000   1st Qu.:2.000   1st Qu.: 6.00   1st Qu.:0.000  
##  Median :2.000   Median :2.000   Median : 9.00   Median :2.000  
##  Mean   :1.798   Mean   :1.759   Mean   : 9.38   Mean   :2.076  
##  3rd Qu.:2.000   3rd Qu.:2.000   3rd Qu.:12.00   3rd Qu.:4.000  
##  Max.   :2.000   Max.   :2.000   Max.   :18.00   Max.   :8.000  
##  NA's   :6       NA's   :21      NA's   :10      NA's   :158    
##     mexham1         mexham2         mexham3         mexham4     
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000  
##  Median :3.000   Median :3.000   Median :3.000   Median :3.000  
##  Mean   :3.418   Mean   :2.853   Mean   :3.012   Mean   :3.446  
##  3rd Qu.:5.000   3rd Qu.:3.000   3rd Qu.:4.000   3rd Qu.:5.000  
##  Max.   :6.000   Max.   :6.000   Max.   :6.000   Max.   :6.000  
##  NA's   :27      NA's   :34      NA's   :33      NA's   :40     
##     mexham5         mexham6          q5a             q5b       
##  Min.   :1.000   Min.   :1.00   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:2.00   1st Qu.:2.000   1st Qu.:1.000  
##  Median :5.000   Median :3.00   Median :3.000   Median :1.000  
##  Mean   :3.882   Mean   :3.16   Mean   :3.258   Mean   :1.774  
##  3rd Qu.:5.000   3rd Qu.:5.00   3rd Qu.:5.000   3rd Qu.:2.000  
##  Max.   :6.000   Max.   :6.00   Max.   :5.000   Max.   :4.000  
##  NA's   :25      NA's   :41     NA's   :9       NA's   :17     
##       q3c             ocup4a          ocup1a           q10g       
##  Min.   : 1.000   Min.   :1.000   Min.   :1.000   Min.   : 0.000  
##  1st Qu.: 1.000   1st Qu.:1.000   1st Qu.:2.000   1st Qu.: 2.000  
##  Median : 1.000   Median :1.000   Median :4.000   Median : 6.000  
##  Mean   : 4.325   Mean   :2.811   Mean   :3.034   Mean   : 6.551  
##  3rd Qu.: 2.000   3rd Qu.:5.000   3rd Qu.:4.000   3rd Qu.:11.000  
##  Max.   :77.000   Max.   :7.000   Max.   :5.000   Max.   :16.000  
##  NA's   :63       NA's   :4       NA's   :744     NA's   :711     
##      q10new            q10a            q14             q10d      
##  Min.   : 0.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.: 3.000   1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000  
##  Median : 7.000   Median :2.000   Median :2.000   Median :3.000  
##  Mean   : 7.329   Mean   :1.923   Mean   :1.816   Mean   :2.629  
##  3rd Qu.:12.000   3rd Qu.:2.000   3rd Qu.:2.000   3rd Qu.:3.000  
##  Max.   :16.000   Max.   :2.000   Max.   :2.000   Max.   :4.000  
##  NA's   :179      NA's   :8       NA's   :13      NA's   :22     
##       q10e            q11n            q12c            q12bn      
##  Min.   :1.000   Min.   :1.000   Min.   : 1.000   Min.   :0.000  
##  1st Qu.:2.000   1st Qu.:1.000   1st Qu.: 3.000   1st Qu.:0.000  
##  Median :2.000   Median :2.000   Median : 4.000   Median :1.000  
##  Mean   :2.147   Mean   :2.265   Mean   : 4.315   Mean   :1.039  
##  3rd Qu.:3.000   3rd Qu.:3.000   3rd Qu.: 5.000   3rd Qu.:2.000  
##  Max.   :3.000   Max.   :7.000   Max.   :18.000   Max.   :9.000  
##  NA's   :21      NA's   :6       NA's   :16       NA's   :12     
##       q12              q12m            q12f             vac1      
##  Min.   : 0.000   Min.   :0.000   Min.   : 0.000   Min.   :1.000  
##  1st Qu.: 0.000   1st Qu.:1.000   1st Qu.: 1.000   1st Qu.:1.000  
##  Median : 2.000   Median :1.000   Median : 1.000   Median :1.000  
##  Mean   : 2.117   Mean   :1.539   Mean   : 1.366   Mean   :1.133  
##  3rd Qu.: 3.000   3rd Qu.:2.000   3rd Qu.: 2.000   3rd Qu.:1.000  
##  Max.   :16.000   Max.   :8.000   Max.   :10.000   Max.   :2.000  
##  NA's   :11       NA's   :434     NA's   :434      NA's   :417    
##     mexinf1         mexinf4         mexinf5         mexinf6     
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:1.000   1st Qu.:1.000   1st Qu.:1.000   1st Qu.:1.000  
##  Median :2.000   Median :1.000   Median :1.000   Median :2.000  
##  Mean   :1.517   Mean   :1.395   Mean   :1.227   Mean   :1.668  
##  3rd Qu.:2.000   3rd Qu.:2.000   3rd Qu.:1.000   3rd Qu.:2.000  
##  Max.   :2.000   Max.   :2.000   Max.   :2.000   Max.   :2.000  
##  NA's   :14      NA's   :188     NA's   :24      NA's   :148    
##     mexinf7         mexinf9         mexinf8           etid      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:1.000   1st Qu.:1.000   1st Qu.:2.000   1st Qu.:2.000  
##  Median :2.000   Median :2.000   Median :2.000   Median :2.000  
##  Mean   :1.745   Mean   :1.633   Mean   :1.928   Mean   :2.399  
##  3rd Qu.:2.000   3rd Qu.:2.000   3rd Qu.:2.000   3rd Qu.:2.000  
##  Max.   :2.000   Max.   :2.000   Max.   :2.000   Max.   :7.000  
##  NA's   :263     NA's   :314     NA's   :62      NA's   :268    
##     mexiiet1        mexiiet2        mexiiet3          www1      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:1.000   1st Qu.:1.000   1st Qu.:1.000   1st Qu.:1.000  
##  Median :2.000   Median :2.000   Median :2.000   Median :3.000  
##  Mean   :1.512   Mean   :1.523   Mean   :1.531   Mean   :2.978  
##  3rd Qu.:2.000   3rd Qu.:2.000   3rd Qu.:2.000   3rd Qu.:5.000  
##  Max.   :2.000   Max.   :2.000   Max.   :2.000   Max.   :5.000  
##  NA's   :1073    NA's   :1058    NA's   :1043    NA's   :7      
##        i2              i3              i4             gi0       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:1.000   1st Qu.:2.000   1st Qu.:1.000   1st Qu.:1.000  
##  Median :2.000   Median :2.000   Median :1.000   Median :2.000  
##  Mean   :1.535   Mean   :1.887   Mean   :1.451   Mean   :1.936  
##  3rd Qu.:2.000   3rd Qu.:2.000   3rd Qu.:2.000   3rd Qu.:2.000  
##  Max.   :2.000   Max.   :2.000   Max.   :2.000   Max.   :5.000  
##  NA's   :10      NA's   :7       NA's   :10      NA's   :9      
##       pr1              r3               r4              r4a        
##  Min.   :1.000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:2.000   1st Qu.:1.0000   1st Qu.:0.0000   1st Qu.:1.0000  
##  Median :2.000   Median :1.0000   Median :0.0000   Median :1.0000  
##  Mean   :2.041   Mean   :0.8809   Mean   :0.3803   Mean   :0.8085  
##  3rd Qu.:2.000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :4.000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##  NA's   :20      NA's   :10       NA's   :9        NA's   :7       
##        r5               r6              r7               r8        
##  Min.   :0.0000   Min.   :0.000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :1.000   Median :0.0000   Median :0.0000  
##  Mean   :0.5052   Mean   :0.702   Mean   :0.4399   Mean   :0.1035  
##  3rd Qu.:1.0000   3rd Qu.:1.000   3rd Qu.:1.0000   3rd Qu.:0.0000  
##  Max.   :3.0000   Max.   :1.000   Max.   :1.0000   Max.   :1.0000  
##  NA's   :11       NA's   :6       NA's   :6        NA's   :7       
##       r12              r14              r15              r18       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.000  
##  1st Qu.:1.0000   1st Qu.:1.0000   1st Qu.:0.0000   1st Qu.:0.000  
##  Median :1.0000   Median :1.0000   Median :0.0000   Median :0.000  
##  Mean   :0.9058   Mean   :0.8098   Mean   :0.3148   Mean   :0.399  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.000  
##  NA's   :3        NA's   :7        NA's   :13       NA's   :9      
##        r1              r16             sent1           colorr     
##  Min.   :0.0000   Min.   :0.0000   Min.   : 1.00   Min.   :1.000  
##  1st Qu.:1.0000   1st Qu.:0.0000   1st Qu.: 1.00   1st Qu.:3.000  
##  Median :1.0000   Median :1.0000   Median : 4.00   Median :4.000  
##  Mean   :0.9383   Mean   :0.6891   Mean   :14.36   Mean   :4.089  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:17.00   3rd Qu.:5.000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :77.00   Max.   :9.000  
##  NA's   :6        NA's   :106      NA's   :555                    
##     conocim          iarea1          iarea2          iarea3     
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000  
##  Median :3.000   Median :2.000   Median :2.000   Median :2.000  
##  Mean   :3.163   Mean   :2.212   Mean   :2.411   Mean   :2.336  
##  3rd Qu.:4.000   3rd Qu.:3.000   3rd Qu.:3.000   3rd Qu.:3.000  
##  Max.   :5.000   Max.   :4.000   Max.   :4.000   Max.   :4.000  
##                                                                 
##      iarea4          iarea6          iarea7           sexi      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:1.000   1st Qu.:1.000   1st Qu.:1.000   1st Qu.:1.000  
##  Median :1.000   Median :1.000   Median :1.000   Median :2.000  
##  Mean   :1.538   Mean   :1.357   Mean   :1.163   Mean   :1.567  
##  3rd Qu.:2.000   3rd Qu.:2.000   3rd Qu.:1.000   3rd Qu.:2.000  
##  Max.   :4.000   Max.   :4.000   Max.   :4.000   Max.   :2.000  
##                                                                 
##      colori         srvyrid       nationality    formatq       sex       
##  Min.   :1.000   Min.   : 1.00   Min.   :1    Min.   :4   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:16.00   1st Qu.:1    1st Qu.:4   1st Qu.:1.000  
##  Median :4.000   Median :23.00   Median :1    Median :4   Median :1.000  
##  Mean   :4.074   Mean   :25.59   Mean   :1    Mean   :4   Mean   :1.496  
##  3rd Qu.:5.000   3rd Qu.:39.00   3rd Qu.:1    3rd Qu.:4   3rd Qu.:2.000  
##  Max.   :7.000   Max.   :49.00   Max.   :1    Max.   :4   Max.   :2.000  
## 

Este summary también se puede hacer para una variable.

summary(mex2017$q1)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.000   1.000   1.000   1.496   2.000   2.000

¿Esto tendrá sentido?

class(mex2017$q1)
## [1] "haven_labelled"

Cuando importamos una base de stata que tiene etiquetas como la nuestra podemos usarlas. Pero tenemos que instalar una librería

#install.packages("sjlabelled", dependencies=T)
library(sjlabelled)
## Warning: package 'sjlabelled' was built under R version 3.5.2

## 
## Attaching package: 'sjlabelled'

## The following objects are masked from 'package:haven':
## 
##     as_factor, read_sas, read_spss, read_stata, write_sas,
##     zap_labels

Dentro de essta librería tenemos la función "as_label", esto nos permite usar las etiquetas

summary(as_label(mex2017$q1))
##   Male Female 
##    788    775

Crear una variable

Utilizando el símbolo de $ también se puede asignar valores adentro del objeto

mex2017$newvar<-NA
mex2017$newvar<-as_label(mex2017$q1)
dim(mex2017)
## [1] 1563  202

"haven" también nos permite exportar, aunque no desde los menús

write_dta(mex2017 , "mi_exportación.dta", version = 14)

Una base desde Excel

Hay muchos formatos de almacenamiento de bases de datos. Vamos a aprender a importar información desde ellos. Poco a poco.

Desde Excel, el paquete más compatible con RStudio es readxl. A veces, otros paquetes tienen más problemas de configuración entre R y el Java.

#install.packages("readxl", repos = "http://cran.us.r-project.org", dependencies = TRUE)
library(readxl) # Recuerda que hay llamar al paquete
## Warning: package 'readxl' was built under R version 3.5.2

Vamos a trabajar con el "Índice de Competitividad Estatal" (mayor info aquí).

Excel_2016_IMCO <- read_excel("Excel_2016_IMCO.xlsx")
## New names:
## * `` -> `..101`
## * `` -> `..102`
## * `` -> `..103`
#View(Excel_2014_IMCO)

Como el nombre de paquete lo indica, sólo lee. Para escribir en este formato, recomiendo el paquete "openxlsx".

#install.packages("openxlsx", dependencies = TRUE)
library(openxlsx)

Si quisiéramos exportar un objeto a Excel

write.xlsx(Excel_2016_IMCO, file = "Mi_Exportación.xlsx")

Un previo a análisis descriptivo

hist(Excel_2016_IMCO$Homicidios)